Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(3): 77, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386216

RESUMO

KEY MESSAGE: We reported the mitochondrial genome of Ventilago leiocarpa for the first time. Two and one sites lead to the generation of stop and stat codon through editing were verified. Ventilago leiocarpa, a member of the Rhamnaceae family, is frequently utilized in traditional medicine due to the medicinal properties of its roots. In this study, we successfully assembled the mitogenome of V. leiocarpa using both BGI short reads and Nanopore long reads. This mitogenome has a total length of 331,839 bp. The annotated results showed 36 unique protein-coding, 16 tRNA and 3 rRNA genes in this mitogenome. Furthermore, we confirmed the presence of a branched structure through the utilization of long reads mapping, PCR amplification, and Sanger sequencing. Specifically, the ctg1 can form a single circular molecule or combine with ctg4 to form a linear molecule. Likewise, ctg2 can form a single circular molecule or can be connected to ctg4 to form a linear molecule. Subsequently, through a comparative analysis of the mitogenome and cpgenome sequences, we identified ten mitochondrial plastid sequences (MTPTs), including two complete protein-coding genes and five complete tRNA genes. The existence of MTPTs was verified by long reads. Colinear analysis showed that the mitogenomes of Rosales were highly divergent in structure. Finally, we identified 545 RNA editing sites involving 36 protein-coding genes by Deepred-mt. To validate our findings, we conducted PCR amplification and Sanger sequencing, which confirmed the generation of stop codons in atp9-223 and rps10-391, as well as the generation of a start codon in nad4L-2. This project reported the complex structure and RNA editing event of the V. Leiocarpa mitogenome, which will provide valuable information for the study of mitochondrial gene expression.


Assuntos
Asteraceae , Genoma Mitocondrial , Rhamnaceae , Genoma Mitocondrial/genética , Expressão Gênica , RNA de Transferência/genética
2.
BMC Genom Data ; 24(1): 73, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017381

RESUMO

OBJECTIVES: Erythrophleum is a genus in the Fabaceae family. The genus contains only about 10 species, and it is best known for its hardwood and medical properties worldwide. Erythrophleum fordii Oliv. is the only species of this genus distributed in China. It has superior wood and can be used in folk medicine, which leads to its overexploitation in the wild. For its effective conservation and elucidation of the distinctive genetic traits of wood formation and medical components, we present its first genome assembly. DATA DESCRIPTION: This work generated ~ 160.8 Gb raw Nanopore whole genome sequencing (WGS) long reads, ~ 126.0 Gb raw MGI WGS short reads and ~ 29.0 Gb raw RNA-seq reads using E. fordii leaf tissues. The de novo assembly contained 864,825,911 bp in the E. fordii genome, with 59 contigs and a contig N50 of 30,830,834 bp. Benchmarking Universal Single-Copy Orthologs (BUSCO) revealed 98.7% completeness of the assembly. The assembly contained 471,006,885 bp (54.4%) repetitive sequences and 28,761 genes that coded for 33,803 proteins. The protein sequences were functionally annotated against multiple databases, facilitating comparative genomic analysis.


Assuntos
Fabaceae , Árvores , Anotação de Sequência Molecular , Genoma , China
3.
Gene ; 871: 147427, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37044183

RESUMO

BACKGROUND: Artemisia argyi L., also known as mugwort, is a perennial herb whose leaves are commonly used as a source of traditional medicines. However, the evolution and structure of the mitochondrial genome (mitogenome) in A. argyi remain unclear. In this study, the mitogenome of A. argyi was assembled and characterized for the first time. RESULTS: The mitogenome of A. argyi was a circular molecule of 229,354 bp. It encodes 56 genes, including 33 protein-coding genes (PCGs), 20 tRNA genes, and three rRNA genes, and three pseudogenes. Five trans-spliced introns were observed in three PCGs namely, nad1, nad2 and nad5. Repeat analysis identified 65 SSRs, 14 tandem repeats, and 167 dispersed repeats. The A. argyi mitogenome contains 12 plastid transfer sequences from 79 bp to 2552 bp. Five conserved MTPTs were identified in all 18 Asteraceae species. Comparison of mitogenome between A. argyi and one Artemisia specie and two Chrysanthemum species showed 14 conserved gene clusters. Phylogenetic analysis with organelle genomes of A. argyi and 18 other Anthemideae plants showed inconsistent phylogenetic trees, which implied that the evolutionary rates of PCGs and rrna genes derived from mitochondrion and plastid were incongruent. The Ka/Ks ratio of the 27 shared protein-coding genes in the 18 Anthemideae species are all less than 1 indicating that these genes were under the effect of purifying selection. Lastly, a total of 568 RNA editing sites in PCGs were further identified. The average editing frequency of non-synonymous changes was significantly higher than that of synonymous changes (one-sample Student's t-test, p-values ≤ 0.05) in three tissues (root, leaf and stem). CONCLUSIONS: In this study, the gene content, genome size, genome comparison, mitochondrial plastid sequences, dN/dS analysis of mitochondrial protein-coding genes, and RNA-editing events in A. argyi mitogenome were determined, providing insights into the phylogenetic relationships of Asteraceae plant.


Assuntos
Artemisia , Chrysanthemum , Genoma Mitocondrial , Tanacetum , Humanos , Artemisia/genética , Tanacetum/genética , Chrysanthemum/genética , Filogenia , Mitocôndrias/genética , Proteínas Mitocondriais/genética
4.
Data Brief ; 46: 108866, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36687154

RESUMO

The species of the genus Juniperus L. play an important role in Kazakhstan forest ecosystems and one of them is Juniperus seravschanica Kom. which has been listed as a rare species in the Red Book of Kazakhstan. The distribution area of J. seravschanica extends from Central Asia (Kazakhstan, Uzbekistan, Kyrgyzstan, Tajikistan, and Turkmenistan) to northern and eastern Afghanistan, northern Pakistan, Kashmir, southeastern Iran, and Oman. J. seravschanica occurred in the southern part of Kazakhstan along with the ranges Karatau, Talas Alatau, Kyrgyz Alatau, Chu-Ili, Karzhantau, and Ugam. The distribution area of J. seravschanica is constantly decreasing due to intensive logging, forest fires, and excessive cattle grazing. The species has ecological importance in the stabilization of mountain slopes against erosion, for hydrobiological regulation, and as a significant medicinal herb. The species J. excelsa M. Bieb., J. polycarpos K.Koch (var. polycarpos and var. turcomanica R.P.Adams), and J. seravschanica are morphologically very similar with some difficulties in species identification. For a better understanding of the evolutionary relationship of these species in the Juniperus genus, it is important to obtain genetic information on the highly conserved chloroplast (cp) genome. Due to the conserved genomic structure, the cp genome nucleotide sequences are widely used in species distinguishing and reconstructing phylogenetic relationships. Unfortunately, there are no publicly available nucleotide sequences of cp genomes data for J. polycarpos (var. polycarpos and var. turcomanica), J. excelsa and J. seravschanica. We report the de novo assembly of the J. seravschanica chloroplast genome by applying next-generation sequencing technology based on Illumina NovaSeq 6000. The assembled cp genome of J. seravschanica is 127,609 bp in length and contained 118 genes, including 82 protein-coding genes, 32 transfer RNA genes, and 4 ribosomal RNA genes. In total 152 simple sequence repeats were identified in the chloroplast genome sequence of J. seravschanica. The Bioproject (PRJNA883033), Sequence Read Archive (SRR21673293), and GenBank (OL684343) data were deposited at National Center for Biotechnology Information.

5.
J Ginseng Res ; 47(1): 44-53, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36644396

RESUMO

Background: The genus Panax in the Araliaceae family has been used as traditional medicinal plants worldwide and is known to biosynthesize ginsenosides and phytosterols. However, genetic variation between Panax species has influenced their biosynthetic pathways is not fully understood. Methods: Simultaneous analysis of transcriptomes and metabolomes obtained from adventitious roots of two tetraploid species (Panax ginseng and P. quinquefolius) and two diploid species (P. notoginseng and P. vietnamensis) revealed the diversity of their metabolites and related gene expression profiles. Results: The transcriptome analysis showed that 2,3-OXIDOSQUALENE CYCLASEs (OSCs) involved in phytosterol biosynthesis are upregulated in the diploid species, while the expression of OSCs contributing to ginsenoside biosynthesis is higher in the tetraploid species. In agreement with these results, the contents of dammarenediol-type ginsenosides were higher in the tetraploid species relative to the diploid species. Conclusion: These results suggest that a whole-genome duplication event has influenced the triterpene biosynthesis pathway in tetraploid Panax species during their evolution or ecological adaptation. This study provides a basis for further efforts to explore the genetic variation of the Panax genus.

6.
Mol Biol Rep ; 50(2): 1545-1552, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36513867

RESUMO

BACKGROUND: Melaleuca alternifolia is a commercially important medicinal tea tree native to Australia. Tea tree oil, the essential oil distilled from its branches and leaves, has broad-spectrum germicidal activity and is highly valued in the pharmaceutical and cosmetic industries. Thus, the study of genome, which can provide reference for the investigation of genes involved in terpinen-4-ol biosynthesis, is quite crucial for improving the productivity of Tea tree oil. METHODS AND RESULTS: In our study, the next-generation sequencing was used to investigate the whole genome of Melaleuca alternifolia. About 114 Gb high quality sequence data were obtained and assembled into 1,838,159 scafolds with an N50 length of 1021 bp. The assembled genome size is about 595 Mb, twice of that predicted by flow cytometer (300 Mb) and k-mer analysis (345 Mb). Benchmarking Universal Single-Copy Orthologs analyses indicated that only 11.3% of the conserved single-copy genes were miss. Repetitive regions cover over 40.43% of the genome. A total of 44,369 protein-coding genes were predicted and annotated against Nr, Swissprot, Refseq, COG, KOG, and KEGG database. Among these genes, 32,909 and 16,241 genes were functionally annotated in Nr and KEGG, respectively. Moreover, 29,411 and 14,435 genes were functionally annotated in COG and KOG. Additionally, 457,661 simple sequence repeats and 1109 transcription factors (TFs) form 67 TF families were identified in the assembled genome. CONCLUSION: Our findings provide a draft genome sequencing of M. alternifolia which can act as a reference for the deep sequencing strategies, and are useful for future functional and comparative genomics analyses.


Assuntos
Melaleuca , Óleos Voláteis , Óleo de Melaleuca , Humanos , Melaleuca/genética , Árvores , Chás Medicinais
7.
Mol Biol Rep ; 49(11): 10307-10314, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36097107

RESUMO

BACKGROUND: Justicia adhatoda is an important medicinal plant traditionally used in the Indian system of medicine and the absence of molecular-level studies in this plant hinders its wide use, hence the study was aimed to analyse the genes involved in its various pathways. METHODS AND RESULTS: The RNA isolated was subjected to Illumina sequencing. De novo assembly was performed using TRINITY software which produced 171,064 transcripts with 55,528 genes and N50 value of 2065 bp, followed by annotation of unigenes against NCBI, KEGG and Gene ontology databases resulted in 105,572 annotated unigenes and 40,288 non-annotated unigenes. A total of 5980 unigenes were mapped to 144 biochemical pathways, including the metabolism and biosynthesis pathways. The pathway analysis revealed the major transcripts involved in the tryptophan biosynthesis with TPM values of 6.0903, 33.6854, 11.527, 1.6959, and 8.1662 for Anthranilate synthase alpha, Anthranilate synthase beta, Arogenate/Prephenate dehydratase, Chorismate synthase and Chorismate mutase, respectively. The qRT-PCR validation of the key enzymes showed up-regulation in mid mature leaf when compared to root and young leaf tissue. A total of 16,154 SSRs were identified from the leaf transcriptome of J. Adhatoda ,which could be helpful in molecular breeding. CONCLUSIONS: The study aimed at identifying transcripts involved in the tryptophan biosynthesis pathway for its medicinal properties, as it acts as a precursor to the acridone alkaloid biosynthesis with major key enzymes and their validation. This is the first study that reports transcriptome assembly and annotation of J. adhatoda plant.


Assuntos
Justicia , Justicia/genética , Vias Biossintéticas/genética , Anotação de Sequência Molecular , Regulação da Expressão Gênica de Plantas/genética , Antranilato Sintase/genética , Triptofano/genética , Perfilação da Expressão Gênica , Transcriptoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
8.
Funct Integr Genomics ; 22(5): 879-889, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35596045

RESUMO

Garden cress (Lepidium sativum L.) is a Brassicaceae crop recognized as a healthy vegetable and a medicinal plant. Lepidium is one of the largest genera in Brassicaceae, yet, the genus has not been a focus of extensive genomic research. In the present work, garden cress genome was sequenced using the long read high-fidelity sequencing technology. A de novo, draft genome assembly that spans 336.5 Mb was produced, corresponding to 88.6% of the estimated genome size and representing 90% of the evolutionarily expected orthologous gene content. Protein coding gene content was structurally predicted and functionally annotated, resulting in the identification of 25,668 putative genes. A total of 599 candidate disease resistance genes were identified by predicting resistance gene domains in gene structures, and 37 genes were detected as orthologs of heavy metal associated protein coding genes. In addition, 4289 genes were assigned as "transcription factor coding." Six different machine learning algorithms were trained and tested for their performance in classifying miRNA coding genomic sequences. Logistic regression proved the best performing trained algorithm, thus utilized for pre-miRNA coding loci identification in the assembly. Repetitive DNA analysis involved the characterization of transposable element and microsatellite contents. L. sativum chloroplast genome was also assembled and functionally annotated. Data produced in the present work is expected to constitute a foundation for genomic research in garden cress and contribute to genomics-assisted crop improvement and genome evolution studies in the Brassicaceae family.


Assuntos
Lepidium sativum , MicroRNAs , Elementos de DNA Transponíveis , Genômica , Lepidium sativum/genética , Fatores de Transcrição
9.
BMC Genomics ; 23(1): 86, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35100996

RESUMO

BACKGROUND: Panax notoginseng (Burk.) F. H. Chen (PN) belonging to the genus Panax of family Araliaceae is widely used in traditional Chinese medicine to treat various diseases. PN taproot, as the most vital organ for the accumulation of bioactive components, presents a variable morphology (oval or long), even within the same environment. However, no related studies have yet explained the molecular mechanism of phenotypic differences. To investigate the cause of differences in the taproot phenotype, de novo and comparative transcriptomic analysis on PN taproot was performed. RESULTS: A total of 133,730,886 and 114,761,595 paired-end clean reads were obtained based on high-throughput sequencing from oval and long taproot samples, respectively. 121,955 unigenes with contig N50 = 1,774 bp were generated by using the de novo assembly transcriptome, 63,133 annotations were obtained with the BLAST. And then, 42 genes belong to class III peroxidase (PRX) gene family, 8 genes belong to L-Ascorbate peroxidase (APX) gene family, and 55 genes belong to a series of mitogen-activated protein kinase (MAPK) gene family were identified based on integrated annotation results. Differentially expressed genes analysis indicated substantial up-regulation of PnAPX3 and PnPRX45, which are related to reactive oxygen species metabolism, and the PnMPK3 gene, which is related to cell proliferation and plant root development, in long taproots compared with that in oval taproots. Furthermore, the determination results of real-time quantitative PCR, enzyme activity, and H2O2 content verified transcriptomic analysis results. CONCLUSION: These results collectively demonstrate that reactive oxygen species (ROS) metabolism and the PnMPK3 gene may play vital roles in regulating the taproot phenotype of PN. This study provides further insights into the genetic mechanisms of phenotypic differences in other species of the genus Panax.


Assuntos
Panax notoginseng , Perfilação da Expressão Gênica , Peróxido de Hidrogênio , Panax notoginseng/genética , Raízes de Plantas/genética , Transcriptoma
10.
G3 (Bethesda) ; 11(11)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34849782

RESUMO

The new yeast Metschnikowia persimmonesis KCTC 12991BP (KIOM G15050 strain) exhibits strong antimicrobial activity against some pathogens. This activity may be related to the medicinal profile of secondary metabolites that could be found in the genome of this species. Therefore, to explore its future possibility of producing some beneficial activities, including medicinal ability, we report high-quality whole-genome assembly of M. persimmonesis produced by PacBio RS II sequencer. The final draft assembly consisted of 16 scaffolds with GC content of 45.90% and comprised a fairly complete set (82.8%) of BUSCO result using Saccharomycetales lineage data set. The total length of the genome was 16.473 Mb, with a scaffold N50 of 1.982 Mb. Annotation of the M. persimmonesis genome revealed presence of 7029 genes and 6939 functionally annotated proteins. Based on the analysis of phylogenetic relationship and the average nucleotide identities, M. persimmonesis was proved to a novel species within the Metschnikowia genus. This finding is expected to significantly contribute to the discovery of high-value natural products from M. persimmonesis as well as for genome biology and evolution comparative analysis within Metschnikowia species.


Assuntos
Diospyros , Metschnikowia , Plantas Medicinais , Diospyros/genética , Anotação de Sequência Molecular , Filogenia
11.
J Agric Food Chem ; 69(45): 13596-13607, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34739246

RESUMO

Using a combination of biochemical, transcriptomic, and physiological analyses, we elucidated the mechanisms of physical and chemical withering of tea shoots subjected to UV-C and ethylene treatments. UV-C irradiation (15 kJ m-2) initiated oxidation of catechins into theaflavins, increasing theaflavin-3-monogallate and theaflavin digallate by 5- and 13.2-4.4-fold, respectively, at the end of withering. Concomitantly, a rapid change to brown/red, an increase in electrolyte leakage, and the upregulation of peroxidases (viz. Px2, Px4, and Px6) and polyphenol oxidases (PPO-1) occurred. Exogenous ethylene significantly increased the metabolic rate (40%) and moisture loss (30%) compared to control during simulated withering (12 h at 25 °C) and upregulated transcripts associated with responses to dehydration and abiotic stress, such as those in the ethylene signaling pathway (viz. EIN4-like, EIN3-FBox1, and ERFs). Incorporating ethylene during withering could shorten the tea manufacturing process, while UV-C could enhance the accumulation of flavor-related compounds.


Assuntos
Biflavonoides , Camellia sinensis , Catequina , Antioxidantes , Biflavonoides/análise , Catequina/análise , Catecol Oxidase/genética , Etilenos , Chá
12.
Mol Biol Rep ; 48(1): 127-137, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33403559

RESUMO

There is an increasing demand for elucidating the biosynthetic pathway of medicinal plants, which are capable of producing several metabolites with great potentials for industrial drug production. Digitalis species are important medicinal plants for the production of cardenolide compounds. Advancement on culture techniques is strictly related to our understanding of the genomic background of species. There are a limited number of genomic studies on Digitalis species. The goal of this study is to contribute to the genomic data of Digitalis ferruginea subsp. schischkinii by presenting transcriptome annotation. Digitalis ferruginea subsp. schischkinii has a limited distribution in Turkey and Transcaucasia, and has a high level of lanatoside C, an important cardenolide. In the study, we sequenced the cDNA library prepared from RNA pools of D. ferruginea subsp. schischkinii tissues treated with various stress conditions. Comprehensive bioinformatics approaches were used for de novo assembly and functional annotation of D. ferruginea subsp. schischkinii transcriptome sequence data along with TF families predictions and phylogenetic analysis. In the study, 58,369 unigenes were predicted and unigenes were annotated by analyzing the sequence data in the non-redundant (NR) protein database, the non-redundant nucleotide (NT) database, Gene Orthology (GO), EuKaryotic Orthologous Groups (KOG), Kyoto Encyclopedia of Genes and Genomes (KEGG), SwissProt, and InterPro databases. This study is the first transcriptome data for D. ferruginea subsp. schischkinii.


Assuntos
Vias Biossintéticas/genética , Digitalis/genética , Repetições de Microssatélites/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Filogenia , Plantas Medicinais/química
13.
Plant Dis ; 105(1): 196-198, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32720879

RESUMO

Pectobacterium spp. are a major cause of loss in vegetable and ornamental plant production. One of these species, Pectobacterium carotovorum, can cause soft rot disease on many plants, particularly potato. These diseases lead to significant economic loss and pose food security threats by reducing crop yields in the field, in transit, and during storage. The Gram-negative enterobacterium P. carotovorum WPP14 is a particularly virulent strain for which there is no available closed genome, limiting the molecular research for this important pathogen. Here, we report a high-quality complete and annotated genome sequence of P. carotovorum WPP14. The 4,892,225-bp genome was assembled with Nanopore reads and polished with Illumina reads, yielding 394× and 164× coverage, respectively. This closed genome provides a resource for research on improved detection and biology of P. carotovorum, which could translate into improved disease management.


Assuntos
Pectobacterium , Solanum tuberosum , Bactérias , Pectobacterium/genética , Pectobacterium carotovorum/genética , Doenças das Plantas
14.
Plant Dis ; 105(4): 1174-1176, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33064625

RESUMO

New Guinea impatiens (NGI, Impatiens hawkeri) are popular bedding plants that can be affected by a number of pathogens. Using 16S rDNA sequencing and genus-specific PCR, we identified the first Dickeya dianthicola strain isolated from NGI presented with blackleg symptoms, herein designated as D. dianthicola 67-19. Here, we report a high-quality complete and annotated genome sequence of D. dianthicola 67-19. The 4,851,809 bp genome was assembled with Nanopore reads and polished with Illumina reads, yielding 422× and 105× coverage, respectively. This closed genome provides a resource for future research on comparative genomics and biology of D. dianthicola, which could translate to improved detection and disease management.


Assuntos
Impatiens , Solanum tuberosum , Dickeya , Nova Guiné , Doenças das Plantas
15.
Genome Biol ; 21(1): 306, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33372615

RESUMO

Generating chromosome-level, haplotype-resolved assemblies of heterozygous genomes remains challenging. To address this, we developed gamete binning, a method based on single-cell sequencing of haploid gametes enabling separation of the whole-genome sequencing reads into haplotype-specific reads sets. After assembling the reads of each haplotype, the contigs are scaffolded to chromosome level using a genetic map derived from the gametes. We assemble the two genomes of a diploid apricot tree based on whole-genome sequencing of 445 individual pollen grains. The two haplotype assemblies (N50: 25.5 and 25.8 Mb) feature a haplotyping precision of greater than 99% and are accurately scaffolded to chromosome-level.


Assuntos
Cromossomos , Genoma , Células Germinativas , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Diploide , Tamanho do Genoma , Haploidia , Heterozigoto , Brotos de Planta , Pólen/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Espanha , Sequenciamento Completo do Genoma
16.
Front Genet ; 11: 570138, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193666

RESUMO

The herbaceous peony (Paeonia lactiflora Pall.) is a well-known ornamental flowering and pharmaceutical plant found in China. Its high medicinal value has long been recognized by traditional Chinese medicine (as Radix paeoniae Alba and Radix paeoniae Rubra), and it has become economically valued for its oilseed in recent years; like other Paeonia species, it has been identified as a novel resource for the α-linolenic acid used in seed oil production. However, its genome has not yet been sequenced, and little transcriptome data on Paeonia lactiflora are available. To obtain a comprehensive transcriptome for Paeonia lactiflora, RNAs from 10 tissues of the Paeonia lactiflora Pall. cv Shaoyou17C were used for de novo assembly, and 416,062 unigenes were obtained. Using a homology search, it was found that 236,222 (approximately 57%) unigenes had at least one BLAST hit in one or more public data resources. The construction of co-expression networks is a feasible means for improving unigene annotation. Using in-house transcriptome data, we obtained a co-expression network covering 95.13% of the unigenes. Then we integrated co-expression network analyses and lipid-related pathway genes to study lipid metabolism in Paeonia lactiflora cultivars. Finally, we constructed the online database HpeNet (http://bioinformatics.cau.edu.cn/HpeNet) to integrate transcriptome data, gene information, the co-expression network, and so forth. The database can also be searched for gene details, gene functions, orthologous matches, and other data. Our online database may help the research community identify functional genes and perform research on Paeonia lactiflora more conveniently. We hope that de novo transcriptome assembly, combined with co-expression networks, can provide a feasible means to predict the gene function of species that do not have a reference genome.

17.
Genome Biol Evol ; 12(12): 2486-2490, 2020 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-33045048

RESUMO

Dendrobium huoshanense is used to treat various diseases in traditional Chinese medicine. Recent studies have identified active components. However, the lack of genomic data limits research on the biosynthesis and application of these therapeutic ingredients. To address this issue, we generated the first chromosome-level genome assembly and annotation of D. huoshanense. We integrated PacBio sequencing data, Illumina paired-end sequencing data, and Hi-C sequencing data to assemble a 1.285 Gb genome, with contig and scaffold N50 lengths of 598 kb and 71.79 Mb, respectively. We annotated 21,070 protein-coding genes and 0.96 Gb transposable elements, constituting 74.92% of the whole assembly. In addition, we identified 252 genes responsible for polysaccharide biosynthesis by Kyoto Encyclopedia of Genes and Genomes functional annotation. Our data provide a basis for further functional studies, particularly those focused on genes related to glycan biosynthesis and metabolism, and have implications for both conservation and medicine.


Assuntos
Dendrobium/genética , Genoma de Planta , Cromossomos de Plantas , Elementos de DNA Transponíveis , Medicina Tradicional Chinesa , Plantas Medicinais/genética , Valores de Referência
18.
BMC Plant Biol ; 20(1): 414, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887550

RESUMO

BACKGROUND: Rhododendron molle (Ericaceae) is a traditional Chinese medicinal plant, its flower and root have been widely used to treat rheumatism and relieve pain for thousands of years in China. Chemical studies have revealed that R. molle contains abundant secondary metabolites such as terpenoinds, flavonoids and lignans, some of which have exhibited various bioactivities including antioxidant, hypotension and analgesic activity. In spite of immense pharmaceutical importance, the mechanism underlying the biosynthesis of secondary metabolites remains unknown and the genomic information is unavailable. RESULTS: To gain molecular insight into this plant, especially on the information of pharmaceutically important secondary metabolites including grayanane diterpenoids, we conducted deep transcriptome sequencing for R. molle flower and root using the Illumina Hiseq platform. In total, 100,603 unigenes were generated through de novo assembly with mean length of 778 bp, 57.1% of these unigenes were annotated in public databases and 17,906 of those unigenes showed significant match in the KEGG database. Unigenes involved in the biosynthesis of secondary metabolites were annotated, including the TPSs and CYPs that were potentially responsible for the biosynthesis of grayanoids. Moreover, 3376 transcription factors and 10,828 simple sequence repeats (SSRs) were also identified. Additionally, we further performed differential gene expression (DEG) analysis of the flower and root transcriptome libraries and identified numerous genes that were specifically expressed or up-regulated in flower. CONCLUSIONS: To the best of our knowledge, this is the first time to generate and thoroughly analyze the transcriptome data of both R. molle flower and root. This study provided an important genetic resource which will shed light on elucidating various secondary metabolite biosynthetic pathways in R. molle, especially for those with medicinal value and allow for drug development in this plant.


Assuntos
Flavonoides/genética , Genes de Plantas , Lignanas , Rhododendron/genética , Metabolismo Secundário , Transcriptoma , Flavonoides/biossíntese , Flores , Perfilação da Expressão Gênica , Lignanas/biossíntese , Raízes de Plantas , Rhododendron/metabolismo , Análise de Sequência de DNA
19.
Genome Biol Evol ; 12(7): 1074-1079, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32579174

RESUMO

Ophiocordyceps sinensis (Berk.) is an entomopathogenic fungus endemic to the Qinghai-Tibet Plateau. It parasitizes and mummifies the underground ghost moth larvae, then produces a fruiting body. The fungus-insect complex, called Chinese cordyceps or "DongChongXiaCao," is not only a valuable traditional Chinese medicine, but also a major source of income for numerous Himalayan residents. Here, taking advantage of rapid advances in single-molecule sequencing, we assembled a highly contiguous genome assembly of O. sinensis. The assembly of 23 contigs was ∼110.8 Mb with a N50 length of 18.2 Mb. We used RNA-seq and homologous protein sequences to identify 8,916 protein-coding genes in the IOZ07 assembly. Moreover, 63 secondary metabolite gene clusters were identified in the improved assembly. The improved assembly and genome features described in this study will further inform the evolutionary study and resource utilization of Chinese cordyceps.


Assuntos
Cordyceps/genética , Genoma Fúngico , Anotação de Sequência Molecular , Metabolismo Secundário/genética
20.
BMC Bioinformatics ; 20(1): 553, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694521

RESUMO

BACKGROUND: Tea is the oldest and among the world's most popular non-alcoholic beverages, which has important economic, health and cultural values. Tea is commonly produced from the leaves of tea plants (Camellia sinensis), which belong to the genus Camellia of family Theaceae. In the last decade, many studies have generated the transcriptomes of tea plants at different developmental stages or under abiotic and/or biotic stresses to investigate the genetic basis of secondary metabolites that determine tea quality. However, these results exhibited large differences, particularly in the total number of reconstructed transcripts and the quality of the assembled transcriptomes. These differences largely result from limited knowledge regarding the optimized sequencing depth and assembler for transcriptome assembly of structurally complex plant species genomes. RESULTS: We employed different amounts of RNA-sequencing data, ranging from 4 to 84 Gb, to assemble the tea plant transcriptome using five well-known and representative transcript assemblers. Although the total number of assembled transcripts increased with increasing sequencing data, the proportion of unassembled transcripts became saturated as revealed by plant BUSCO datasets. Among the five representative assemblers, the Bridger package shows the best performance in both assembly completeness and accuracy as evaluated by the BUSCO datasets and genome alignment. In addition, we showed that Bridger and BinPacker harbored the shortest runtimes followed by SOAPdenovo and Trans-ABySS. CONCLUSIONS: The present study compares the performance of five representative transcript assemblers and investigates the key factors that affect the assembly quality of the transcriptome of the tea plants. This study will be of significance in helping the tea research community obtain better sequencing and assembly of tea plant transcriptomes under conditions of interest and may thus help to answer major biological questions currently facing the tea industry.


Assuntos
Camellia sinensis/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Transcriptoma/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Folhas de Planta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA