Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phytochem Anal ; 35(6): 1265-1277, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38659229

RESUMO

INTRODUCTION: Trillium govanianum Wall. ex D.Don is a folk medicinal herb rich in structurally diverse steroidal saponins. The annual demand for this herb in India is about 200-500 metric tons, highlighting the need for a thorough quality assessment. OBJECTIVE: The objective of this study is to develop an easy and reliable ultrahigh-performance liquid chromatography-evaporative light scattering detector (UHPLC-ELSD)-based quality assessment method with 14 specialised metabolites of T. govanianum and identify the potential targets of this herb using network pharmacology. MATERIAL AND METHODS: A UHPLC-ELSD method was developed and validated with 14 markers of T. govanianum. The developed method and natural deep eutectic solvent (NADES)-assisted extraction were utilised for the recovery enhancement study of targeted specialised metabolites from rhizome samples (collected from five geographically distinct areas). In addition, the network pharmacology approach was performed for these 14 markers to predict the plausible biological targets of T. govanianum. RESULT: The developed method showed good linearity (r2: 0.940-0.998), limit of detection (LOD) (2.4-9.0 µg), limit of quantification (LOQ) (7.92-29.7 µg), precision (intra-day relative standard deviations [RSDs] 0.77%-1.96% and inter-day RSDs 2.19-4.97%), and accuracy (83.24%-118.90%). NADES sample TG-1* showed the highest recovery (yield: 167.66 ± 4.39 mg/g of dry weight) of total saponin content (TSC) as compared to its hydroethanolic extract (yield: 103.95 ± 5.36 mg/g of dry weight). Sample TG-1* was the most favourable (yield: 167.66 ± 4.39 mg/g) in terms of TSC as compared to other analysed samples (32.68 ± 1.04-88.22 ± 6.79 mg/g). Govanoside D (yield: 3.43-28.06 mg/g), 22ß-hydroxyprotodioscin (yield: 3.22-114.79 mg/g), and dioscin (yield: 1.07-20.82 mg/g) were quantified as the major metabolites. Furthermore, network pharmacology analysis of targeted 14 markers indicated that these molecules could be possible therapeutic agents for managing neuralgia, diabetes mellitus, and hyperalgesia. CONCLUSION: The current study represents the first report for the simultaneous quantification and a network pharmacology-based analysis of 14 chemical marker compounds isolated from T. govanianum.


Assuntos
Farmacologia em Rede , Trillium , Cromatografia Líquida de Alta Pressão/métodos , Trillium/química , Saponinas/análise , Saponinas/química , Extratos Vegetais/química , Solventes/química , Rizoma/química , Limite de Detecção
2.
Front Chem ; 12: 1385844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629104

RESUMO

Polyphenolic compounds play an essential role in plant growth, reproduction, and defense mechanisms against pathogens and environmental stresses. Extracting these compounds is the initial step in assessing phytochemical changes, where the choice of extraction method significantly influences the extracted analytes. However, due to environmental factors, analyzing numerous samples is necessary for statistically significant results, often leading to the use of harmful organic solvents for extraction. Therefore, in this study, a novel DES-based shaking-assisted extraction procedure for the separation of polyphenolic compounds from plant samples followed by LC-ESI-QTOF-MS analysis was developed. The DES was prepared from choline chloride (ChCl) as the hydrogen bond acceptor (HBA) and fructose (Fru) as the hydrogen bond donor (HBD) at various molar ratios with the addition of 30% water to reduce viscosity. Several experimental variables affecting extraction efficiency were studied and optimized using one-variable-at-a-time (OVAT) and confirmed by response surface design (RS). Nearly the same experimental conditions were obtained using both optimization methods and were set as follows: 30 mg of sample, 300 mg of ChCl:Fru 1:2 DES containing 30% w/w of water, 500 rpm shaking speed, 30 min extraction time, 10°C extraction temperature. The results were compared with those obtained using conventional solvents, such as ethanol, methanol and water, whereby the DES-based shaking-assisted extraction method showed a higher efficiency than the classical procedures. The greenness of the developed method was compared with the greenness of existing procedures for the extraction of polyphenolic substances from solid plant samples using the complementary green analytical procedure index (ComplexGAPI) approach, while the results for the developed method were better or comparable to the existing ones. In addition, the practicability of the developed procedure was evaluated by application of the blue applicability grade index (BAGI) metric. The developed procedure was applied to the determination of spruce root samples with satisfactory results and has the potential for use in the analysis of similar plant samples.

3.
Food Chem ; 448: 139061, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537550

RESUMO

Recently, deep eutectic solvents (DES) have been extensively researched as a more biocompatible and efficient alternative to conventional solvents for extracting pigments from natural resources. The efficiency of DES extraction for the anthocyanin and carotenoid can be enhanced by microwave-assisted extraction (MAE) and/or ultrasound-assisted extraction (UAE) techniques. Apart from the extraction efficiency, the toxicity and recovery of the pigments and their bioavailability are crucial for potential applications. A plethora of studies have explored the extraction efficiency, toxicity, and recovery of pigments from various natural plant-based matrices using DES. Nevertheless, a detailed review of the deep eutectic solvent extraction of natural pigments has not been reported to date. Additionally, the toxicity, safety, and bioavailability of the extracted pigments, and their potential applications are not thoroughly documented. Therefore, this review is designed to understand the aforementioned concepts in using DES for anthocyanin and carotenoid extraction.


Assuntos
Antocianinas , Carotenoides , Solventes Eutéticos Profundos , Química Verde , Extratos Vegetais , Antocianinas/química , Antocianinas/isolamento & purificação , Carotenoides/química , Carotenoides/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Solventes Eutéticos Profundos/química , Fracionamento Químico/métodos , Micro-Ondas
4.
Sci Total Environ ; 922: 171319, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38423327

RESUMO

Innovative solvents such as deep eutectic solvents (DESs) and process intensification technologies assisted by ultrasound have been demonstrated to be promising pathways for enhancing solid-liquid extraction. Nevertheless, quantitative and systematic knowledge of their environmental impact is still limited. In this work, a case study of flavonoids extraction from Ginkgo biloba leaves was evaluated by using life cycle assessment (LCA) for comparison of three extraction scenarios. The first used DES as extractant (DESE), and the other two adopted ethanol, including heat reflux extraction (HRE), and ultrasound-assisted extraction (UAE). Among eight key midpoints investigated, all these from UAE were 10.0 %-80.0 % lower than from DESE and HRE except water consumption. The UAE was the eco-friendliest option due to its higher extraction yield, shorter duration and lower solvent consumption. The DESE exhibited the lowest water consumption, the highest freshwater ecotoxicity and human carcinogenic toxicity, while HRE had the highest impacts for the other 6 midpoints. Moreover, solvent production was the key contributor for all the categories. The standardized sensitivity analysis showed that the overall environmental footprint can be further decreased by 15.4 % for DESE pathways via substituting choline chloride/glycerine with choline chloride/ethylene glycol. Furthermore, all pathways using DESs had higher standardized impacts than those employing ethanol from sugarcane or wood. Replacing ethanol from maize with other feedstocks can significantly lessen the overall impacts, among which the UAE using ethanol from sugarcane demonstrated the least environmental impacts. The promotion of DESs as "green and sustainable" alternative to traditional solvents requires careful consideration.


Assuntos
Flavonoides , Ginkgo biloba , Humanos , Animais , Solventes , Extratos Vegetais , Etanol , Colina , Estágios do Ciclo de Vida
5.
Molecules ; 29(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38338480

RESUMO

To increase the effectiveness of using typical biomass waste as a resource, iridoids, chlorogenic acid, and flavonoids from the waste biomass of Eucommia ulmoides leaves (EULs) were extracted by deep eutectic solvents (DESs) in conjunction with macroporous resin. To optimize the extract conditions, the experiment of response surface was employed with the single-factor of DES composition molar ratio, liquid-solid ratio, water percentage, extraction temperature, and extraction time. The findings demonstrated that the theoretical simulated extraction yield of chlorogenic acid (CGA), geniposidic acid (GPA), aucubin (AU), geniposide (GP), rutin (RU), and isoquercetin (IQU) were 42.8, 137.2, 156.7, 5.4, 13.5, and 12.8 mg/g, respectively, under optimal conditions (hydrogen bond donor-hydrogen bond acceptor molar ratio of 1.96, liquid-solid ratio of 28.89 mL/g, water percentage of 38.44%, temperature of 317.36 K, and time of 55.59 min). Then, 12 resins were evaluated for their adsorption and desorption capabilities for the target components, and the HPD950 resin was found to operate at its optimum. Additionally, the HPD950 resin demonstrated significant sustainability and considerable potential in the recyclability test. Finally, the hypoglycemic in vitro, hypolipidemic in vitro, immunomodulatory, and anti-inflammatory effects of EUL extract were evaluated, and the correlation analysis of six active components with biological activity and physicochemical characteristics of DESs by heatmap were discussed. The findings of this study can offer a theoretical foundation for the extraction of valuable components by DESs from waste biomass, as well as specific utility benefits for the creation and development of natural products.


Assuntos
Eucommiaceae , Flavonoides , Flavonoides/química , Solventes/química , Ácido Clorogênico/química , Eucommiaceae/química , Solventes Eutéticos Profundos , Extratos Vegetais/química , Água , Iridoides
6.
Ultrason Sonochem ; 102: 106761, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38219550

RESUMO

In China, Jiang Fructus aurantii (JFA) has attracted increasing interest as a famous traditional herbal medicine and valuable economic food for its valuable medicinal and industrial properties. In the current work, contrasted with conventional extraction techniques, natural flavonoids from JFA (naringin and neohesperidin) were extracted with remarkable effectiveness utilizing a sustainable deep eutectic solvents combined ultrasonic-assisted extraction (DESs-UAE) protocol. The optimal extraction capacity can be achieved by mixing 30 % water with a molar ratio of 1:3 for choline chloride and ethylene glycol, as opposed to the classical extraction solvents of 95 % ethanol, methanol, and water. Moreover, the DESs-UAE extraction programs were also systematically optimized employing Box-Behnken design (BBD) trials, and the eventual findings suggested that the best parameters were a 27 % water content in DES, a 16 mL/g liquid-solid ratio, a 72 min extraction time, and a 62 °C extraction temperature, along with the corresponding greatest contents of NAR (48.18 mg/g) and NEO (34.50 mg/g), respectively. Notably, by comparison with the pre-optimization data, the optimized DES extraction efficiency of flavonoids is markedly higher. Thereafter, the characterization of the solvents before and after extraction, as well as the differences between the four extraction solvent extracts, were compared using the FT-IR analyses. Furthermore, SEM results suggested that the penetration and erosion abilities of the plant cell wall of DES-1 were stronger than those of the other three traditional solvents, thus allowing more release of flavonoid compounds. In conclusion, the present research develops a straightforward, sustainable, and exceedingly efficient approach for the extraction of bioactive flavonoids from JFA, which has the potential to facilitate the efficient acquisition of active ingredients from TCM.


Assuntos
Solventes Eutéticos Profundos , Flavonoides , Flavonoides/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Ultrassom , Solventes , Água , Extratos Vegetais
7.
Food Chem ; 442: 138530, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38271911

RESUMO

Orange peels contain a considerable number of bioactive compounds such as carotenoids, that can be used as ingredients in high-value products. The aim of this study was to compare orange peel extracts obtained with different green solvents (vegetable oils, fatty acids, and deep eutectic solvents (DES)). In addition, the chemical characterization of a new hydrophobic DES formed by octanoic acid and l-proline (C8:Pro) was performed. The extracts were compared in terms of carotenoid extraction, antioxidant activity by three methods, color, and environmental impact. The results confirmed that the mixture of C8:Pro is a DES and showed the highest carotenoid extraction (46.01 µg/g) compared to hexane (39.28 µg/g). The antioxidant activity was also the highest in C8:Pro (2438.8 µM TE/mL). Finally, two assessment models were used to evaluate the greenness and sustainability of the proposed extractions. These results demonstrated the potential use of orange peels in the circular economy and industry.


Assuntos
Antioxidantes , Citrus sinensis , Solventes/química , Antioxidantes/química , Citrus sinensis/química , Carotenoides/química , Extratos Vegetais/química
8.
Phytochem Anal ; 35(1): 53-63, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37545032

RESUMO

INTRODUCTION: Deep eutectic solvents (DESs) are promising extractants with tuneable properties. However, there is a lack of reports about the influence of the nature of the original DES on obtaining the metabolomic profile of a plant. OBJECTIVE: The aim of this study is to investigate the possibility of obtaining Iris sibirica L. chromatographical profiles with DESs based on various hydrogen bond donors and acceptors as extraction solvents. METHODOLOGY: DESs were prepared by mixing choline chloride or tetrabutylammonium bromide with various hydrogen bond donors and investigated for the extraction of bioactive substances from biotechnological raw materials of I. sibirica L. The obtained extracts were analysed by HPLC with diode array detector (DAD) and Q-MS. RESULTS: Chromatographic profiles for I. sibirica L. extracts by eight choline chloride DESs and six tetrabutylammonium DESs have been obtained. It has been found that selective recovery of bioactive substances can be achieved by varying the composition of DESs. Eleven phenolic compounds were identified in I. sibirica L. using HPLC-MS. Phase separation was observed with acetonitrile for four DESs. New flavonoid derivatives have been found in DES extracts compared with methanol extracts. CONCLUSION: The results showed the possibility of DES usage for extraction without water addition. Selectivity of DESs varies depending on the chemical composition of hydrogen bond donors and acceptors. Choline chloride is a more suitable hydrogen bond acceptor for the flavonoid extraction. Choline chloride-lactic acid (1:1) DES has demonstrated a metabolic profile that was the closest to the methanol one and enhanced the extraction up to 2.6-fold.


Assuntos
Solventes Eutéticos Profundos , Gênero Iris , Metanol , Solventes/química , Flavonoides , Extratos Vegetais/química , Colina/química , Compostos Fitoquímicos
9.
Phytochem Anal ; 35(2): 391-400, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37886892

RESUMO

INTRODUCTION: Natural deep eutectic solvents (NADES) have emerged as interesting extractants to develop botanical ingredients. They are nontoxic and biodegradable, nonflammable, easy to prepare, and able to solubilize a wide range of molecules. However, NADES extracts remain difficult to analyze because the metabolites of interest stay highly diluted in the nonvolatile viscous NADES matrix. OBJECTIVE: This study presents a robust analytical workflow for the chemical profiling of NADES extracts. It is applied to Hypericum perforatum aerial parts extracted with the neutral mixture fructose/glycerol/water (3/1/1, w/w/w), and compared to the chemical profiling of a classical dry methanol extract. METHODS: Exploiting polarity differences between metabolites, the H. perforatum NADES extract was partitioned in a liquid-liquid solvent system to trap the hydrophilic NADES constituents in the lower phase. The upper phase, containing a diversity of secondary metabolites from H. perforatum, was fractionated by centrifugal partition chromatography. All fractions were chemically investigated using a 13 C NMR dereplication method which involves hierarchical clustering analysis of the whole NMR dataset, a natural metabolite database for metabolite identification, and 2D NMR analyses for validation. Liquid chromatography-mass spectrometry (LC-MS) analyses were also performed to complete the identification process. RESULTS: A range of 21 metabolites were unambiguously identified, including glycosylated flavonols, lactones, catechins, phenolic acids, lipids, and simple sugars, and 15 additional minor extract constituents were annotated by LC-MS based on exact mass measurements. CONCLUSION: The proposed identification process is rapid and nondestructive and provides good prospects to deeply characterize botanical extracts obtained in nonvolatile and viscous NADES systems.


Assuntos
Solventes Eutéticos Profundos , Hypericum , Extratos Vegetais/química , Solventes/química , Cromatografia Líquida
10.
AAPS PharmSciTech ; 24(8): 229, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964102

RESUMO

This study aimed to prepare colchicine (CO), 4-hydroxyacetophenone (HA), and protocatechuic acid (CA) contained in transdermal rubber plasters into a more releasable and acrylate pressure-sensitive adhesive (PSA) to optimize traditional Touguling rubber plasters (TOU) with enhanced transdermal permeability by using deep eutectic solvents (DES) technology. We compared the difference in the release behavior of CO between rubber plaster and PSA, determined the composition of the patch through pharmacodynamic experiments, explored the transdermal behavior of the three components, optimized the patch formula factors, and improved the penetration of CO through the skin. We also focused on elucidating the interactions among the three components of DES and the intricate relationship between DES and the skin. The melting point of DES was determined using DSC, while FTIR, 13C NMR, and ATR-FTIR were used to explore the intricate molecular mechanisms underlying the formation of DES, as well as its enhancement of skin permeability. The results of this investigation confirmed the successful formation of DES, marked by a discernible melting point at 27.33°C. The optimized patch, formulated with a molar ratio of 1:1:1 for CO, HA, and CA, significantly enhanced skin permeability, with the measured skin permeation quantities being 32.26 ± 2.98 µg/cm2, 117.67 ± 7.73 µg/cm2, and 56.79 ± 1.30 µg/cm2 respectively. Remarkably, the optimized patch also demonstrated similar analgesic and anti-inflammatory effects compared to commercial diclofenac diethylamide patches in different pharmacodynamics studies. The formation of DES altered drug compatibility with skin lipids and increased retention, driven by the interaction among the three component molecules through hydrogen bonding, effectively shielding the skin-binding sites and enhancing component permeation. In summary, the study demonstrated that optimized DES patches can concurrently enhance the penetration of CO, HA, and CA, thereby providing a promising approach for the development of DES in transdermal drug delivery systems. The findings also shed light on the molecular mechanisms underlying the transdermal behavior of DES and offer insights for developing more effective traditional Chinese medicine transdermal drug delivery systems.


Assuntos
Solventes Eutéticos Profundos , Absorção Cutânea , Colchicina/metabolismo , Colchicina/farmacologia , Borracha/metabolismo , Borracha/farmacologia , Administração Cutânea , Pele/metabolismo , Adesivo Transdérmico
11.
Ultrason Sonochem ; 101: 106658, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913593

RESUMO

The simultaneous extraction of crocin and geniposide from gardenia fruits (Gardenia jasminoides Ellis) was performed by integrating natural deep eutectic solvents (NADES) and ultrasound-assisted extraction (UAE). Among the eight kinds of NADES screened, choline chloride-1,2-propylene glycol was the most suitable extractant. The probe-type ultrasound-assisted NADES extraction system (pr-UAE-NADES) demonstrated higher extraction efficiency compared with plate-type ultrasound-assisted NADES extraction system (pl-UAE-NADES). Orthogonal experimental design and a modified multi-index synthetic weighted scoring method were adopted to optimize pr-UAE-NADES extraction process. The optimal extraction conditions that had a maximum synthetic weighted score of 29.46 were determined to be 25 °C for extraction temperature, 600 W for ultrasonic power, 20 min for extraction time, and 25% (w/w) for water content in NADES, leading to the maximum yields (7.39 ± 0.20 mg/g and 57.99 ± 0.91 mg/g, respectively) of crocin and geniposide. Thirty-three compounds including iridoids, carotenoids, phenolic acids, flavonoids, and triterpenes in the NADES extract were identified by LC-Q-TOF-MS2 coupled with a feature-based molecular networking workflow. The kinetics evaluation of the conjugated dienes generation on Cu2+-induced low density lipoprotein (LDL) oxidation via the four-parameter logistic regression model showed that crocin increased the lag time of LDL oxidation in a concentration-dependent manner (15 µg/mL, 30 µg/mL, 45 µg/mL) by 12.66%, 35.44%, and 73.42%, respectively. The quantitative determination for fluorescence properties alteration of the apolipoprotein B-100 exhibited that crocin effectively inhibited the fluorescence quenching of tryptophan residues and the modification of lysine residues caused by reactive aldehydes and malondialdehydes. The pr-UAE-NADES showed significant efficiency toward the simultaneous extraction of crocin and geniposide from gardenia fruits. And this study demonstrates the potential utility of gardenia fruits in developing anti-atherogenic functional food.


Assuntos
Solventes Eutéticos Profundos , Gardenia , Gardenia/química , Frutas/química , Iridoides/farmacologia , Iridoides/análise , Carotenoides/farmacologia , Carotenoides/análise , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Solventes
12.
Ultrason Sonochem ; 100: 106640, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37816271

RESUMO

The sustainable extraction of saponins was investigated using natural deep eutectic solvents (NADESs) combined with ultrasound-assisted extraction. A novel NADES (butyric acid-urea) that was responsive to ionic strength was designed and used as the extractant. Ultrasound treatment and a catalyst ferric chloride with plant cell wall breaking function were applied to improve the extraction efficiency.Since the solubility of the NADES varied significantly with ionic strength, 95% of NADES was readily separated from the water phase after the addition of sodium chloride, while saponins remained in the water phase for easy collection. The reuse capacity of NADES, the eco-friendliness of the extraction method, and the antioxidant activity of the extract were further evaluated.NADES was continuously recovered and used to extract Polygonatum sibiricum powder: the yield of saponins did not decrease after five cycles of recovery and re-extraction. The penalty point on the "Eco-scale" suggested that the extraction method was "green" (i.e. eco-friendly).Compared with ethanol extracts, the NADES extracts showed a higher saponin concentration and antioxidant activity.The study can contribute to the sustainable and green extraction of hydrophilic active substances in the food and pharmaceutical industries.


Assuntos
Polygonatum , Saponinas , Solventes , Solventes Eutéticos Profundos , Antioxidantes , Extratos Vegetais , Água
13.
Food Res Int ; 173(Pt 1): 113266, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803579

RESUMO

In this study, different Deep Eutectic Solvents based on choline chloride ([Ch]Cl) with carboxylic acids, sugars, and glycerol, were investigated as alternative solvents for the extraction of flavonoids from soybean and okara. Initially, the COSMO-SAC was investigated as a tool in solvent screening for the extraction of flavonoids. Experimental validation was performed using total flavonoid analysis with the solvents that showed greater interaction with the solutes. The extracts obtained from soybean and okara using the DES [Ch]Cl:acetic acid added with 30 % water showed the highest total flavonoid content, 1.05 mg eq. of catechin/g dry soybean and 0.94 mg eq. of catechin /g dry okara, respectively. For phenolic compound extraction, [Ch]Cl: acetic acid DES extracted approximately 1.16 mg GAE/g of soybean and 0.69 mg GAE/g of okara. For antioxidant activity, soybean and okara extracts obtained with [Ch]Cl: acetic acid showed FRAP results of 0.40 mg Trolox/mL of extract and 0.45 mg Trolox/mL of extract, respectively. In addition, the isoflavones daidzein, genistein, glycitein, daidzin, genistin, and glycitin were identified and quantified in the soybean and okara extracts obtained with DES [Ch]Cl: acetic acid with 30% water, totaling 1068.05 and 424.32 µg total isoflavones/g dry sample. Therefore, The COSMO-SAC model was a useful tool in solvent screening, saving time and costs. Also, DES can be an alternative solvent for extracting flavonoids to replace conventional organic solvents, respecting current environmental and human health concerns.


Assuntos
Catequina , Isoflavonas , Humanos , Flavonoides/análise , Glycine max , Solventes Eutéticos Profundos , Extratos Vegetais/análise , Isoflavonas/análise , Solventes/análise , Água , Acetatos
14.
Molecules ; 28(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37836820

RESUMO

Chamaenerion angustifolium (L.) Scop. is one of the promising sources of biologically active compounds and a valuable industrial crop. Recently, green extraction methods have become more topical. One of them is the application of deep eutectic solvents (DESs). The aim of this work was the synthesis and characterization of DES consisting of glycerin or propylene glycol with malonic, malic, or citric acids, evaluation of their effectiveness for extracting useful substances from C. angustifolium during ultrasonic extraction, description of kinetics, and optimization of extraction conditions. DESs were obtained and characterized with FTIR. Their effectiveness in the process of ultrasound-assisted extraction of biologically active substances from C. angustifolium was estimated. Kinetic parameters describing the dependence of the total phenolic, flavonoids, and antioxidant content, free radical scavenging of DPPH, and concentration of flavonoid aglycons (myricetin, quercetin, and kaempferol) via time in the range of 5-60 min at 45 °C are obtained. Extraction conditions were optimized with the Box-Behnken design of experiment. The results of this work make it possible to expand the scope of DES applications and serve the development of C. angustifolium processing methods.


Assuntos
Solventes Eutéticos Profundos , Glicerol , Solventes/química , Ácidos Carboxílicos , Propilenoglicol/química , Extratos Vegetais/química
15.
Mater Today Bio ; 22: 100733, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37533730

RESUMO

Antimicrobial photodynamic therapy (aPDT) is a potent tool to surpass the global rise of antimicrobial resistance; still, the effective topical administration of photosensitizers remains a challenge. Biopolymer-based adhesive films can safely extend the residence time of photosensitizers. However, their wide application is narrowed by their limited water absorption capacity and gel strength. In this study, pullulan-based films with a switchable character (from a solid film to an adhesive hydrogel) were developed. This was accomplished by the incorporation of a betaine-based deep eutectic solvent (DES) containing curcumin (4.4 µg.cm-2) into the pullulan films, which tuned the films' skin moisture absorption ability, and therefore they switch into an adhesive hydrogel capable of delivering the photosensitizer. The obtained transparent films presented higher extensibility (elongation at break up to 338.2%) than the pullulan counterparts (6.08%), when stored at 54% of relative humidity, and the corresponding hydrogels a 4-fold higher adhesiveness than commercial hydrogels. These non-cytotoxic adhesives allowed the inactivation (∼5 log reduction), down to the detection limit of the method, of multiresistant strains of Staphylococcus aureus in ex vivo skin samples. Overall, these materials are promising for aPDT in the treatment of resistant skin infections, while being easily removed from the skin.

16.
Chem Biodivers ; 20(9): e202300417, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37574459

RESUMO

In this study, it was aimed to examine the capacity of deep eutectic solvents (DESs) with different contents to extract bioactive compounds from tarragon (Artemisia dracunculus L.) plant. For this reason, the total phenolic-flavonoid content, total proanthocyanidin content and antioxidant/antimicrobial activities of the prepared DES extracts were investigated, as well as the individual phenolic and individual amino acid profiles. According to the results, DES10 had the highest efficiency in terms of its capacity to extract individual phenolics (approximately 59 mg/100 g) and individual amino acids (approximately 2500 mg/kg), and also gave a higher yield compared to ethanol (approximately 44 mg/100 g for individual phenolics and about 19810 mg/kg for individual amino acids) and methanol (approximately 58 mg/100 g for individual phenolics and approximately 21430 mg/kg for individual amino acids). However, the total phenolic content, total flavonoid content and antioxidant activity values of DES extracts were determined between 59.09-77.50 mg GAE/100 g, 28.68-45.55 mg GAE/100 g and 42.96-146.86 mg TE/100 g, respectively. Therefore, it can be recommended to use these green solvents, which are known as environmentally friendly, as an alternative to organic solvents in the process of preparing extracts of this important medicinal plant in different areas.


Assuntos
Artemisia , Extratos Vegetais , Extratos Vegetais/química , Solventes Eutéticos Profundos , Artemisia/química , Solventes , Antioxidantes/farmacologia , Antioxidantes/química , Fenóis/química , Flavonoides , Aminoácidos
17.
Food Chem ; 429: 136846, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37467670

RESUMO

In this work, we developed an environmentally friendly liquid-liquid microextraction method using a natural deep eutectic solvent in combination with liquid chromatography for the simultaneous determination of four mycotoxins (deoxynivalenol, alternariol, ochratoxin A and zearalenone) in edible vegetable oils. A chemometric approach assessed the effect of the operational parameters on the mycotoxin extraction efficiency. The extracts were analyzed by HPLC coupled with a diode array and fluorescence detector. The optimum NADES composition resulted in the highest extraction recoveries, and it was applied to coextract the target mycotoxins in several types of edible vegetable oils without using hazardous solvents or requiring further clean-up. The limits of detection ranged from 0.07 to 300 µg kg-1, and recoveries were close to 100%, except for zearalenone (viz. 35%), with relative standard deviations below 9% in all cases. The proposed method was validated following the European Commission 2002/657/EC and 2006/401/EC.


Assuntos
Microextração em Fase Líquida , Micotoxinas , Zearalenona , Óleos de Plantas/química , Micotoxinas/análise , Solventes Eutéticos Profundos , Zearalenona/análise , Verduras , Cromatografia Líquida de Alta Pressão/métodos , Solventes/química , Microextração em Fase Líquida/métodos , Limite de Detecção
18.
Ultrason Sonochem ; 98: 106522, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37451008

RESUMO

The water extraction and ethanol precipitation method is an extraction method based on the solubility characteristics of polysaccharides that offers wide applicability in the extraction and separation of plant polysaccharides. However, this method leads to large amounts of proteins, nucleic acids, pigments, and other impurities in the polysaccharides products, which makes downstream purification complicated and time-consuming. In this study, a green, high-density natural deep eutectic solvents was used for the high-purity extraction and separation of polysaccharides from Astragalus membranaceus (Fisch) Bge. var. Mongholicus (Bge.) Hsiao roots under ultrasound-assisted conditions. In this study, 16 different natural deep eutectic solvents were designed to screen the best solvent for extracting Astragalus polysaccharides (APSs). Based on the yield and recovery of APSs, a natural deep eutectic solvents composed of choline chloride and oxalic acid with a molar ratio of 1:2 was selected. The related factors affecting polysaccharides extraction and solvent precipitation were investigated. To improve the operating methodology, single-factor trials, a Plackett-Burman design, and a Box-Behnken design were used. The optimal extraction process conditions were obtained as follows: water content of 55%, liquid-solid ratio of 24 mL/g, ultrasonic irradiation time of 54 min, ultrasonic irradiation temperature of 50 °C, ultrasonic irradiation power of 480 W, ethanol precipitation time of 24 h, and ethanol concentration of 75%. Under optimal extraction conditions, the recovery of APSs was 61.4 ± 0.6 mg/g. Considering the special matrix characteristics of A. membranaceus var. Mongholicus roots, physical-technology-based ultrasonic waves promote penetration, and the mass transfer function also solves the bottleneck of high-viscosity deep eutectic solvents in the extraction stage. In comparison with the conventional method, the proposed method based on deep eutectic solvents isolation can significantly increase APSs recovery, which is beneficial to simplifying the process of polysaccharides purification by using solvent properties to separate extracts and reduce impurities in APSs.


Assuntos
Astragalus propinquus , Solventes Eutéticos Profundos , Solventes , Água , Etanol , Polissacarídeos , Extratos Vegetais
19.
J Agric Food Chem ; 71(29): 10877-10900, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37433265

RESUMO

There is growing interest in reducing the number of synthetic products or additives and replacing them with natural ones. The pharmaceutical, cosmetic, and food industries are especially focused on natural and bioactive chemicals isolated from plants or microorganisms. The main challenge here is to develop efficient and ecological methods for their isolation. According to the strategies and rules of sustainable development and green chemistry, green solvents and environmentally friendly technologies must be used. The application of deep eutectic solvents as efficient and biodegradable solvents seems to be a promising alternative to traditional methods. They are classified as being green and ecological but, most importantly, very efficient extraction media compared to organic solvents. The aim of this review is to present the recent findings on green extraction, as well as the biological activities and the possible applications of natural plant ingredients, namely, phenolics, flavonoids, terpenes, saponins, and some others. This paper thoroughly reviews modern, ecological, and efficient extraction methods with the use of deep eutectic solvents (DESs). The newest findings, as well as the factors influencing the efficiency of extraction, such as water content, and hydrogen bond donor and acceptor types, as well as the extraction systems, are also discussed. New solutions to the major problem of separating DESs from the extract and for solvent recycling are also presented.


Assuntos
Solventes Eutéticos Profundos , Ingredientes de Alimentos , Flavonoides/química , Solventes/química , Extratos Vegetais/química
20.
Int J Biol Macromol ; 243: 125229, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301339

RESUMO

The objective of this study was to simultaneously extract passion fruit (Passiflora edulis) peel pectins and phenolics using deep eutectic solvents, to evaluate their physicochemical properties and antioxidant activity. By taking L-proline: citric acid (Pro-CA) as the optimal solvent, the effect of extraction parameters on the yields of extracted passion fruit peel pectins (PFPP) and total phenolic content (TPC) was explored by response surfaces methodology (RSM). A maximum pectin yield (22.63%) and the highest TPC (9.68 mg GAE/g DW) were attained under 90 °C, extraction solvent pH = 2, extraction time of 120 min and L/S ratio of 20 mL/g. In addition, Pro-CA-extracted pectins (Pro-CA-PFPP) and HCl-extracted pectins (HCl-PFPP) were subjected to high performance gel permeation chromatography (HPGPC), Fourier transform infrared spectroscopy (FT-IR), thermogram analysis (TG/DTG) and rheological measurements. Results verified that the Mw and thermal stability of Pro-CA-PFPP were higher than those of HCl-PFPP. The PFPP solutions featured a non-Newtonian behavior, and compared with commercially pectin solution, PFPP solution exhibited a stronger antioxidant activity. Additionally, passion fruit peel extract (PFPE) exhibited stronger antioxidant effects than PFPP. The results of ultra-performance liquid chromatography hybrid triple quadrupole-linear ion trap mass spectrometry (UPLC-Qtrap-MS) and high performance liquid chromatography (HPLC) analysis showed that (-)-epigallocatechin, gallic acid, epicatechin, kaempferol-3-O-rutin and myricetin were the main phenolic compounds in PFPE and PFPP. Our results suggest that Pro-CA can be considered as an eco-friendly solvent for high-efficient extraction of high-value compounds from agricultural by-products.


Assuntos
Passiflora , Pectinas , Pectinas/química , Antioxidantes/química , Passiflora/química , Frutas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Fenóis/análise , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA