Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Chin J Nat Med ; 22(4): 293-306, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658093

RESUMO

Icariin, a flavonoid glycoside, is extracted from Epimedium. This study aimed to investigate the vascular protective effects of icariin in type 1 diabetic rats by inhibiting high-mobility group box 1 (HMGB1)-related inflammation and exploring its potential mechanisms. The impact of icariin on vascular dysfunction was assessed in streptozotocin (STZ)-induced diabetic rats through vascular reactivity studies. Western blotting and immunofluorescence assays were performed to measure the expressions of target proteins. The release of HMGB1 and pro-inflammation cytokines were measured by enzyme-linked immunosorbent assay (ELISA). The results revealed that icariin administration enhanced acetylcholine-induced vasodilation in the aortas of diabetic rats. It also notably reduced the release of pro-inflammatory cytokines, including interleukin-8 (IL-8), IL-6, IL-1ß, and tumor necrosis factor-alpha (TNF-α) in diabetic rats and high glucose (HG)-induced human umbilical vein endothelial cells (HUVECs). The results also unveiled that the pro-inflammatory cytokines in the culture medium of HUVECs could be increased by rHMGB1. The increased release of HMGB1 and upregulated expressions of HMGB1-related inflammatory factors, including advanced glycation end products (RAGE), Toll-like receptor 4 (TLR4), and phosphorylated p65 (p-p65) in diabetic rats and HG-induced HUVECs, were remarkably suppressed by icariin. Notably, HMGB1 translocation from the nucleus to the cytoplasm in HUVECs under HG was inhibited by icariin. Meanwhile, icariin could activate G protein-coupled estrogen receptor (GPER) and sirt1. To explore the role of GPER and Sirt1 in the inhibitory effect of icariin on HMGB1 release and HMGB-induced inflammation, GPER inhibitor and Sirt1 inhibitor were used in this study. These inhibitors diminished the effects of icariin on HMGB1 release and HMGB1-induced inflammation. Specifically, the GPER inhibitor also negated the activation of Sirt1 by icariin. These findings suggest that icariin activates GPER and increases the expression of Sirt1, which in turn reduces HMGB1 translocation and release, thereby improving vascular endothelial function in type 1 diabetic rats by inhibiting inflammation.


Assuntos
Diabetes Mellitus Experimental , Flavonoides , Proteína HMGB1 , Ratos Sprague-Dawley , Receptores de Canabinoides , Receptores Acoplados a Proteínas G , Transdução de Sinais , Sirtuína 1 , Animais , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Sirtuína 1/metabolismo , Sirtuína 1/genética , Flavonoides/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ratos , Masculino , Humanos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Citocinas/metabolismo , Epimedium/química
2.
Phytother Res ; 38(6): 2641-2655, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38488442

RESUMO

Insufficient vessel maintenance adversely impacts patients in terms of tissue reperfusion following stroke or myocardial infarction, as well as during wound healing. Angiogenesis impairment is a feature typical of metabolic disorders acting at the cardiovascular level, such as diabetes. Therapeutic angiogenesis regulation offers promising clinical implications, and natural compounds as pro-angiogenic nutraceuticals hold valuable applications in regenerative medicine. By using cultured endothelial cells from human umbilical veins (HUVEC) we studied functional and molecular responses following exposure to erucin, a natural isothiocyanate derived from Brassicaceae plants and extracted from the seeds of rocket. Erucin (at nanomolar concentrations) promotes cell migration and tube formation, similar to vascular endothelial growth factor (VEGF), through mobilizing paxillin at endothelial edges. At the molecular level, erucin induces signaling pathways typical of angiogenesis activation, namely Ras, PI3K/AKT, and ERK1/2, leading to VEGF expression and triggering its autocrine production, as pharmacological inhibition of soluble VEGF and VEGFR2 dampens endothelial functions. Furthermore, erucin, alone and together with VEGF, preserves endothelial angiogenic functions under pathological conditions, such as those induced in HUVEC by high glucose (HG) exposure. Erucin emerges as a compelling candidate for therapeutic revascularization applications, showcasing promising prospects for natural compounds in regenerative medicine, particularly in addressing angiogenesis-related disorders.


Assuntos
Movimento Celular , Glucose , Células Endoteliais da Veia Umbilical Humana , Isotiocianatos , Fator A de Crescimento do Endotélio Vascular , Humanos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Isotiocianatos/farmacologia , Movimento Celular/efeitos dos fármacos , Paxilina/metabolismo , Indutores da Angiogênese/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Brassicaceae/química , Neovascularização Fisiológica/efeitos dos fármacos , Sulfetos , Tiocianatos
3.
Antioxid Redox Signal ; 40(16-18): 968-989, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38497734

RESUMO

Significance: Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality globally. Endothelial dysfunction is closely associated with the development and progression of CVDs. Patients with diabetes mellitus (DM) especially type 2 DM (T2DM) exhibit a significant endothelial cell (EC) dysfunction with substantially increased risk for CVDs. Recent Advances: Excessive reactive oxygen species (ROS) and oxidative stress are important contributing factors to EC dysfunction and subsequent CVDs. ROS production is significantly increased in DM and is critically involved in the development of endothelial dysfunction in diabetic patients. In this review, efforts are made to discuss the role of excessive ROS and oxidative stress in the pathogenesis of endothelial dysfunction and the mechanisms for excessive ROS production and oxidative stress in T2DM. Critical Issues: Although studies with diabetic animal models have shown that targeting ROS with traditional antioxidant vitamins C and E or other antioxidant supplements provides promising beneficial effects on endothelial function, the cardiovascular outcomes of clinical studies with these antioxidant supplements have been inconsistent in diabetic patients. Future Directions: Preclinical and limited clinical data suggest that N-acetylcysteine (NAC) treatment may improve endothelial function in diabetic patients. However, well-designed clinical studies are needed to determine if NAC supplementation would effectively preserve endothelial function and improve the clinical outcomes of diabetic patients with reduced cardiovascular morbidity and mortality. With better understanding on the mechanisms of ROS generation and ROS-mediated endothelial damages/dysfunction, it is anticipated that new selective ROS-modulating agents and effective personalized strategies will be developed for the management of endothelial dysfunction in DM.


Assuntos
Acetilcisteína , Antioxidantes , Diabetes Mellitus Tipo 2 , Endotélio Vascular , Estresse Oxidativo , Espécies Reativas de Oxigênio , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Acetilcisteína/uso terapêutico , Acetilcisteína/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Endotélio Vascular/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/etiologia
4.
J Agric Food Chem ; 72(8): 4155-4169, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38366990

RESUMO

In this study, we used traditional laboratory methods, bioinformatics, and cellular models to screen novel ACE inhibitory (ACEI) peptides with strong ACEI activity, moderate absorption rates, and multiple targets from bovine colostrum immunoglobulin G (IgG). The purified fraction of the compound proteinase hydrolysate of IgG showed good ACEI activity. After nano-UPLC-MS/MS identification and in silico analysis, eight peptides were synthesized and verified. Among them, SFYPDY, TSFYPDY, FSWF, WYQQVPGSGL, and GVHTFP were identified as ACEI peptides, as they exhibited strong ACEI activity (with IC50 values of 104.7, 80.0, 121.2, 39.8, and 86.3 µM, respectively). They displayed good stability in an in vitro simulated gastrointestinal digestion assay. In a Caco-2 monolayer model, SFYPDY, FSWF, and WYQQVPGSGL exhibited better absorption rates and lower IC50 values than the other peptides and were thereby identified as novel ACEI peptides. Subsequently, in a H2O2-induced endothelial dysfunction (ED) model based on HUVECs, SFYPDY, FSWF, and WYQQVPGSGL regulated ED by reducing apoptosis and ROS accumulation while upregulating NOS3 mRNA expression. Network pharmacology analysis and RT-qPCR confirmed that they regulated multiple targets. Overall, our results suggest that SFYPDY, FSWF, and WYQQVPGSGL can serve as novel multitarget ACEI peptides.


Assuntos
Imunoglobulina G , Doenças Vasculares , Humanos , Feminino , Gravidez , Animais , Bovinos , Farmacologia em Rede , Espectrometria de Massas em Tandem , Células CACO-2 , Colostro/metabolismo , Peróxido de Hidrogênio , Peptídeos/química , Peptidil Dipeptidase A/química , Hidrolisados de Proteína/química , Simulação de Acoplamento Molecular
5.
Front Cardiovasc Med ; 11: 1345218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370153

RESUMO

Arterial hypertension represents a leading cause of cardiovascular morbidity and mortality worldwide, and the identification of effective solutions for treating the early stages of elevated blood pressure (BP) is still a relevant issue for cardiovascular risk prevention. The pathophysiological basis for the occurrence of elevated BP and the onset of arterial hypertension have been widely studied in recent years. In addition, consistent progress in the development of novel, powerful, antihypertensive drugs and their appropriate applications in controlling BP have increased our potential for successfully managing disease states characterized by abnormal blood pressure. However, the mechanisms responsible for the disruption of endogenous mechanisms contributing to the maintenance of BP within a normal range are yet to be fully clarified. Recently, evidence has shown that several natural antioxidants containing active ingredients originating from natural plant extracts, used alone or in combination, may represent a valid solution for counteracting the development of arterial hypertension. In particular, there is evidence to show that natural antioxidants may enhance the viability of endothelial cells undergoing oxidative damage, an effect that could play a crucial role in the pathophysiological events accompanying the early stages of arterial hypertension. The present review aims to reassess the role of oxidative stress on endothelial dysfunction in the onset and progression of arterial hypertension and that of natural antioxidants in covering several unmet needs in the treatment of such diseases.

6.
BMC Pregnancy Childbirth ; 24(1): 71, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245691

RESUMO

BACKGROUND: Pregnant women with hypertensive disorders are at increased risk for inflammatory diseases and oxidative stress. The dilemma raised by the best dosage of calcium supplementation on these factors is evident. The aim of the current study was to examine the effects of calcium on biomarkers of the purinergic system, inflammation and oxidative stress, which are factors contributing to vascular damage in pregnant women at high risk of pre-eclampsia. METHODS: A prospective, double-blind and placebo-controlled study conducted with 101 women at risk of pre-eclampsia were randomized to take 500 mg calcium/day or 1,500 mg calcium/day or placebo for 6 weeks from the 20th gestational week until delivery. Fasting blood samples were collected at the beginning of the study and 6 weeks after the intervention. RESULTS: Taking calcium supplements (500 mg calcium/day) led to a significant increase in ATP hydrolysis (p < 0.05), NTPDase activity with increased hydrolysis of ADP and AMP nucleotides in platelets and lymphocytes. In the intragroup analysis IL-2, IL-6, IL-4 and interferon-É£ presented lower values in the calcium 1,500 mg/day group (p < 0.005). Oxidative stress was assessed by TBARS pro-oxidant marker, with an increase for the calcium groups when compared to the placebo group. The Vitamin C antioxidant marker presented a significant increase (p < 0.005) for the group that received high calcium doses. CONCLUSIONS: Calcium administration for 6 weeks had antioxidant action and positively modulated the purinergic system and inflammatory markers in pregnant women at risk of pre-eclampsia.


Assuntos
Pré-Eclâmpsia , Feminino , Gravidez , Humanos , Pré-Eclâmpsia/prevenção & controle , Cálcio , Suplementos Nutricionais , Interleucina-10 , Interleucina-2 , Interleucina-4 , Interleucina-6 , Gestantes , Antioxidantes , Estudos Prospectivos , Cálcio da Dieta , Estresse Oxidativo
7.
Lasers Med Sci ; 39(1): 20, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165554

RESUMO

The main cardiovascular disease risk associated with obesity is hypertension. The therapeutic use of photobiomodulation therapy (PBM) is suggested for the treatment of wound healing, osteoarthritis, and arterial diseases. However, few studies have measured how red laser (at 660 nm) acts over hypertension, and any of those studies used experimental obesity model. The aim of the study was an attempt to evaluate the long-term effect of PBM on systolic blood pressure in an animal model of obesity, induced by a high-fat diet (HFD). Our results indicate that PBM carried out 3 days a week was able to prevent the increase in blood pressure (133.75 ± 4.82 mmHg, n = 8) induced by a high-fat diet (150.00 ± 4.57 mmHg, n = 8; p < 0.05), restore nitric oxide levels (control: 31.7 ± 5.5 µM, n = 8; HFD + PBM: 29.9 ± 3.7 µM, n = 8 > HFD: 22.2 ± 2.9 µM, n = 8, p < 0.05), decrease lipoperoxidation (control: 1.65 ± 0.25 nM, n = 8; HFD + PBM: 2.05 ± 0.55 nM, n = 8 < HFD: 3.20 ± 0.47 nM, n = 8; p < 0.05), and improve endothelial function (pD2 control: 7.39 ± 0.08, n = 8 > pD2 HFD + PBM: 7.15 ± 0.07, n = 8 > HFD: 6.94 ± 0.07, n = 8; p < 0.05). Our results indicate that PBM prevents the elevation of blood pressure in an obese animal model by a mechanism that involves improvement of endothelial function through an antioxidant effect.


Assuntos
Hipertensão , Terapia com Luz de Baixa Intensidade , Ratos , Animais , Pressão Sanguínea , Dieta Hiperlipídica/efeitos adversos , Obesidade/radioterapia , Hipertensão/radioterapia
8.
J Ethnopharmacol ; 323: 117615, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38163560

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Essential hypertension (EH) is one of the important risk factors of cardio-cerebrovascular diseases, and it can significantly increase the incidence and mortality of acute myocardial infarction, cerebral infarction and hemorrhage. Danhong Formula (DHF) was consisting of Radix et Rhizoma Salviae Miltiorrhizae (Salvia miltiorrhiza Bge., Labiatae, Danshen in Chinese) and Flos Carthami (Carthamus tinctorius L., Compositae, Honghua in Chinese) (Plant names have been checked with http://www.the plant list.org on June 28th, 2023) was approved by State Food and Drug Administration of China, that has been used for thousands of years in the treatment of cardiovascular diseases in China with proven safety and efficacy. Though our previous studies have found that DHF improved endothelial dysfunction (ED) and decreased high blood pressure (BP), the underlying mechanisms of its antihypertensive effect still remain unclear. AIM OF THE STUDY: This study investigated whether DHF regulated MicroRNA 24- Phosphatidylinositol 3-Kinase-Serine/Threonine Kinase- Endothelial Nitric Oxide Synthase (miR-24 - PI3K/AKT/eNOS) axis to produce antihypertensive effect and improve endothelial dysfunction. MATERIALS AND METHODS: Firstly, the chemical components of DHF were analyzed by UHPLC-MS. After that, BP was continuously monitored within the 1st, 3rd, and 4th week in SHR to evaluate the antihypertensive effect of DHF intraperitoneal injection. In addition, not only the contents of serum nitric oxide (NO), prostacyclin (PGI2), and angiotensin II (Ang II) were detected, but also the isolated aorta ring experiment was conducted to evaluate the vasomotoricity to evaluate of DHF on improving endothelial dysfunction. Key proteins or mRNA expression associated with miR-24 - PI3K/AKT/eNOS axis in aorta were detected by capillary Western blot, immunohistochemistry or RT-PCR to explore the underlying mechanisms. Index of NO, Ang II PGI2 and key proteins or mRNA expression were also conducted in miR-24-3p over-expression HUVECs model. RESULTS: Compared with SHR control group, DHF (4 mL/kg/day, 2 mL/kg/day, 1 mL/kg/day) treatment significantly reduced high BP in SHR and selectively increased acetylcholine (Ach) induced vasodilation, but not sodium nitroprusside (SNP) in a manner of concentration dependency in isolated aorta ring. DHF (4 mL/kg/day, 1 mL/kg/day) treatment was accompanying an increment of NO and PGI2, and lowering AngII in SHR. Moreover, DHF treatment significantly up-regulated expression of p-PI3K, p-AKT, mTOR, eNOS and p-eNOS, but down-regulated miR-24-3p expression in aorta. Compared with miR-24-3p over-expression HUVECs model group, DHF treatment inhibited miR- 24-3p expression and up-regulated p-PI3K, p-AKT, mTOR and eNOS mRNA expression. Similarly, DHF treatment increased PI3K, AKT, mTOR and eNOS protein expression in HUVECs by Western blot. CONCLUSIONS: These findings suggest that DHF alleviates endothelial dysfunction and reduces high BP in SHR mediated by down-regulating miR-24 via ultimately facilitating up-regulation of PI3K/AKT/eNOS axis. This current study firstly demonstrates a potential direction for antihypertensive mechanism of DHF from microRNA aspect and will promote its clinical applications.


Assuntos
Medicamentos de Ervas Chinesas , Hipertensão , MicroRNAs , Humanos , Fosfatidilinositol 3-Quinase/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Pressão Sanguínea , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Serina-Treonina Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Anti-Hipertensivos , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Hipertensão/tratamento farmacológico , Angiotensina II/farmacologia , Serina-Treonina Quinases TOR , Serina , RNA Mensageiro , Óxido Nítrico/metabolismo
9.
Int J Environ Health Res ; 34(2): 979-990, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36960596

RESUMO

This study investigated the modulatory effect of Ginkgo biloba extract on lead acetate-induced endothelial dysfunction. Animals were administered GBE (50 mg/kg and 100 mg/kg orally) after exposures to lead acetate (25 mg/kg orally) for 14 days. Aorta was harvested after euthanasia, the tissue was homogenised, and supernatants were decanted after centrifuging. Oxidative, nitrergic, inflammatory, and anti-apoptotic markers were assayed using standard biochemical procedure, ELISA, and immunohistochemistry, respectively. GBE reduced lead-induced oxidative stress by increasing SOD, GSH, and CAT as well as reducing MDA levels in endothelium. Pro-inflammatory cytokines (TNF-α and IL-6) were reduced while increasing Bcl-2 protein expression. GBE lowered endothelin-I and raised nitrite levels. Histological changes caused by lead acetate were normalised by GBE. Our findings suggest that Ginkgo biloba extract restored endothelin-I and nitric oxide functions by increasing Bcl-2 protein expression and reducing oxido-inflammatory stress in endothelium.


Assuntos
Extrato de Ginkgo , Ginkgo biloba , Chumbo , Ratos , Animais , Extratos Vegetais/farmacologia , Endotelinas , Proteínas Proto-Oncogênicas c-bcl-2 , Acetatos
10.
Nutrition ; 118: 112294, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042043

RESUMO

OBJECTIVE: Polyphenol intake may prevent hepatic steatosis and cardiovascular disease by potentially improving endothelial function. The purposes of this study are to investigate the association between fatty liver disease and endothelial dysfunction and to test the effects of a nutraceutical containing extracts made from Citrus bergamia and Cynara cardunculus on peripheral vascular endothelial function in adults with liver steatosis. METHODS: We analyzed data from 32 individuals with hepatic steatosis and endothelial dysfunction (reactive hyperemia index ≤ 1.67). Sixteen subjects took 1 capsule/d (300 mg/d) containing Cynara cardunculus extract and bergamot polyphenol fraction, while the other 16 subjects matched for age, sex, and body mass index took 1 capsule/d of placebo (maltodextrin) for 12 wk. All anthropometric parameters were assessed at baseline and after 12 wk as were lipids, glucose, and reactive hyperemia index using an EndoPAT 2000. RESULTS: The mean age was 52 ± 9 y. The mean reactive hyperemia index was 1.15 ± 0.4. After 12 wk, we found a greater increase in reactive hyperemia index in the participants taking the nutraceutical rather than placebo (0.58 ± 0.5 versus 0.13 ± 0.5; P = 0.02, respectively). The stepwise multivariable analysis confirmed a positive association between reactive hyperemia index change and the nutraceutical treatment (B = 0.38; P = 0.025) and negative association with reactive hyperemia index values at baseline (B = -0.81; P < 0.001). No association was found between the reduction in the amount of intrahepatic fat and the improvement of endothelial function (B = 0.002; P = 0.56). CONCLUSIONS: A nutraceutical containing bergamot and artichoke extracts improves peripheral vascular endothelial function in adults with hepatic steatosis and early phase of atherosclerosis.


Assuntos
Citrus , Hiperemia , Hepatopatia Gordurosa não Alcoólica , Adulto , Humanos , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Suplementos Nutricionais , Polifenóis
11.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139268

RESUMO

FJH-KO obtained from Antarctic krill, especially Euphausia superba, has been reported to contain high amounts of omega-3 polyunsaturated fatty acids (n-3 PUFA) and to exhibit anticancer and anti-inflammatory properties. However, its antithrombotic effects have not yet been reported. This study aimed to investigate the antithrombotic effects of FJH-KO in carrageenan-induced thrombosis mouse models and human endothelial cells. Thrombosis was induced by carrageenan injection, whereas the mice received FJH-KO pretreatment. FJH-KO attenuated carrageenan-induced thrombus formation in mouse tissue vessels and prolonged tail bleeding. The inhibitory effect of FJH-KO was associated with decreased plasma levels of thromboxane B2, P-selectin, endothelin-1, ß-thromboglobulin, platelet factor 4, serotonin, TNF-α, IL-1ß, and IL-6. Meanwhile, FJH-KO induced plasma levels of prostacyclin I2 and plasminogen. In vitro, FJH-KO decreased the adhesion of THP-1 monocytes to human endothelial cells stimulated by TNF-α via eNOS activation and NO production. Furthermore, FJH-KO inhibited the expression of TNF-α-induced adhesion molecules such as ICAM-1 and VCAM-1 by suppressing the NF-κB signaling pathway. Taken together, our study demonstrates that FJH-KO protects against carrageenan-induced thrombosis by regulating endothelial cell activation and has potential as an antithrombotic agent.


Assuntos
Euphausiacea , Ácidos Graxos Ômega-3 , Trombose , Humanos , Animais , Camundongos , Carragenina/efeitos adversos , Células Endoteliais/metabolismo , Fibrinolíticos/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo , Trombose/induzido quimicamente , Trombose/tratamento farmacológico , Ácidos Graxos Ômega-3/efeitos adversos
12.
Ageing Res Rev ; 92: 102122, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956927

RESUMO

Vascular ageing, characterized by structural and functional changes in blood vessels of which arterial stiffness and endothelial dysfunction are key components, is associated with increased risk of cardiovascular and other age-related diseases. As the global population continues to age, understanding the underlying mechanisms and developing effective therapeutic interventions to mitigate vascular ageing becomes crucial for improving cardiovascular health outcomes. Therefore, this review provides an overview of the current knowledge on pharmacological modulation of vascular ageing, highlighting key strategies and promising therapeutic targets. Several molecular pathways have been identified as central players in vascular ageing, including oxidative stress and inflammation, the renin-angiotensin-aldosterone system, cellular senescence, macroautophagy, extracellular matrix remodelling, calcification, and gasotransmitter-related signalling. Pharmacological and dietary interventions targeting these pathways have shown potential in ameliorating age-related vascular changes. Nevertheless, the development and application of drugs targeting vascular ageing is complicated by various inherent challenges and limitations, such as certain preclinical methodological considerations, interactions with exercise training and sex/gender-related differences, which should be taken into account. Overall, pharmacological modulation of endothelial dysfunction and arterial stiffness as hallmarks of vascular ageing, holds great promise for improving cardiovascular health in the ageing population. Nonetheless, further research is needed to fully elucidate the underlying mechanisms and optimize the efficacy and safety of these interventions for clinical translation.


Assuntos
Envelhecimento , Rigidez Vascular , Humanos , Envelhecimento/metabolismo , Estresse Oxidativo , Senescência Celular , Transdução de Sinais
13.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37765009

RESUMO

The endothelium, as the guardian of vascular homeostasis, is closely related to the occurrence and development of cardiovascular diseases (CVDs). As an early marker of the development of a series of vascular diseases, endothelial dysfunction is often accompanied by oxidative stress and inflammatory response. Natural flavonoids in fruits, vegetables, and Chinese herbal medicines have been shown to induce and regulate endothelial cells and exert anti-inflammatory, anti-oxidative stress, and anti-aging effects in a large number of in vitro models and in vivo experiments so as to achieve the prevention and improvement of cardiovascular disease. Focusing on endothelial mediation, this paper introduces the signaling pathways involved in the improvement of endothelial dysfunction by common dietary and flavonoids in traditional Chinese medicine and describes them based on their metabolism in the human body and their relationship with the intestinal flora. The aim of this paper is to demonstrate the broad pharmacological activity and target development potential of flavonoids as food supplements and drug components in regulating endothelial function and thus in the prevention and treatment of cardiovascular diseases. This paper also introduces the application of some new nanoparticle carriers in order to improve their bioavailability in the human body and play a broader role in vascular protection.

14.
Curr Vasc Pharmacol ; 21(6): 399-423, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37694779

RESUMO

Cardiovascular disease (CVD) is a major cause of morbidity/mortality world-wide, hence preventive interventions are crucial. Observational data showing beneficial CV effects of vitamin supplements, promoted by self-proclaimed experts, have led to ~50% of Americans using multivitamins; this practice has culminated into a multi-billion-dollar business. However, robust evidence is lacking, and certain vitamins might incur harm. This two-part review focuses on the attributes or concerns about specific vitamin consumption on CVD. The evidence for indiscriminate use of multivitamins indicates no consistent CVD benefit. Specific vitamins and/or combinations are suggested, but further supportive evidence is needed. Data presented in Part 1 indicated that folic acid and certain B-vitamins may decrease stroke, whereas niacin might raise mortality; beta-carotene mediates pro-oxidant effects, which may abate the benefits from other vitamins. In Part 2, data favor the anti-oxidant effects of vitamin C and the anti-atherogenic effects of vitamins C and E, but clinical evidence is inconsistent. Vitamin D may provide CV protection, but data are conflicting. Vitamin K appears neutral. Thus, there are favorable CV effects of individual vitamins (C/D), but randomized/controlled data are lacking. An important caveat regards the potential toxicity of increased doses of fat-soluble vitamins (A/D/E/K). As emphasized in Part 1, vitamins might benefit subjects who are antioxidant-deficient or exposed to high levels of oxidative-stress (e.g., diabetics, smokers, and elderly), stressing the importance of targeting certain subgroups for optimal results. Finally, by promoting CV-healthy balanced-diets, we could acquire essential vitamins and nutrients and use supplements only for specific indications.


Assuntos
Doenças Cardiovasculares , Vitaminas , Humanos , Idoso , Vitaminas/efeitos adversos , Vitamina A , Antioxidantes/efeitos adversos , Ácido Ascórbico , Suplementos Nutricionais/efeitos adversos , Vitamina K , Doenças Cardiovasculares/prevenção & controle
15.
Int J Mol Sci ; 24(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37762194

RESUMO

There is a lack of direct evidence regarding gut microbiota dysbiosis and changes in short-chain fatty acids (SCFAs) in heart failure (HF) patients. We sought to assess any association between gut microbiota composition, SCFA production, clinical parameters, and the inflammatory profile in a cohort of newly diagnosed HF patients. In this longitudinal prospective study, we enrolled eighteen newly diagnosed HF patients. At admission and after 12 months, blood samples were collected for the assessment of proinflammatory cytokines, monocyte populations, and endothelial dysfunction, and stool samples were collected for analysis of gut microbiota composition and quantification of SCFAs. Twelve months after the initial HF episode, patients demonstrated improved clinical parameters and reduced inflammatory state and endothelial dysfunction. This favorable evolution was associated with a reversal of microbiota dysbiosis, consisting of the increment of health-related bacteria, such as genus Bifidobacterium, and levels of SCFAs, mainly butyrate. Furthermore, there was a decrease in the abundance of pathogenic bacteria. In vitro, fecal samples collected after 12 months of follow-up exhibited lower inflammation than samples collected at admission. In conclusion, the favorable progression of HF patients after the initial episode was linked to the reversal of gut microbiota dysbiosis and increased SCFA production, particularly butyrate. Whether restoring butyrate levels or promoting the growth of butyrate-producing bacteria could serve as a complementary treatment for these patients deserves further studies.


Assuntos
Microbioma Gastrointestinal , Insuficiência Cardíaca , Humanos , Disbiose , Estudos Prospectivos , Ácidos Graxos Voláteis , Butiratos
16.
Curr Vasc Pharmacol ; 21(6): 378-398, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37702241

RESUMO

Cardiovascular (CV) disease (CVD) is a major cause of morbidity and mortality world-wide, thus it is important to adopt preventive interventions. Observational data demonstrating CV benefits of vitamin supplements, advanced by self-proclaimed experts have resulted in ~50% of Americans reporting the use of multivitamins for health promotion; this practice has led to a multi-billion-dollar business of the multivitamin-industry. However, the data on the extensive use of multivitamins show no consistent benefit for CVD prevention or all-cause mortality, while the use of certain vitamins might prove harmful. Thus, the focus of this two-part review is on the attributes or concerns about specific vitamins on CVD. In Part 1, the CV effects of specific vitamins are discussed, indicating the need for further supportive evidence of potential benefits. Vitamin A preserves CV homeostasis as it participates in many biologic functions, including atherosclerosis. However, supplementation could potentially be harmful. Betacarotene, a pro-vitamin A, conveys pro-oxidant actions that may mitigate any other benefits. Folic acid alone and certain B-vitamins (e.g., B1/B2/B6/B12) may reduce CVD, heart failure, and/or stroke, while niacin might increase mortality. Vitamin C has antioxidant and cardioprotective effects. Vitamin D may confer CV protection, but all the data are not in agreement. Combined vitamin E and C have antiatherogenic effects but clinical evidence is inconsistent. Vitamin K seems neutral. Thus, there are individual vitamin actions with favorable CV impact (certain B-vitamins and vitamins C and D), but other vitamins (ß-carotene, niacin) may potentially have deleterious effects, which also holds true for high doses of fat-soluble vitamins (A/D/E/K).


Assuntos
Doenças Cardiovasculares , Niacina , Humanos , Vitaminas/efeitos adversos , Vitamina A , Suplementos Nutricionais/efeitos adversos , Ácido Ascórbico , beta Caroteno , Vitamina K , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle
17.
Nutrients ; 15(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686823

RESUMO

Recent studies showed that Codonopsis lanceolata (CL) has antihypertensive effects. However, to date, no study has examined the effects of CL on vascular tone under a high extracellular K+ concentration ([K+]o). Thus, the present study examined the effect of an extract of Codonopsis lanceolata (ECL) on the vascular tension of rat carotid arteries exposed to high [K+]o. We used myography to investigate the effect of an ECL on the vascular tension of rat carotid arteries exposed to high [K+]o and the underlying mechanism of action. In arteries with intact endothelia, the ECL (250 µg/mL) had no effect on vascular tension in arteries exposed to normal or high [K+]o. In contrast, the ECL significantly increased vasorelaxation in endothelium-impaired arteries exposed to a physiologically normal or high [K+]o compared with control arteries exposed to the same [K+]o conditions in the absence of ECL. This vasorelaxing action was unaffected by a broad-spectrum K+ channel blocker and an ATP-sensitive K+ channel blocker. The ECL significantly inhibited the vasoconstriction induced by Ca2+ influx through voltage-dependent Ca2+ channels (VDCCs) but not Ca2+ influx induced via receptor-operated Ca2+ channels or the release of Ca2+ from the sarcoplasmic reticulum in the vascular smooth muscle. In summary, our study reveals that the ECL acts through VDCCs in vascular smooth muscle to promote the recovery of vasorelaxation even in arteries exposed to high [K+]o in the context of endothelial dysfunction and provides further evidence of the vascular-protective effects of ECL.


Assuntos
Ascomicetos , Codonopsis , Animais , Ratos , Vasodilatação , Músculo Liso Vascular , Canais de Cálcio , Artérias Carótidas , Extratos Vegetais/farmacologia
18.
Molecules ; 28(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570643

RESUMO

Essential oils (EOs) are complex secondary metabolites identified in many plant species. Plant-derived EOs have been widely used in traditional medicine for centuries for their health-beneficial effects. Some EOs and their active ingredients have been reported to improve the cardiovascular system, in particular to provide an anti-atherosclerotic effect. The objective of this review is to highlight the recent research investigating the anti-inflammatory, anti-oxidative and lipid-lowering properties of plant-derived EOs and discuss their mechanisms of action. Also, recent clinical trials exploring anti-inflammatory and anti-oxidative activities of EOs are discussed. Future research on EOs has the potential to identify new bioactive compounds and invent new effective agents for treatment of atherosclerosis and related diseases such as diabetes, metabolic syndrome and obesity.


Assuntos
Aterosclerose , Óleos Voláteis , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Óleos de Plantas/farmacologia , Aterosclerose/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
19.
Adv Exp Med Biol ; 1428: 127-148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37466772

RESUMO

In preeclampsia, the shallow invasion of cytotrophoblast cells to uterine spiral arteries, leading to a reduction in placental blood flow, is associated with an imbalance of proangiogenic/antiangiogenic factors to impaired nitric oxide (NO) production. Proangiogenic factors, such as vascular endothelial growth factor (VEGF) and placental growth factor (PlGF), require NO to induce angiogenesis through antioxidant regulation mechanisms. At the same time, there are increases in antiangiogenic factors in preeclampsia, such as soluble fms-like tyrosine kinase type 1 receptor (sFIt1) and toll-like receptor 9 (TLR9), which are mechanism derivates in the reduction of NO bioavailability and oxidative stress in placenta.Different strategies have been proposed to prevent or alleviate the detrimental effects of preeclampsia. However, the only intervention to avoid the severe consequences of the disease is the interruption of pregnancy. In this scenario, different approaches have been analysed to treat preeclamptic pregnant women safely. The supplementation with amino acids is one of them, especially those associated with NO synthesis. In this review, we discuss emerging concepts in the pathogenesis of preeclampsia to highlight L-arginine and L-citrulline supplementation as potential strategies to improve birth outcomes. Clinical and experimental data concerning L-arginine and L-citrulline supplementation have shown benefits in improving NO availability in the placenta and uterine-placental circulation, prolonging pregnancy in patients with gestational hypertension and decreasing maternal blood pressure.


Assuntos
Pré-Eclâmpsia , Feminino , Gravidez , Humanos , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/metabolismo , Placenta/metabolismo , Citrulina/uso terapêutico , Citrulina/metabolismo , Citrulina/farmacologia , Arginina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de Crescimento Placentário/metabolismo , Fator de Crescimento Placentário/farmacologia , Suplementos Nutricionais , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
Biomedicines ; 11(7)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37509649

RESUMO

Selenium is an essential trace element that is essential for various metabolic processes, protection from oxidative stress and proper functioning of the cardiovascular system. Se deficiency has long been associated with multiple cardiovascular diseases, including endemic Keshan's disease, common heart failure, coronary heart disease, myocardial infarction and atherosclerosis. Through selenoenzymes and selenoproteins, Se is involved in numerous crucial processes, such as redox homeostasis regulation, oxidative stress, calcium flux and thyroid hormone metabolism; an unbalanced Se supply may disrupt these processes. In this review, we focus on the importance of Se in cardiovascular health and provide updated information on the role of Se in specific processes involved in the development and pathogenesis of atherosclerosis (oxidative stress, inflammation, endothelial dysfunction, vascular calcification and vascular cell apoptosis). We also discuss recent randomised trials investigating Se supplementation as a potential therapeutic and preventive agent for atherosclerosis treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA