Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(8): e18302, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652115

RESUMO

The evolving landscape of personalized medicine necessitates a shift from traditional therapeutic interventions towards precision-driven approaches. Embracing this paradigm, our research probes the therapeutic efficacy of the aqueous crude extract (ACE) of Calocybe indica in cervical cancer treatment, merging botanical insights with advanced molecular research. We observed that ACE exerts significant influences on nuclear morphology and cell cycle modulation, further inducing early apoptosis and showcasing prebiotic attributes. Characterization of ACE have identified several phytochemicals including significant presence of octadeconoic acid. Simultaneously, utilizing advanced Molecular Dynamics (MD) simulations, we deciphered the intricate molecular interactions between Vascular Endothelial Growth Factor (VEGF) and Octadecanoic acid to establish C.indica's role as an anticancer agent. Our study delineates Octadecanoic acid's potential as a robust binding partner for VEGF, with comprehensive analyses from RMSD and RMSF profiles highlighting the stability and adaptability of the protein-ligand interactions. Further in-depth thermodynamic explorations via MM-GBSA calculations reveal the binding landscape of the VEGF-Octadecanoic acid complex. Emerging therapeutic innovations, encompassing proteolysis-targeting chimeras (PROTACs) and avant-garde nanocarriers, are discussed in the context of their synergy with compounds like Calocybe indica P&C. This convergence underscores the profound therapeutic potential awaiting clinical exploration. This study offers a holistic perspective on the promising therapeutic avenues facilitated by C. indica against cervical cancer, intricately woven with advanced molecular interactions and the prospective integration of precision therapeutics in modern oncology.


Assuntos
Simulação de Dinâmica Molecular , Extratos Vegetais , Neoplasias do Colo do Útero , Fator A de Crescimento do Endotélio Vascular , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Feminino , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Medicina de Precisão/métodos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ligação Proteica , Simulação de Acoplamento Molecular
2.
Molecules ; 29(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611878

RESUMO

Exosomes are multifunctional, cell-derived nanoscale membrane vesicles. Exosomes derived from certain mammalian cells have been developed as angiogenesis promoters for the treatment of myocardial ischemia-reperfusion injury, as they possess the capability to enhance endothelial cell proliferation, migration, and angiogenesis. However, the low yield of exosomes derived from mammalian cells limits their clinical applications. Therefore, we chose to extract exosome-like nanoparticles from the traditional Chinese medicine Salvia miltiorrhiza, which has been shown to promote angiogenesis. Salvia miltiorrhiza-derived exosome-like nanoparticles offer advantages, such as being economical, easily obtainable, and high-yielding, and have an ideal particle size, Zeta potential, exosome-like morphology, and stability. Salvia miltiorrhiza-derived exosome-like nanoparticles can enhance the cell viability of Human Umbilical Vein Endothelial Cells and can promote cell migration and improve the neovascularization of the cardiac tissues of myocardial ischemia-reperfusion injury, indicating their potential as angiogenesis promoters for the treatment of myocardial ischemia-reperfusion injury.


Assuntos
Exossomos , Traumatismo por Reperfusão Miocárdica , Nanopartículas , Salvia miltiorrhiza , Humanos , Animais , Angiogênese , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana , Fatores de Transcrição , Mamíferos
3.
Regen Ther ; 27: 319-328, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38650667

RESUMO

The severe respiratory effects of the coronavirus disease 2019 (COVID-19) pandemic have necessitated the immediate development of novel treatments. The majority of COVID-19-related fatalities are due to acute respiratory distress syndrome (ARDS). Consequently, this virus causes massive and aberrant inflammatory conditions, which must be promptly managed. Severe respiratory disorders, notably ARDS and acute lung injury (ALI), may be treated safely and effectively using cell-based treatments, mostly employing mesenchymal stem cells (MSCs). Since the high potential of these cells was identified, a great deal of research has been conducted on their use in regenerative medicine and complementary medicine. Multiple investigations have demonstrated that MSCs and their products, especially exosomes, inhibit inflammation. Exosomes serve a critical function in intercellular communication by transporting molecular cargo from donor cells to receiver cells. MSCs and their derived exosomes (MSCs/MSC-exosomes) may improve lung permeability, microbial and alveolar fluid clearance, and epithelial and endothelial repair, according to recent studies. This review focuses on COVID-19-related ARDS clinical studies involving MSCs/MSC-exosomes. We also investigated the utilization of Nano-delivery strategies for MSCs/MSC-exosomes and anti-inflammatory agents to enhance COVID-19 treatment.

4.
Int J Nanomedicine ; 19: 1097-1108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327597

RESUMO

Introduction: Osteosarcoma is a prevalent and highly malignant primary bone tumor. However, current clinical therapeutic drugs for osteosarcoma are not suitable for long-term use due to significant side effects. Therefore, there is an urgent need to develop new drugs with fewer side effects. Dipsacus asperoides C. Y. Cheng et T. M. Ai, a traditional Chinese medicine, is commonly used for its anti-inflammatory, anti-pain, bone fracture healing, and anti-tumor effects. In this study, we investigated the effects of exosome-like nanoparticles derived from Dipsacus asperoides (DAELNs) on osteosarcoma cells in vitro and in vivo. Methods: DAELNs were isolated and purified from Dipsacus asperoides and their physical and chemical properties were characterized using transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). The cellular uptake of DAELNs in osteosarcoma cells was analyzed by PKH26 staining. The proliferation, invasion, migration, and apoptosis of osteosarcoma cells were assessed using CCK8 assay, EdU assay, colony-formation assay, transwell assay, wound healing assay, and mitochondrial membrane potential measurement, respectively. The regulatory mechanism of DAELNs inhibiting the progression of osteosarcoma via activating P38/JNK signaling pathway was investigated using Western blotting and immunohistochemistry. Moreover, the therapeutic effects of DAELNs were evaluated using in vivo small animal imaging assay, HE staining, and immunohistochemistry. Results: Our results showed that DAELNs inhibited the proliferation, invasion, migration, and fostered the apoptosis of osteosarcoma cells in vitro and suppressed the tumor growth of osteosarcoma cells in a xenograft nude mouse model. Furthermore, the bio-distribution of DiD-labeled DAELNs showed preferential targeting of osteosarcoma tumors and excellent biosafety in histological analysis of the liver and kidney. Mechanistically, DAELNs activated the P38/JNK signaling pathway-induced apoptosis. Conclusion: Taken together, DAELNs are novel, natural, and osteosarcoma-targeted agents that can serve as safe and effective therapeutic approaches for the treatment of osteosarcoma.


Assuntos
Neoplasias Ósseas , Dipsacaceae , Exossomos , Osteossarcoma , Humanos , Camundongos , Animais , Sistema de Sinalização das MAP Quinases , Dipsacaceae/química , Exossomos/metabolismo , Apoptose , Osteossarcoma/patologia , Linhagem Celular Tumoral , Neoplasias Ósseas/patologia , Modelos Animais de Doenças , Proliferação de Células , Movimento Celular
5.
Phytomedicine ; 126: 155208, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387275

RESUMO

BACKGROUND: Pulmonary premetastatic niche (PMN) formation plays a key role in the lung metastasis of hepatocellular carcinoma (HCC). Hypoxia promotes the secretion of tumor-derived exosomes (TDEs) and facilitates the formation of PMN. However, the mechanisms remain unexplored. METHODS: TDEs from normoxic (N-TDEs) or hypoxic (H-TDEs) HCC cells were used to induce fibroblast activation in vitro and PMN formation in vivo. Oleanolic acid (OA) was intragastrically administered to TDEs-preconditioned mice. Bioinformatics analysis and drug affinity responsive target stability (DARTS) assays were performed to identify targets of OA in fibroblasts. RESULTS: H-TDEs induced activation of pulmonary fibroblasts, promoted formation of pulmonary PMN and subsequently facilitated lung metastasis of HCC. OA inhibited TDEs-induced PMN formation and lung metastasis and suppressed TDEs-mediated fibroblast activation. MAPK1 and MAPK3 (ERK1/2) were the potential targets of OA. Furthermore, H-TDEs enhanced ERK1/2 phosphorylation in fibroblasts in vitro and in vivo, which was suppressed by OA treatment. Blocking ERK1/2 signaling with its inhibitor abated H-TDEs-induced activation of fibroblasts and PMN formation. H-TDEs-induced phosphorylation of ERK1/2 in fibroblasts touched off the activation NF-κB p65, which was mitigated by OA. In addition, the ERK activator C16-PAF recovered the activation of ERK1/2 and NF-κB p65 in H-TDEs-stimulated MRC5 cells upon OA treatment. CONCLUSION: The present study offers insights into the prevention of TDEs-induced PMN, which has been insufficiently investigated. OA suppresses the activation of inflammatory fibroblasts and the development of pulmonary PMN by targeting ERK1/2 and thereby has therapeutic potential in the prevention of lung metastasis of HCC.


Assuntos
Carcinoma Hepatocelular , Exossomos , Neoplasias Hepáticas , Neoplasias Pulmonares , Ácido Oleanólico , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Ácido Oleanólico/metabolismo , NF-kappa B/metabolismo , Sistema de Sinalização das MAP Quinases , Exossomos/metabolismo , Hipóxia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo
6.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203844

RESUMO

Breast milk, an indispensable source of immunological and nutrient components, is essential for the growth and development of newborn mammals. MicroRNAs (miRNAs) are present in various tissues and body fluids and are selectively packaged inside exosomes, a type of membrane vesicle. Milk exosomes have potential regulatory effects on the growth, development, and immunity of newborn piglets. To explore the differences in milk exosomes related to the breed and milk type, we isolated exosomes from colostrum and mature milk from domestic Bamei pigs and foreign Landrace pigs by using density gradient centrifugation and then characterized them by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Furthermore, the profiles and functions of miRNAs in the two types of pig milk exosomes were investigated using miRNA-seq and bioinformatics analysis. We identified a total of 1081 known and 2311 novel miRNAs in pig milk exosomes from Bamei and Landrace pigs. These differentially expressed miRNAs (DE-miRNAs) are closely associated with processes such as cell signaling, cell physiology, and immune system development. Functional enrichment analysis showed that DE-miRNA target genes were significantly enriched in endocytosis, the T cell receptor signaling pathway, and the Th17 cell differentiation signaling pathway. The exosomal miRNAs in both the colostrum and mature milk of the two pig species showed significant differences. Based on related signaling pathways, we found that the colostrum of local pig breeds contained more immune-system-development-related miRNAs. This study provides new insights into the possible function of milk exosomal miRNAs in the development of the piglet immune system.


Assuntos
Líquidos Corporais , Exossomos , MicroRNAs , Humanos , Feminino , Gravidez , Animais , Suínos , Colostro , Exossomos/genética , MicroRNAs/genética , Leite Humano , Sus scrofa
7.
Anal Chim Acta ; 1287: 342109, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182386

RESUMO

BACKGROUND: Tumor-derived exosomes (TEXs) play an important role in the development process of cancer, which can transport a large number of carcinogenic molecules to normal cells, and subsequently promote tumor metastasis. However, TEXs that were utilized in most of previous researches were obtained from the cell medium of tumor cell lines, which cannot reflect the physiological state of primary cells in vivo. Isolation of native TEXs from human plasma with intact function is contributed to exploring the interaction between TEXs and recipient cells for understanding their true biological functions. RESULTS: We developed a strategy that involves both capture and release processes to obtain native TEXs from plasma of cancer patients. An MoS2-based immunomagnetic probe (Fe3O4@MoS2-Au-Aptamer, named as FMAA) with the advantages of high surface area, magnetic response and abundant affinity sites was designed and synthesized to capture TEXs through recognizing high-expression tumor-associated antigens of EpCAM. With the assistance of complementary sequences of EpCAM, TEXs were released with non-destruction and no residual labels. According to NTA analysis, 107-108 TEXs were recovered from per mL plasma of breast cancer patients. The interaction between native TEXs and normal epithelial cells confirms TEXs could induce significant activation of autophagy of recipient cells with co-culture for 12 h. Proteomics analysis demonstrated a total of 637 proteins inside epithelial cells had dynamic expression with the stimulation of TEXs and 5 proteins in the pathway of autophagy had elevated expression level. SIGNIFICANCE: This work not only obtains native TEXs from human plasma with non-destruction and no residual labels, but also explores the interaction between TEXs and recipient cells for understanding their true biological functions, which will accelerate the application of TEXs in the field of biomarkers and therapeutic drugs.


Assuntos
Neoplasias da Mama , Exossomos , Humanos , Feminino , Molécula de Adesão da Célula Epitelial , Molibdênio , Carcinógenos
8.
Phytomedicine ; 124: 155255, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181528

RESUMO

BACKGROUND: The inflammatory cascade mediated by macrophages and T cells is considered to be an important factor in promoting the progression of rheumatoid arthritis (RA). Our previous study found that berberine (BBR) can therapeutically impact adjuvant arthritis (AA) in rats through the regulation of macrophage polarization and the balance of Th17/Treg. However, whether BBR's effects on CD4+T cells response are related to its suppression of M1 macrophage still unclear. PURPOSE: The study aimed to estimate the mechanism of BBR in regulating the immunometabolism and differentiation of CD4+T cells are related to exosome derived from M1-macrophage (M1-exo). STUDY-DESIGN/METHODS: Mice model of collagen-induced arthritis (CIA) was established to investigate the antiarthritic effect of BBR was related with regulation of M1-exo to balance T cell subsets. Bioinformatics analysis using the GEO database and meta-analysis. In vitro, we established the co-culture system involving M1-exo and CD4+ T cells to examine whether BBR inhibits CD4+T cell activation and differentiation by influencing M1-exo-miR155. Exosome was characterized using transmission electron microscopy and western blot analysis, macrophage and CD4+T cell subpopulation were detected by flow cytometry. Further, the metabolic profiles of CD4+T cells were assessed by ECAR, OCR, and the level of glucose, lactate, intracellular ATP. RESULT: BBR reinstates CD4+ T cell homeostasis and reduces miR155 levels in both M1-exo and CD4+ T cells obtained from mice with CIA. In vitro, we found exosomes are indispensable for M1-CM on T lymphocyte activation and differentiation. BBR reversed M1-exo facilitating the activation and differentiation of CD4+T cells. Furthermore, BBR reversed glycolysis reprogramming of CD4+T cells induced by M1-exo, while these regulation effects were significantly weakened by miR155 mimic. CONCLUSION: The delivery of miR-155 by M1-exo contributes to CD4+ T cell immunometabolism dysfunction, a process implicated in the development of RA. The anti-arthritic effect of BBR is associated with the suppression of glycolysis and the disruption of CD4+ T cell subsets balance, achieved by reducing the transfer of M1-exo-miR155 into T cells.


Assuntos
Artrite Experimental , Artrite Reumatoide , Berberina , MicroRNAs , Animais , Camundongos , Ratos , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Berberina/farmacologia , Linfócitos T CD4-Positivos , Modelos Animais de Doenças , Macrófagos , MicroRNAs/metabolismo
9.
FASEB J ; 38(2): e23387, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38193649

RESUMO

Human brain microvascular endothelial cells (HBMVECs) and microglia play critical roles in regulating cerebral homeostasis during ischemic stroke. However, the role of HBMVECs-derived exosomes in microglia polarization after stroke remains unknown. We isolated exosomes (Exos) from oxygen glucose deprivation (OGD)-exposed HBMVECs, before added them into microglia. Microglia polarization markers were tested using RT-qPCR or flow cytometry. Inflammatory cytokines were measured with ELISA. Endothelial cell damage was assessed by cell viability, apoptosis, apoptosis-related proteins, oxidative stress, and angiogenic activity using CCK-8, flow cytometry, western blot, ELISA, and endothelial tube formation assay, respectively. We also established middle cerebral artery occlusion (MCAO) mice model to examine the function of circ_0000495 on stroke in vivo. Our study found that HBMVECs-Exos reduced M2 markers (IL-10, CD163, and CD206), increased M1 markers (TNF-α, IL-1ß, and IL-12), CD86-positive cells, and inflammatory cytokines (TNF-α and IL-1ß), indicating the promotion of microglial M1-polarization. Microglial M1-polarization induced by HBMVECs-Exos reduced viability and promoted apoptosis and oxidative stress, revealing the aggravation of endothelial cell damage. However, circ_0000495 silencing inhibited HBMVECs-Exos-induced alterations. Mechanistically, circ_0000495 adsorbed miR-579-3p to upregulate toll-like receptor 4 (TLR4) in microglia; miR-579-3p suppressed HBMVECs-Exos-induced alterations via declining TLR4; furthermore, Yin Yang 1 (YY1) transcriptionally activated circ_0000495 in HBMVECs. Importantly, circ_0000495 aggravated ischemic brain injury in vivo via activating TLR4/nuclear factor-κB (NF-κB) pathway. Collectively, OGD-treated HBMVECs-Exos transmitted circ_0000495 to regulate miR-579-3p/TLR4/NF-κB axis in microglia, thereby facilitating microglial M1-polarization and endothelial cell damage.


Assuntos
Exossomos , MicroRNAs , Acidente Vascular Cerebral , Animais , Camundongos , Humanos , Células Endoteliais , Microglia , Receptor 4 Toll-Like/genética , NF-kappa B , Fator de Necrose Tumoral alfa , Encéfalo , Hipóxia , Oxigênio , Citocinas , MicroRNAs/genética
10.
J Ethnopharmacol ; 321: 117530, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043753

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Gan-song Yin is derived from the classic ancient prescription " Gan-song pill " for the treatment of wasting-thirst in Ningxia combined with the characteristic "fragrant medicine". It is clinically used for the treatment of early renal fibrosis caused by diabetic nephropathy. Previous studies have shown that it has a good effect and great potential in the prevention and treatment of diabetic nephropathy, but its mechanism research is still limited. AIM OF THE STUDY: To investigate the mechanism of GSY to improve DN by interfering with miR-21-5p and glycolipid metabolism in adipocyte exosomes using 3T3-L1 and TCMK-1 co-culture system. MATERIALS AND METHODS: The co-culture system of 3T3-L3 and TCMK-1 was established, the IR model was established, and the stability, lipid drop change, glucose consumption, triglyceride content, cell viability, cell cycle and apoptosis level, protein content and mRNA expression of the IR model were detected. RESULTS: GSY inhibited 3T3-L1 activity, increased glucose consumption and decreased TG content. Decreased TCMK-1 cell viability, inhibited apoptosis, cell cycle arrest occurred in G0/G1 phase and S phase. Adipocyte IR model and co-culture system were stable within 48 h. After GSY intervention, lipid droplet decomposition and glucose consumption increased. The TG content of adipocytes increased, while the TG content of co-culture system decreased. GSY can regulate the expression of TGF-ß1/SMAD signaling pathway protein in IR state. After GSY intervention, the expression of miR-21-5p was increased in 3T3-L1 and Exo cells, and decreased in TCMK-1 cells. CONCLUSIONS: GSY can regulate TGF-ß1/SMAD signaling pathway through the secretion of miR-21-5p from adipocytes, protect IR TCMK-1, regulate the protein and mRNA expression levels of PPARγ, GLUT4, FABP4, and improve glucose and lipid metabolism.


Assuntos
Nefropatias Diabéticas , Exossomos , MicroRNAs , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Exossomos/metabolismo , Nefropatias Diabéticas/metabolismo , Adipócitos , Proliferação de Células , Células Epiteliais/metabolismo , Glucose/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo
11.
Tissue Eng Part A ; 30(3-4): 115-130, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37930721

RESUMO

Bone marrow-derived mesenchymal stem cells (BMSCs) have been recognized as new candidates for the treatment of serious endometrial injuries. However, owing to the local microenvironment of damaged endometrium, transplantation of BMSCs yielded disappointing results. In this study, Pectin-Pluronic® F-127 hydrogel as scaffolds were fabricated to provide three-dimensional architecture for the attachment, growth, and migration of BMSCs. E2 was encapsulated into the W/O/W microspheres to construct pectin-based E2-loaded microcapsules (E2 MPs), which has the potential to serve as a long-term reliable source of E2 for endometrial regeneration. Then, the BMSCs/E2 MPs/scaffolds system was injected into the uterine cavity of mouse endometrial injury model for treatment. At 4 weeks after transplantation, the system increased proliferative abilities of uterine endometrial cells, facilitated microvasculature regeneration, and restored the ability of endometrium to receive an embryo, suggesting that the BMSCs/E2 MPs/scaffolds system is a promising treatment option for endometrial regeneration. Furthermore, the mechanism of E2 in promoting the repair of endometrial injury was also investigated. Exosomes are critical paracrine mediators that act as biochemical cues to direct stem cell differentiation. In this study, it was found that the expression of endometrial epithelial cell (EEC) markers was upregulated in BMSCs treated by exosomes secreted from endometrial stromal cells (ESCs-Exos). Exosomes derived from E2-stimulated ESCs further promoted the expression level of EECs markers in BMSCs, suggesting exosomes released from ESCs by E2 stimulation could enhance the differentiation efficiency of BMSCs. Therefore, exosomes derived from ESCs play paracrine roles in endometrial regeneration stimulated by E2 and provide optimal estrogenic response.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Ratos , Animais , Feminino , Camundongos , Medula Óssea , Cápsulas/metabolismo , Ratos Sprague-Dawley , Transplante de Células-Tronco Mesenquimais/métodos , Endométrio/metabolismo , Modelos Animais de Doenças , Pectinas
12.
J Gene Med ; 26(1): e3617, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37935422

RESUMO

OBJECTIVE: Erxian Decoction (EXD) is traditionally employed in the treatment of menopausal syndromes, although its underlying mechanisms remain largely undefined. Given that the senescence of bone marrow mesenchymal stem cells (BMSCs) is intertwined with organismal aging and associated diseases, this study endeavored to elucidate the influence of EXD on aging BMSCs and uncover the mechanisms through which EXD impedes BMSC senescence. METHODS: Initially, we probed the anti-senescent mechanisms of EXD on BMSCs via network pharmacology. We subsequently isolated and identified exosomes from the serum of EXD-fed rats (EXD-Exos) and administered these to H2 O2 -induced aging BMSC. Assays were conducted to assess BMSC senescence indicators and markers pertinent to mitochondrial autophagy. Treatments with mitophagy inhibitors and activators were then employed to substantiate our findings. RESULTS: Protein-protein interaction (PPI) network analyses spotlighted AKT1, TP53, TNF, JUN, VEGFA, IL6, CASP3 and EGFR as focal targets. Gene Ontology and Kyoto Encylcopedia of Genes and Genomes pathway analyses underscored oxidative stress, mitophagy and cell proliferation as pivotal processes. Our cellular assays ascertained that EXD-Exos mitigated H2 O2 -induced senescence phenotypes in BMSCs. Moreover, EXD-Exos ameliorated disrupted mitophagy in BMSCs, as evidenced by enhanced cellular membrane potential and diminished reactive oxygen species levels. Intriguingly, EXD-Exos also preserved the osteogenic differentiation potential of BMSCs while curtailing their adipogenic propensity. CONCLUSION: Our findings compellingly suggest that EXD counteracts BMSC senescence by fostering mitophagy.


Assuntos
Dissulfetos , Medicamentos de Ervas Chinesas , Exossomos , Células-Tronco Mesenquimais , Tionas , Ratos , Animais , Osteogênese , Mitofagia , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo
13.
Mater Today Bio ; 23: 100863, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38089434

RESUMO

Non-healing wound, with limited treatment options, remains a prevalent complication of diabetes mellitus. The underlying causes wherein include oxidative stress injury, bacterial infection, cellular dysfunction, and persistent inflammation. Acellular Dermal Matrix (ADM), a wound dressing composed of natural extracellular matrix and abundant bioactive factors, has been successfully developed to treat various wounds, including burns and diabetic ulcers. Protocatechualdehyde (PA) & trivalent iron ion (Fe3+) complex (Fe3+@PA) exhibits potential antioxidant and antibacterial properties. In this study, we developed a dual hydrogel network by combining Fe3+@PA complex-modified ADM with light-cured gelatin (GelMA), supplemented with exosomes derived from human umbilical vein endothelial cells (HUVEC-Exos), to create an ADM composite hydrogel system (ADM-Fe3+@PA-Exos/GelMA) with antioxidant, antibacterial, and cell-promoting functions for diabetic wound treatment. Through in vitro experiments, we investigated the biosafety, antioxidant and antibacterial properties of ADM composite hydrogel. Furthermore, we examined the protective effects of ADM composite hydrogel on diabetic wound. The above experiments collectively demonstrate that our ADM-Fe3+@PA-Exos/GelMA hydrogel promotes diabetic wound healing by eliminating bacterial infection, reduced the reactive oxygen species (ROS) levels, protecting cells against oxidative stress damage, promotingcollagen deposition and angiogenesis, which provides a promising strategy to optimize ADM for diabetic wound treatment.

14.
PeerJ ; 11: e16481, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077444

RESUMO

Background: Exosomes, microvesicles, carry and release several vital molecules across cells, tissues, and organs. Epicardial adipose tissue exosomes are critical in the development and progression of coronary artery disease (CAD). It is hypothesized that exosomes may transport causative molecules from inflamed tissue and deliver to the target tissue and progress CAD. Thus, identifying and inhibiting the CAD-associated proteins that are being transported to other cells via exosomes will help slow the progression of CAD. Methods: This study uses a systems biological approach that integrates differential gene expression in the CAD, exosomal cargo assessment, protein network construction, and functional enrichment to identify the crucial exosomal cargo protein target. Meanwhile, absorption, distribution, metabolism, and excretion (ADME) screening of Panax ginseng-derived compounds was conducted and then docked against the protein target to identify potential inhibitors and then subjected to molecular dynamics simulation (MDS) to understand the behavior of the protein-ligand complex till 100 nanoseconds. Finally, density functional theory (DFT) calculation was performed on the ligand with the highest affinity with the target. Results: Through the systems biological approach, Mothers against decapentaplegic homolog 2 protein (SMAD2) was determined as a potential target that linked with PI3K-Akt signaling, Ubiquitin mediated proteolysis, and the focal adhesion pathway. Further, screening of 190 Panax ginseng compounds, 27 showed drug-likeness properties. Inermin, a phytochemical showed good docking with -5.02 kcal/mol and achieved stability confirmation with SMAD2 based on MDS when compared to the known CAD drugs. Additionally, DFT analysis of inermin showed high chemical activity that significantly contributes to effective target binding. Overall, our computational study suggests that inermin could act against SMAD2 and may aid in the management of CAD.


Assuntos
Doença da Artéria Coronariana , Panax , Simulação de Dinâmica Molecular , Ligantes , Fosfatidilinositol 3-Quinases
15.
Am J Cancer Res ; 13(11): 5368-5381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38058824

RESUMO

Exosomes (EXOs) are considered natural nanoparticles which have been widely used as carriers for the treatment and diagnosis of various diseases. However, due to the non-specific uptake, the unmodified EXOs cannot effectively deliver the vector to the target site. In this study, we used pDisplay vector to engineer Glypican-3 (GPC3) single-chain scFv antibody to the exosome surface, and the effect of engineered exosomes on the proliferation and migration of hepatocellular carcinoma (HCC) cells was determined by a series of in vitro experiments as well as in vivo mouse xenograft model and PDX model. Furthermore, we established an improved delivery system by engineering single-chain scFv antibody against GPC3 on the EXO surface for a more efficient HCC targeting. Moreover, the delivery system was loaded with IR780 and Lenvatinib for a combination of thermotherapy and chemotherapy. Our results revealed that the antibody-engineered exosomes enabled rapid imaging of HCC xenograft models post IR780 loading and showed significant anti-tumor photothermal therapy (PTT) effects after irradiation. Since dual loading of IR780 and Lenvatinib in exosomes required only a single injection and had a maximal efficacy against cancer cells, our findings highlight the clinical application of using GPC3 single-chain scFv antibody-engineered exosomes loaded with IR780 and Lenvartinib to achieve the imaging and the treatment of HCC from the combined effect of IR780-induced PTT and Lenvatinib-induced chemotherapy.

16.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5294-5303, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114119

RESUMO

This paper aims to investigate the effects and mechanisms of adipose-derived stem cells-exosomes(ADSCs-exos) toge-ther with aucubin in protecting human-derived nucleus pulposus cells(NPCs) from inflammatory injury, senescence, and apoptosis. The tert-butyl hydroperoxide(TBHP)-induced NPCs were assigned into normal, model, aucubin, ADSCs-exos, and aucubin+ADSCs-exos groups. The cell viability was examined by cell counting kit-8(CCK-8), cell proliferation by EdU staining, cell senescence by senescence-associated-ß-galactosidase(SA-ß-Gal), and cell cycle and apoptosis by flow cytometry. Enzyme-linked immunosorbent assay was employed to examine the expression of interleukin-1ß(IL-1ß), IL-10, and tumor necrosis factor-α(TNF-α). Real-time fluorescence quantitative PCR and Western blot were employed to determine the mRNA and protein levels of aggregated proteoglycan(aggrecan), type Ⅱ collagen alpha 1(COL2A1), Toll-like receptor 4(TLR4), and nuclear factor-kappa B(NF-κB). The results showed that compared with the model group, the aucubin or ADSCs-exos group showed enhanced viability and proliferation of NPCs, decreased proportion of G_0/G_1 phase cells, increased proportion of S phase cells, reduced apoptosis and proportion of cells in senescence, lowered IL-1ß and TNF-α levels, elevated IL-10 level, down-regulated mRNA and protein levels of TLR4 and NF-κB, and up-regulated mRNA and protein levels of aggrecan and COL2A1. Compared with the aucubin or ADSCs-exos group, the aucubin+ADSCs-exos combination further increased the viability and proliferation of NPCs, decreased the proportion of G_0/G_1 phase cells, increased the proportion of S phase cells, reduced the apoptosis and proportion of cells in senescence, lowered the IL-1ß and TNF-α levels, elevated the IL-10 level, down-regulated the mRNA and protein levels of TLR4 and NF-κB, and up-regulated the mRNA and protein levels of aggrecan and COL2A1. In summary, both aucubin and ADSCs-exos could exert protective effects by inhibiting inflammatory responses, reducing apoptosis and senescence of NPCs, improving cell viability and proliferation as well as extracellular matrix synthesis, which may be associated with the inhibition of TLR4/NF-κB signaling pathway activation. The combination of both plays a synergistic role in the protective effects.


Assuntos
NF-kappa B , Núcleo Pulposo , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Interleucina-10 , Núcleo Pulposo/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Agrecanas/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , RNA Mensageiro/metabolismo
17.
Cells ; 12(21)2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37947645

RESUMO

Plastic surgeons have used the reconstructive ladder for many decades as a standard directory for complex trauma reconstruction with the goal of repairing body structures and restoring functionality. This consists of different surgical maneuvers, such as secondary intention and direct tissue closure, as well as more complex methods such as local tissue transfer and free flap. The reconstructive ladder represents widely known options achievable for tissue reconstruction and wound closure that puts at the bottom rung the simplest methods of reconstruction and strengthens the complexity by moving upward. Regenerative medicine and surgery constitute a quickly spreading area of translational research that can be employed by minimally invasive surgical strategies, with the aim of regenerating cells and tissues in vivo in order to reestablish normal function through the intrinsic potential of cells, in combination with biomaterials and appropriate biochemical stimuli. These translational procedures have the aim of creating an appropriate microenvironment capable of supporting the physiological cellular function to generate the desired cells or tissues and to generate parenchymal, stromal, and vascular components on demand, and above all to produce intelligent materials capable of determining the fate of cells. Smart technologies have been grown that give extra "rungs" on the classic reconstructive ladder to integrate a more holistic, patient-based approach with improved outcomes. This commentary presents the evolution of the traditional concept of the reconstructive ladder in the field of plastic surgery into a new course with the aim of achieving excellent results for soft tissue reconstruction by applying innovative technologies and biologically active molecules for a wide range of surgical diseases.


Assuntos
Procedimentos de Cirurgia Plástica , Cirurgia Plástica , Humanos , Retalhos Cirúrgicos , Ciência Translacional Biomédica
18.
Pharmacol Res ; 198: 106999, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984504

RESUMO

Cell-to-cell communication strategies include extracellular vesicles (EVs) in plants and animals. The bioactive molecules in a diet rich in vegetables and fruits are associated with disease-preventive effects. Plant-derived EVs (PDEVs) are biogenetically and morphologically comparable to mammalian EVs and transport bioactive molecules, including miRNAs. However, the biological functions of PDEVs are not fully understood, and standard isolation protocols are lacking. Here, PDEVs were isolated from four foods with a combination of ultracentrifugation and size exclusion chromatography, and evaluated as vehicles for enhanced transport of synthetic miRNAs. In addition, the role of food-derived EVs as carriers of dietary (poly)phenols and other secondary metabolites was investigated. EVs from broccoli, pomegranate, apple, and orange were efficiently isolated and characterized. In all four sources, 4 miRNA families were present in tissues and EVs. miRNAs present in broccoli and fruit-derived EVs showed a reduced RNase degradation and were ferried inside exposed cells. EVs transfected with a combination of ath-miR159a, ath-miR162a-3p, ath-miR166b-3p, and ath-miR396b-5p showed toxic effects on human cells, as did natural broccoli EVs alone. PDEVs transport trace amounts of phytochemicals, including flavonoids, anthocyanidins, phenolic acids, or glucosinolates. Thus, PDEVs can act as nanocarriers for functional miRNAs that could be used in RNA-based therapy.


Assuntos
Vesículas Extracelulares , MicroRNAs , Animais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Células Cultivadas , Frutas , Mamíferos/genética , Mamíferos/metabolismo
19.
Nutrients ; 15(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37960298

RESUMO

Milk is a nutrient-rich food source, and among the various milks, breast milk is a nutrient source provided by mothers to newborns in many mammals. Exosomes are nano-sized membranous extracellular vesicles that play important roles in cell-to-cell communication. Exosomes originate from endogenous synthesis and dietary sources such as milk. Discovered through electron microscopy as floating vesicles, the existence of exosomes in human milk was confirmed owing to a density between 1.10 and 1.18 g/mL in a sucrose gradient corresponding to the known density of exosomes and detection of MHC classes I and II, CD63, CD81, and CD86 on the vesicles. To date, milk exosomes have been used for treating many diseases, including cancers, and are widely proposed as promising carriers for the delivery of chemotherapeutic agents. However, few studies on milk exosomes focus on geriatric health, especially sarcopenia and osteoporosis related to bone and muscle. Therefore, the present study focused on milk exosomes and their cargoes, which are potential candidates for dietary supplements, and when combined with drugs, they can be effective in treating musculoskeletal diseases. In this review, we introduce the basic concepts, including the definition, various sources, and cargoes of milk exosomes, and exosome isolation and characterization methods. Additionally, we review recent literature on the musculoskeletal system and milk exosomes. Since inflammation and oxidative stress underly musculoskeletal disorders, studies reporting the antioxidant and anti-inflammatory properties of milk exosomes are also summarized. Finally, the therapeutic potential of milk exosomes in targeting muscle and bone health is proposed.


Assuntos
Exossomos , Vesículas Extracelulares , Osteoporose , Recém-Nascido , Feminino , Animais , Humanos , Idoso , Leite , Leite Humano , Osso e Ossos , Mamíferos
20.
Biochem Biophys Rep ; 36: 101568, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38024866

RESUMO

Microangiopathy is the most basic pathological manifestation of lupus nephritis (LN), and glomerular endothelial cells (GECs) injury is an important pathological mechanism. LN patients with microangiopathy are prone to steroid resistance (SR). Our previous studies confirmed that Panax notoginseng saponins (PNS) could reverse SR by downregulating the expression of P-gp in SR lymphocytes of LN mice (SLCsL/S). However, the mechanism of how circulating lymphocytes transmit SR information to GECs and thus affect the efficacy of kidney treatment is not clear. Recent studies have found that exosomes (exos) are an important carrier for intercellular bioactive substance communication. But whether exosomes derived from SLCsL/S mediate SR in GECs and PNS interventions. To solve this problem, Exosomes isolated from SLCsL/S were characterized, and in vitro cell coculture was further conducted to investigate the effect of SLCsL/S-derived exosomes in the SR of GECs and PNS intervention. Sequencing was used to define the exosomal miRNA expression profiling of SR GECs. Moreover, the in vivo experiments were performed through the injection of exosomes extracted from SLCsL/S into the tail vein of mice. Our research results indicate that exosomes derived from SLCsL/S could transmit SR information to GECs and lead to the aggravation of inflammatory injury through conferring P-gp, which were negated by a P-gp inhibitor. Further, we identified higher levels of exosomal miR-125b-5p from SR GECs were associated with SR in LN and could serve as biomarker for the risk of developing SR. PNS could reverse the SR of GECs and alleviate inflammatory injury by suppressing exosomal P-gp levels from lymphocytes to GECs in vitro and in vivo. However, the specific molecular mechanism by which PNS regulates exosomes has not yet been elucidated, and we need to conduct more in-depth research in the future. Overall, Our findings suggest that exosomal transfer of SLCsL/S derived P-gp confer SR to GECs, and PNS can target exosome communication to reverse SR in LN, which provides new ideas and a scientific basis for improving the clinical efficacy of traditional Chinese medicine in the treatment of refractory LN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA