Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
J Orthop Translat ; 45: 66-74, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511124

RESUMO

Background: The musculoskeletal system contains an extensive network of lymphatic vessels. Decreased lymph flow of the draining collecting lymphatics usually occurs in clinic after traumatic fractures. However, whether defects in lymphatic drainage can affect fracture healing is unclear. Methods: To investigate the effect of lymphatic dysfunction on fracture healing, we used a selective VEGFR3 tyrosine kinase inhibitor to treat tibial fractured mice for 5 weeks versus a vehicle-treated control. To ensure successfully establishing deceased lymphatic drainage model for fractured mice, we measured lymphatic clearance by near infrared indocyanine green lymphatic imaging (NIR-ICG) and the volume of the draining popliteal lymph nodes (PLNs) by ultrasound at the whole phases of fracture healing. In addition, hindlimb edema from day 0 to day 7 post-fracture, pain sensation by Hargreaves test at day 1 post-fracture, bone histomorphometry by micro-CT and callus composition by Alcian Blue-Hematoxylin/Orange G staining at day 14 post-fracture, and bone quality by biomechanical testing at day 35 post-fracture were applied to evaluate fracture healing. To promote fracture healing via increasing lymphatic drainage, we then treated fractured mice with anti-mouse podoplanin (PDPN) neutralizing antibody or isotype IgG antibody for 1 week to observe lymphatic drainage function and assess bone repair as methods described above. Results: Compared to vehicle-treated group, SAR-treatment group significantly decreased lymphatic clearance and the volume of draining PLNs. SAR-treatment group significantly increased soft tissue swelling, and reduced bone volume (BV)/tissue volume (TV), trabecular number (Tb.N), woven bone and biomechanical properties of fracture callus. In addition, anti-PDPN treated group significantly reduced the number of CD41+ platelets in PLNs and increased the number of pulsatile lymphatic vessels, lymphatic clearance and the volume of PLNs. Moreover, anti-PDPN treated group significantly reduced hindlimb edema and pain sensation and increased BV/TV, trabecular number (Tb.Th), woven bone and biomechanical properties of fracture callus. Conclusions: Inhibition of proper lymphatic drainage function delayed fracture healing. Use of a anti-PDPN neutralizing antibody reduced lymphatic platelet thrombosis (LPT), increased lymphatic drainage and improved fracture healing. The translational potential of this article: (1) We demonstrated lymphatic drainage function is crucial for fracture healing. (2) To unblock the lymphatic drainage and prevent the risk of bleeding and mortality by blood thinner, we demonstrated PDPN neutralizing antibody is a novel and safe way forward in the treatment of bone fracture healing by eliminating LPT and increasing lymphatic drainage.

2.
Chin Herb Med ; 16(1): 56-69, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38375046

RESUMO

As a common clinical disease, fracture is often accompanied by pain, swelling, bleeding as well as other symptoms and has a high disability rate, even threatening life, seriously endangering patients' physical and psychological health and quality of life. Medical practitioners take many strategies for the treatment of fracture healing, including Traditional Chinese Medicine (TCM). In the early stage of fracture healing, the local fracture is often in a state of hypoxia, accompanied by the expression of hypoxia inducible factor-1α (HIF-1α), which is beneficial to wound healing. Through literature mining, we thought that hypoxia, HIF-1α and downstream factors affected the mechanism of fracture healing, as well as dominated this process. Therefore, we reviewed the local characteristics and related signaling pathways involved in the fracture healing process and summarized the intervention of TCM on these mechanisms, in order to inspirit the new strategy for fracture healing, as well as elaborate on the possible principles of TCM in treating fractures based on the HIF molecular mechanism.

3.
J Musculoskelet Neuronal Interact ; 23(4): 471-488, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38037365

RESUMO

This review aimed to validate the therapeutic potential of Bushen Tiansui decoction (BSTSD), a traditional Chinese formulation, in treating delayed union of fractures. Comprehensive database searches identified randomized controlled trials up to September 13, 2022, assessing BSTSD's efficacy in delayed fracture healing. Outcomes were bone metabolism indexes and Harris hip scores. Quality and risk assessments were conducted using the Cochrane Collaboration's tools. Data were analyzed using RevMan software, with sensitivity analysis through Stata. BSTSD significantly improved bone GLA protein (SMD=1.76, P<0.00001) and alkaline phosphatase (SMD=1.31, P<0.00001). Additionally, Harris hip scores for pain, function, deformity, and motion showed marked improvement. BSTSD treatment also demonstrated enhanced clinical efficiency (RR=1.27, P<0.00001) with fewer complications. Sensitivity analyses indicated consistent results. BSTSD shows promise in treating delayed fracture unions, yet conclusions necessitate further high-quality research for validation.


Assuntos
Consolidação da Fratura , Fraturas Ósseas , Humanos , Fraturas Ósseas/tratamento farmacológico
4.
Comput Biol Med ; 164: 107292, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37544250

RESUMO

BACKGROUND: Distal radius fractures (DRFs) treated with volar locking plates (VLPs) allows early rehabilitation exercises favourable to fracture recovery. However, the role of rehabilitation exercises induced muscle forces on the biomechanical microenvironment at the fracture site remains to be fully explored. The purpose of this study is to investigate the effects of muscle forces on DRF healing by developing a depth camera-based fracture healing model. METHOD: First, the rehabilitation-related hand motions were captured by a depth camera system. A macro-musculoskeletal model is then developed to analyse the data captured by the system for estimating hand muscle and joint reaction forces which are used as inputs for our previously developed DRF model to predict the tissue differentiation patterns at the fracture site. Finally, the effect of different wrist motions (e.g., from 60° of extension to 60° of flexion) on the DRF healing outcomes will be studied. RESULTS: Muscle and joint reaction forces in hands which are highly dependent on hand motions could significantly affect DRF healing through imposed compressive and bending forces at the fracture site. There is an optimal range of wrist motion (i.e., between 40° of extension and 40° of flexion) which could promote mechanical stimuli governed healing while mitigating the risk of bony non-union due to excessive movement at the fracture site. CONCLUSION: The developed depth camera-based fracture healing model can accurately predict the influence of muscle loading induced by rehabilitation exercises in distal radius fracture healing outcomes. The outcomes from this study could potentially assist osteopathic surgeons in designing effective post-operative rehabilitation strategies for DRF patients.


Assuntos
Fraturas do Rádio , Fraturas do Punho , Humanos , Fraturas do Rádio/cirurgia , Fixação Interna de Fraturas , Articulação do Punho , Músculo Esquelético , Placas Ósseas , Amplitude de Movimento Articular , Resultado do Tratamento
5.
Biomedicines ; 11(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37509670

RESUMO

Norisoboldine (NOR), the major isoquinoline alkaloid constituent of a Chinese traditional medicine Radix Linderae, has been demonstrated to inhibit osteoclast differentiation and improve arthritis. The aim of this study is to examine the effect of NOR on bone fracture healing and the underlying mechanisms correlated with bone marrow stromal cells (BMSCs) differentiation to chondrocytes. Our results showed that NOR inhibits the tibia fracture healing process by suppressing cartilage formation, which leads to less endochondral ossification, indicated by less osterix and collage I signaling at the fracture site. Moreover, NOR significantly reduced the differentiation of primary BMSCs to chondrocytes in vitro by reducing the bone morphogenetic protein 2 (BMP2) signaling. These findings imply that NOR negatively regulates the healing of the tibial midshaft fracture, which might delay the union of the fractures and should be noticed when used in other treatments.

6.
J Orthop Surg Res ; 18(1): 454, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355696

RESUMO

BACKGROUND: Therapies using electromagnetic field technology show evidence of enhanced bone regeneration at the fracture site, potentially preventing delayed or nonunions. METHODS: Combined electric and magnetic field (CEMF) treatment was evaluated in two standardized sheep tibia osteotomy models: a 3-mm non-critical size gap model and a 17-mm critical size defect model augmented with autologous bone grafts, both stabilized with locking compression plates. CEMF treatment was delivered across the fracture gap twice daily for 90 min, starting 4 days postoperatively (post-OP) until sacrifice (9 or 12 weeks post-OP, respectively). Control groups received no CEMF treatment. Bone healing was evaluated radiographically, morphometrically (micro-CT), biomechanically and histologically. RESULTS: In the 3-mm gap model, the CEMF group (n = 6) exhibited higher callus mineral density compared to the Control group (n = 6), two-fold higher biomechanical torsional rigidity and a histologically more advanced callus maturity (no statistically significant differences). In the 17-mm graft model, differences between the Control (n = 6) and CEMF group (n = 6) were more pronounced. The CEMF group showed a radiologically more advanced callus, a higher callus volume (p = 0.003) and a 2.6 × higher biomechanical torsional rigidity (p = 0.024), combined with a histologically more advanced callus maturity and healing. CONCLUSIONS: This study showed that CEMF therapy notably enhanced bone healing resulting in better new bone structure, callus morphology and superior biomechanical properties. This technology could transform a standard inert orthopedic implant into an active device stimulating bone tissue for accelerated healing and regeneration.


Assuntos
Magnetoterapia , Fraturas da Tíbia , Ovinos , Animais , Consolidação da Fratura , Tíbia/diagnóstico por imagem , Tíbia/cirurgia , Calo Ósseo/diagnóstico por imagem , Fraturas da Tíbia/diagnóstico por imagem , Fraturas da Tíbia/cirurgia , Osteotomia , Fenômenos Biomecânicos
7.
Artigo em Inglês | MEDLINE | ID: mdl-37287301

RESUMO

INTRODUCTION: The function of promoting bone regeneration of Moutan Cortex (MC), a traditional Chinese medicine, has been widely known but, the effective components of MC in promoting osteoblast-mediated bone regeneration were still unclear. OBJECTIVE: The method of osteoblast membrane bio-specific extraction conjugated with HPLC analysis was established to screen bone regeneration active components from MC. METHODS: The fingerprints, washing eluate and desorption eluate of MC extract were analyzed by the established HPLC-DAD method. The established MC3T3-E1 cells membrane chromatography method was used for the bio-specific extraction of MC. The isolated compounds were identified by MS spectrometry. The effects and possible mechanisms of the isolated compounds were evaluated by molecular docking, ALP activity, cell viability by MTT Assay and proteins expression by Western Blot Analysis. RESULTS: The active compound responsible for bone regeneration from MC was isolated using the established method of osteoblast membrane bio-specific extraction conjugated with HPLC analysis, and it was identified as 1,2,3,4,6-penta-O-ß-galloyl-D-glucose (PGG) by MS spectrometry. It was further demonstrated through molecular docking that PGG could fit well into the functional ALP, BMP2, and Samd1 binding pocket. The proliferation of osteoblasts was promoted, the level of ALP was increased, and the protein expression of BMP2 and Smad1 was increased as shown by further pharmacological verification. CONCLUSION: It was concluded that PGG, the bone regeneration active compound from MC, could stimulate the proliferation of osteoblasts to promote osteoblast differentiation, and its mechanism might be related to the BMP/Smad1 pathway.

8.
FASEB J ; 37(6): e22952, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37159303

RESUMO

Hu'po Anshen decoction (HPASD), a traditional Chinese medicine used to treat concussion and fracture, could regulate the expression of bone morphogenetic protein 2 (BMP2). However, whether HPASD affects the fracture healing of traumatic brain injury (TBI) combined with a fracture through BMP2 and its downstream signals remains obscure. The chondrocyte-specific BMP2 conditional knockout mice and chondrocyte-specific cyclooxygenase-2 (COX2) overexpression mice were generated. BMP2 conditional knockout mice were treated with fracture surgery, fracture combined with TBI, or fracture combined with TBI followed by different doses of HPASD (2.4, 4.8, and 9.6 g/kg), respectively. TBI was induced by Feeney's weight-drop technique. The fracture callus formation and fracture sites were determined by X-ray, micro-CT, and histological analyses. The expressions of chondrocyte-, osteoblast-, and BMP2/COX2 signal-related targets were determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot assays. The specific absence of BMP2 in chondrocytes led to the prolonged formation of cartilage callus, a delay in the osteogenesis initiation and the downregulation of RUNX2, Smad1/5/9, EP4, ERK1/2, RSK2, ATF4. Overexpression of COX2 partially reverses the effects of chondrocyte-specific BMP2 knockout mice. HPASD promoted cartilage callus formation and osteogenesis initiation, as accompanied by upregulated expression levels of RUNX2, Smad1/5/9, EP4, ERK1/2, RSK2, and ATF4 in a time-dependent and concentration-dependent manner in chondrocyte-specific BMP2 knockout mice. Overall, our findings demonstrated that HPASD induced COX2 transcription through the BMP2-Smad1/5/9-RUNX2 axis, and then affected fracture healing through the COX2-mediated EP4-ERK1/2-RSK2-ATF4 axis.


Assuntos
Lesões Encefálicas Traumáticas , Fraturas Ósseas , Animais , Camundongos , Consolidação da Fratura , Subunidade alfa 1 de Fator de Ligação ao Core , Ciclo-Oxigenase 2/genética , Proteína Morfogenética Óssea 2/genética , Lesões Encefálicas Traumáticas/tratamento farmacológico , Transdução de Sinais , Camundongos Knockout
9.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108257

RESUMO

Low-level laser therapy (LLLT) is a treatment that is increasingly used in orthopedics practices. In vivo and in vitro studies have shown that low-level laser therapy (LLLT) promotes angiogenesis, fracture healing and osteogenic differentiation of stem cells. However, the underlying mechanisms during bone formation remain largely unknown. Factors such as wavelength, energy density, irradiation and frequency of LLLT can influence the cellular mechanisms. Moreover, the effects of LLLT are different according to cell types treated. This review aims to summarize the current knowledge of the molecular pathways activated by LLLT and its effects on the bone healing process. A better understanding of the cellular mechanisms activated by LLLT can improve its clinical application.


Assuntos
Terapia com Luz de Baixa Intensidade , Osteogênese , Consolidação da Fratura , Células-Tronco , Diferenciação Celular/efeitos da radiação
10.
Artigo em Inglês | MEDLINE | ID: mdl-36833994

RESUMO

BACKGROUND: Vitamin D is an essential component in calcium metabolism. Seasonality, advanced age, sex, dark skin pigmentation, and limited exposure to sunlight were reported as causes of vitamin D deficiency. This study aims to determine whether children with lower levels of vitamin D suffer more fractures than those with sufficient levels. MATERIALS AND METHODS: Our institution underwent a prospective case-control randomized cross-sectional single-blinded study that included 688 children. They were split into two groups: the study group and the control group. The study group received supplements of vitamin D and calcium for 6 months. Another reference cohort was observed, which comprised 889 patients in the pediatric ward for different respiratory or gastroenterological conditions without a history of fractures. This group was used for age-sex matching tests. RESULTS: Logistic regression showed that with every one unit increase of vitamin D level, the chance of having a middle third fracture in both bones of the forearm decreased by 7% (OR 1.07); distal third fracture incidence decreased by 1.03 times; middle third radius fracture incidence decreased by 1.03 times; distal third radius fracture incidence decreased by 1.06 times. The risk of having a distal third both-bone forearm fracture increased by 1.06 times with every year of age. Comparing the healing process, we noticed an improvement in bony callus formation for patients in the study group. CONCLUSIONS: Dosing the serum level of 25-OH-vitamin D should be taken into consideration for pediatric low-energy trauma fractures. Supplementing with vitamin D and calcium throughout childhood can be a solution for healthy bones. Our preliminary results show that the normal level of vitamin D in children should start at 40 ng/mL.


Assuntos
Fraturas por Osteoporose , Fraturas do Rádio , Deficiência de Vitamina D , Fraturas do Punho , Humanos , Criança , Vitamina D , Estudos Transversais , Cálcio , Deficiência de Vitamina D/epidemiologia , Fraturas do Rádio/etiologia , Vitaminas , Fatores de Risco , Cálcio da Dieta , Estudos de Casos e Controles
11.
JBMR Plus ; 7(1): e10705, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36699638

RESUMO

Nearly half of adult fracture patients are vitamin D deficient (serum 25-hydroxyvitamin D [25(OH)D] levels <20 ng/mL). Many surgeons advocate prescribing vitamin D supplements to improve fracture healing outcomes; however, data supporting the effectiveness of vitamin D3 supplements to improve acute fracture healing are lacking. We tested the effectiveness of vitamin D3 supplementation for improving tibia and femur fracture healing. We conducted a single-center, double-blinded phase II screening randomized controlled trial with a 12-month follow-up. Patients aged 18-50 years receiving an intramedullary nail for a tibia or femoral shaft fracture were randomized 1:1:1:1 to receive (i) 150,000 IU loading dose vitamin D3 at injury and 6 weeks (n = 27); (ii) 4000 IU vitamin D3 daily (n = 24); (iii) 600 IU vitamin D3 daily (n = 24); or (iv) placebo (n = 27). Primary outcomes were clinical fracture healing (Function IndeX for Trauma [FIX-IT]) and radiographic fracture healing (Radiographic Union Score for Tibial fractures [RUST]) at 3 months. One hundred two patients with a mean age of 29 years (standard deviation 8) were randomized. The majority were male (69%), and 56% were vitamin D3 deficient at baseline. Ninety-nine patients completed the 3-month follow-up. In our prespecified comparisons, no clinically important or statistically significant differences were detected in RUST or FIX-IT scores between groups when measured at 3 months and over 12 months. However, in a post hoc comparison, high doses of vitamin D3 were associated with improved clinical fracture healing relative to placebo at 3 months (mean difference [MD] 0.90, 80% confidence interval [CI], 0.08 to 1.79; p = 0.16) and within 12 months (MD 0.89, 80% CI, 0.05 to 1.74; p = 0.18). The study was designed to identify potential evidence to support the effectiveness of vitamin D3 supplementation in improving acute fracture healing. Vitamin D3 supplementation, particularly high doses, might modestly improve acute tibia or femoral shaft fracture healing in healthy adults, but confirmatory studies are required. The Vita-Shock trial was awarded the Orthopaedic Trauma Association's (OTA) Bovill Award in 2020. This award is presented annually to the authors of the most outstanding OTA Annual Meeting scientific paper. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

12.
Artigo em Inglês | MEDLINE | ID: mdl-36453484

RESUMO

BACKGROUND: Piper sarmentosum (PS) is a traditional herb used by Southeast Asian communities to treat various illnesses. Recent pharmacological studies have discovered that PS possesses antioxidant and anti-inflammatory activities. Since oxidative stress and inflammation are two important processes driving the pathogenesis of bone loss, PS may have potential therapeutic effects against osteoporosis. OBJECTIVE: This review systematically summarised the therapeutic effects of PS on preventing osteoporosis and promoting fracture healing. METHODS: A systematic literature search was performed in November 2021 using 4 electronic databases and the search string "Piper sarmentosum" AND (bone OR osteoporosis OR osteoblasts OR osteoclasts OR osteocytes). RESULTS: Nine unique articles were identified from the literature. The efficacy of PS has been studied in animal models of osteoporosis induced by ovariectomy and glucocorticoids, as well as bone fracture models. PS prevented deterioration of bone histomorphometric indices, improved fracture healing and restored the biomechanical properties of healed bone in ovariectomised rats. PS also prevented osteoblast/osteocyte apoptosis, increased bone formation and mineralisation and subsequently improved trabecular bone microstructures and strength of rats with osteoporosis induced by glucocorticoids. Apart from its antioxidant and anti-inflammatory activity, PS also suppressed circulating and skeletal expression of corticosterone and skeletal expression of 11ß hydroxysteroid dehydrogenase type 1 but increased the enzyme activity in the glucocorticoid osteoporosis model. This review also identified several research gaps about the skeletal effects of PS and suggested future studies to bridge these gaps. CONCLUSION: PS may be of therapeutic benefit to bone health. However, further research is required to validate this claim.


Assuntos
Osteoporose , Piper , Feminino , Ratos , Animais , Consolidação da Fratura , Densidade Óssea , Antioxidantes/farmacologia , Piper/química , Extratos Vegetais/farmacologia , Glucocorticoides/uso terapêutico , Anti-Inflamatórios/farmacologia , Osteoporose/metabolismo
13.
China Pharmacy ; (12): 2172-2176, 2023.
Artigo em Chinês | WPRIM | ID: wpr-987151

RESUMO

Traditional Chinese medicine has the characteristics of multiple components, pathways, and targets in the treatment of fracture healing, and has good therapeutic advantages and potential for fractures with complex pathological mechanisms. Based on this, the author summarized the mechanism of promoting fracture healing by the monomer components and compound formulas of traditional Chinese medicine and found that visfatin A, puerarin, and others can activate the mitogen-activated protein kinase (MAPK) signaling pathway; Xugudan, Guben zenggu formula and others can activate bone morphogenetic protein (BMP) signaling pathway; baicalin, Achyranthes bidentata polysaccharides and others can activate Wnt/β -catenin signaling pathway; apigenin, notoginsenoside and others can activate receptor activator of nuclear factor-κB (NF-κB)/receptor activator of NF-κB ligand/osteoprotegerin (RANK/RANKL/OPG) signaling pathway; Compound huoxue jiegu capsule, Jiangu granule and others can inhibit phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signaling pathway; icariin can activate Notch signaling pathway; Taohong siwu decoction, crocin and others can activate Hippo signaling pathway; jujuboside A and osthole can inhibit NF-κB signaling pathway, and thus promote fracture healing.

14.
J Orthop Surg Res ; 17(1): 468, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307889

RESUMO

BACKGROUND: Deer antler is a traditional Chinese medicine with the function of tonifying kidney and strengthening bone, which is often used to treat orthopedic diseases. METHODS: Eight-week-old C57BL/6 mice were used as the fixation model of open tibial fracture with intramedullary nail. The mice were treated with deer antler extract (DAE) or PBS by oral gavage once daily. The tibial fracture samples were collected and performed to the tissue analysis, including X-ray, micro-CT, histology, qRT-PCR, immunohistochemistry. MC3T3-E1 cells were used to detect the effect of deer antler extract on ability of cell proliferation and migration by CCK-8 assay and cell scratch test. RESULTS: Imaging and micro-CT showed that DAE could promote the healing of tibial fracture in mice, and histological analysis showed that DAE could promote the transformation of cartilage callus to bone callus in fracture area. The results of qRT-PCR and immunohistochemistry showed that DAE could promote intrachondral ossification in fracture zone and the mechanism of promoting fracture healing may be related to the activation of BMP-2/SMAD4 signaling pathway. In the cytological experiment of DAE, it can be found that DAE promoted the proliferation of MC3T3-E1 cells and the migration of MC3T3-E1 cells at a certain concentration, which is also related to the promotion of fracture healing by DAE. CONCLUSION: DAE can promote fracture healing by activating BMP-2/SMAD4 signaling pathway. DAE has the potential to be used in clinic as an important means of promoting fracture healing.


Assuntos
Chifres de Veado , Cervos , Fraturas da Tíbia , Camundongos , Animais , Consolidação da Fratura , Fraturas da Tíbia/tratamento farmacológico , Tíbia , Camundongos Endogâmicos C57BL , Calo Ósseo , Transdução de Sinais
15.
Life Sci ; 310: 121090, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257457

RESUMO

AIMS: Fractures are the result of fragile bone structures after trauma caused by direct or indirect external impact or strong muscular contraction. Most fracture patients undergo surgical fixation to accelerate the healing process and restore the function of mutilated bone. Promoting the healing process remains an important issue for the treatment of bone fractures. Our previous studies demonstrated the remarkable bone-protective effects of kefir peptides (KPs) in ovariectomized rats and mice. In this study, we further evaluate the efficacy of KPs on fracture healing using a rat model of femoral fracture. MAIN METHODS: Fifteen 8-week-old male Sprague Dawley (SD) rats were divided into the sham, mock, and KPs groups, in which the mock and the KPs groups underwent femur-fracture surgery with nail fixation, while the sham group underwent a sham operation. The next day, rats were orally administered with daily 400 mg/kg of KPs (KPs group) or distilled water (sham and mock groups) for four weeks. X-ray imaging, histochemical staining and serum osteogenic markers were applied for fracture healing evaluation. In vitro, mouse bone marrow mesenchymal stem cells (BMMSCs) and MC3T3-E1 line were subjected to osteoblast differentiation in the presence of KPs and compared with no KPs treatment. KEY FINDINGS: The results demonstrated that KPs treatment improved the progression of the fracture healing process (p < 0.05) and significantly increased the expressions of Col1a1, Alp, Spp1, Vegfa and Cox2 mRNA in the femurs of the KPs-treated fractured rats compared to those of the mock-treated fracture rats. In vitro, KPs treatment promoted bone regeneration factor (Col1a1, Alp, M-csf and Phospho1) expression in MC3T3-E1-derived osteoblast cultures (on Day 3) and enhanced osteogenic differentiation and mineralization in BMMSC-derived osteoblast cultures (on Day 17 and Day 21). SIGNIFICANCE: This is the first study to show that KPs can help with fracture healing by promoting osteogenic differentiation, and it also suggests that KPs can be used as a nutritional supplement to accelerate fracture healing.


Assuntos
Fraturas do Fêmur , Kefir , Animais , Masculino , Camundongos , Ratos , Diferenciação Celular , Fraturas do Fêmur/tratamento farmacológico , Consolidação da Fratura , Osteogênese , Peptídeos/farmacologia , Ratos Sprague-Dawley
16.
Front Pharmacol ; 13: 952696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35924045

RESUMO

Hu'po Anshen decoction (HPASD) is a traditional Chinese medicine formula comprising five herbal medicines for the treatment of concussion and fracture healing, but its pharmacological mechanism is still unclear. Ultra-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC/Q-TOF MS) was used to analyze the main active components of HPASD. Rats were randomly assigned to fracture group, fracture combined with traumatic brain injury (TBI) group (FBI) and FBI combined with HPASD treatment group (FBIH). Rats in the FBIH group were given oral doses of HPASD (2.4 g/kg, 4.8 g/kg and 9.6 g/kg) for 14 or 21 consecutive days. The fracture callus formation and fracture sites were determined by radiographic analysis and micron-scale computed tomography (micro-CT) analysis. Hematoxylin and eosin (H&E) staining and a three-point bending test were applied to assess histological lesions and biomechanical properties, respectively. The levels of cytokines-/protein-related to bone formation and differentiation as well as PI3K/AKT pathway-related proteins were determined by Enzyme-linked immunosorbent assay (ELISA), quantitative reverse transcription-polymerase chain reaction (qRT-PCR), or western blot assays, respectively. UPLC-Q/TOF-MS-based serum metabolomic analysis was also performed to investigate the therapeutic effects of HPASD in the treatment of FBI. UPLC/Q-TOF MS analysis showed the chemical components in HPASD, including flavonoids, amino acids, saponins, and phenylpropanoid constituents, etc. HPASD dose-dependently promoted callus formation, increased bone density, improved mechanical parameters and morphological scores, and facilitated the expressions of VEGF, PDGF, bFGF, VEGFA, CoL1A1, RUNX2, BMP2, and Aggrecan, inhibited the expression of MMP13, and activated PI3K/AKT pathway. Metabolomics analysis revealed abnormalities of malate-aspartate shuttle and glucose-alanine. HPASD accelerates fracture healing by promoting bone formation and regulating the malate-aspartate shuttle and glucose-alanine cycle, which might be associated with the activation of the PI3K/AKT pathway.

17.
Nutrients ; 14(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35631133

RESUMO

This study presents findings on the biological action of an integrated supplement containing the following components involved in osteogenesis and mineralization: vitamin D and silicon in the bioavailable and soluble form. A hypothesis that these components potentiate one another's action and make calcium absorption by the body more efficient was tested. Biological tests of the effect of vitamin D and silicon chelates on bone fracture healing and bone turnover were conducted using ICR mice and albino Wistar rats. Radiographic and biochemical studies show that the supplement simultaneously containing silicon chelates and vitamin D stimulates bone tissue regeneration upon mechanical defects and accelerates differentiation of osteogenic cells, regeneration of spongy and compact bones, and restoration of bone structure due to activation of osteoblast performance. Bone structure restoration was accompanied by less damage to skeletal bones, apparently due to better absorption of calcium from food. The studied supplement has a similar effect when used to manage physiologically induced decalcification, thus holding potential for the treatment of osteomalacia during pregnancy or occupational diseases (e.g., for managing bone decalcification in astronauts).


Assuntos
Consolidação da Fratura , Vitamina D , Animais , Remodelação Óssea , Cálcio , Cálcio da Dieta , Quelantes , Feminino , Camundongos , Camundongos Endogâmicos ICR , Gravidez , Ratos , Silício/farmacologia , Vitamina D/farmacologia , Vitamina D/fisiologia , Vitaminas
18.
J Bone Miner Res ; 37(7): 1352-1365, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35616626

RESUMO

Fracture healing is impaired in the setting of infection, which begets protracted inflammation. The most problematic causative agent of musculoskeletal infection is methicillin-resistant Staphylococcus aureus (MRSA). We hypothesized that modulation of excessive inflammation combined with cell-penetrating antibiotic treatments facilitates fracture healing in a murine MRSA-infected femoral fracture model. Sterile and MRSA-contaminated open transverse femoral osteotomies were induced in 10-week-old male C57BL/6 mice and fixed via intramedullary nailing. In the initial therapeutic cohort, empty, vancomycin (V), rifampin (R), vancomycin-rifampin (VR), or vancomycin-rifampin-trametinib (VRT) hydrogels were applied to the fracture site intraoperatively. Rifampin was included because of its ability to penetrate eukaryotic cells to target intracellular bacteria. Unbiased screening demonstrated ERK activation was upregulated in the setting of MRSA infection. As such, the FDA-approved mitogen-activated protein kinase kinase (MEK)1-pERK1/2 inhibitor trametinib was evaluated as an adjunctive therapeutic agent to selectively mitigate excessive inflammation after infected fracture. Two additional cohorts were created mimicking immediate and delayed postoperative antibiotic administration. Systemic vancomycin or VR was administered for 2 weeks, followed by 2 weeks of VRT hydrogel or oral trametinib therapy. Hematologic, histological, and cytokine analyses were performed using serum and tissue isolates obtained at distinct postoperative intervals. Radiography and micro-computed tomography (µCT) were employed to assess fracture healing. Pro-inflammatory cytokine levels remained elevated in MRSA-infected mice with antibiotic treatment alone, but increasingly normalized with trametinib therapy. Impaired callus formation and malunion were consistently observed in the MRSA-infected groups and was partially salvaged with systemic antibiotic treatment alone. Mice that received VR alongside adjuvant MEK1-pERK1/2 inhibition displayed the greatest restoration of bone and osseous union. A combinatorial approach involving adjuvant cell-penetrating antibiotic treatments alongside mitigation of excessive inflammation enhanced healing of infected fractures. © 2022 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Fraturas do Fêmur , Consolidação da Fratura , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Citocinas , Fraturas do Fêmur/tratamento farmacológico , Inflamação/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rifampina/farmacologia , Rifampina/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Vancomicina/farmacologia , Vancomicina/uso terapêutico , Microtomografia por Raio-X
19.
Front Pharmacol ; 13: 855393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462912

RESUMO

Fractures have an extraordinarily negative impact on an individual's quality of life and functional status, particularly delayed or non-union fractures. Osteogenesis and angiogenesis are closely related to bone growth and regeneration, and bone modeling and remodeling. Recently Chinese medicine has been extensively studied to promote osteogenic differentiation in MSCs. Studies have found that Ginseng can be used as an alternative for tissue regeneration and engineering. Ginseng is a commonly used herbal medicine in clinical practice, and one of its components, Ginsenoside Compound K (CK), has received much attention. Evidence indicates that CK has health-promoting effects in inflammation, atherosclerosis, diabetics, aging, etc. But relatively little is known about its effect on bone regeneration and the underlying cellular and molecular mechanisms. In this study, CK was found to promote osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) by RT-PCR and Alizarin Red S staining in vitro. Mechanistically, we found CK could promote osteogenesis through activating Wnt/ß-catenin signaling pathway by immunofluorescence staining and luciferase reporter assay. And we also showed that the tube formation capacity of human umbilical vein endothelial cells (HUVECs) was increased by CK. Furthermore, using the rat open femoral fracture model, we found that CK could improve fracture repair as demonstrated by Micro-CT, biomechanical and histology staining analysis. The formation of H type vessel in the fracture callus was also increased by CK. These findings provide a scientific basis for treating fractures with CK, which may expand its application in clinical practice.

20.
Calcif Tissue Int ; 111(2): 196-210, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35451627

RESUMO

Isovitexin (apigenin-6C-glucopyranose) is found in several food items and medicinal plants. Recently, we showed that isovitexin stimulated osteoblast differentiation through mitochondrial biogenesis and respiration that required adiponectin receptors (AdipoRs). Here, we studied whether oral isovitexin has a bone anabolic effect in vivo. At first, using a femur osteotomy model in adult mice, we compared the bone regenerative effect of isovitexin and apigenin. Whereas isovitexin-stimulated bone formation at the osteotomy site at 2.5 mg/kg and 5 mg/kg dose, apigenin had no effect. Subsequently, we tested the effect of isovitexin (5 mg/kg) in ovariectomized (OVX) osteopenic mice and observed that it restored bone mass and architecture of trabecular bones (femur metaphysis and fifth lumbar vertebra/L5) and cortical bones (femur diaphysis). Isovitexin completely restored bone strength at L5 (compressive strength) and femur (bending strength) in OVX mice. The bone anabolic effect of isovitexin was demonstrated by the increased surface referent bone formation parameters, increased expression of osteogenic genes (Runx2, bone morphogenetic protein-2 and type 1 collagen) in bones, and increased serum procollagen type 1N-terminal propeptide in OVX mice and these were on a par with teriparatide. Isovitexin inhibited bone and serum sclerostin as well as the serum type I collagen cross-linked C-telopeptide in OVX mice. Isovitexin has an oral bioavailability of 14.58%. Taken together, our data show that isovitexin had a significant oral bioavailability that translated to osteoanabolic effect equivalent to teriparatide and inhibited bone resorption, which implied a durable effect over teriparatide.


Assuntos
Anabolizantes , Teriparatida , Administração Oral , Anabolizantes/farmacologia , Animais , Apigenina/farmacologia , Densidade Óssea , Feminino , Camundongos , Osteogênese , Ovariectomia , Teriparatida/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA