Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(17): 25192-25201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462566

RESUMO

Bee pollen is a healthy product with a good nutritional profile and therapeutic properties. Its high moisture content, however, promotes the growth of bacteria, molds, and yeast during storage commonly result in product degradation. Therefore, the aim of this study is to assess the effectiveness of gamma irradiation (GI) and ozone (OZ) as bee pollen preservation methods for longer storage time, as well as whether they are influenced by pollen species. To do that, GI at a dosage of 2.5, 5.0, and 7.5 kGy was applied at a rate of 0.68 kGy/h and OZ application at a concentration of 0.01, 0.02, and 0.03 g/m3 was applied for one time for 6 h, to Egyptian clover and maize bee pollen, then stored at ambient temperature for 6 months. We then determined the total phenolic content (TPC) and antioxidant activity of treated and non-treated pollen samples at 0, 3, and 6 months of storage. Total bacteria, mold, and yeast count were also evaluated at 0, 2, 4, and 6 months. Statistical analyses revealed that, TPC, antioxidant, and microbial load of both clover and maize pollen samples were significantly (p < 0.05) affected by both treatment and storage time and their interaction. Both methods were extremely effective at preserving the antioxidant properties of pollen samples after 6 months of storage at room temperature. Furthermore, the highest concentrations of both GI and OZ applications completely protected pollen samples from mold and yeast while decreasing bacterial contamination. GI at the highest dose (7.5 KGy) was found to be more effective than other GI doses and OZ application in preserving biologically active compounds and lowering the microbial count of pollen samples for 6 months. As a result, we advise beekeepers to use GI at this dose for longer-term storage.


Assuntos
Antioxidantes , Ozônio , Abelhas , Animais , Saccharomyces cerevisiae , Fenóis , Fungos , Pólen
2.
Microorganisms ; 12(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38399731

RESUMO

Some insertion sequence (IS) elements were actively transposed using oxidative stress conditions, including gamma irradiation and hydrogen peroxide treatment, in Deinococcus geothermalis, a radiation-resistant bacterium. D. geothermalis wild-type (WT), sigma factor gene-disrupted (∆dgeo_0606), and LysR gene-disrupted (∆dgeo_1692) mutants were examined for IS induction that resulted in non-pigmented colonies after gamma irradiation (5 kGy) exposure. The loss of pigmentation occurred because dgeo_0524, which encodes a phytoene desaturase in the carotenoid pathway, was disrupted by the transposition of IS elements. The types and loci of the IS elements were identified as ISDge2 and ISDge6 in the ∆dgeo_0606 mutant and ISDge5 and ISDge7 in the ∆dgeo_1692 mutant, but were not identified in the WT strain. Furthermore, 80 and 100 mM H2O2 treatments induced different transpositions of IS elements in ∆dgeo_0606 (ISDge5, ISDge6, and ISDge7) and WT (ISDge6). However, no IS transposition was observed in the ∆dgeo_1692 mutant. The complementary strain of the ∆dgeo_0606 mutation showed recovery effects in the viability assay; however, the growth-delayed curve did not return because the neighboring gene dgeo_0607 was overexpressed, probably acting as an anti-sigma factor. The expression levels of certain transposases, recognized as pivotal contributors to IS transposition, did not precisely correlate with active transposition in varying oxidation environments. Nevertheless, these findings suggest that specific IS elements integrated into dgeo_0524 in a target-gene-deficient and oxidation-source-dependent manner.

3.
Environ Toxicol ; 39(3): 1666-1681, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38031637

RESUMO

The prevalence of chronic kidney disease (CKD) is in progress that causes kidney failure, leading to global problems. This manuscript investigated the nephroprotective effects of chicory (CLE) and/or artichoke (ALE) leaves extracts on carbon tetrachloride (CCl4 ) and gamma-irradiation (Rad)-induced chronic nephrotoxicity in rats. Rats were divided into 10 groups (10 animals/group): group 1: control, groups 2-7 rats were treated with CLE, ALE, CLE/ALE, CCl4 , Rad, and CCl4 /Rad, respectively. Groups 8 to 10, rats were intoxicated with CCl4 /Rad, and treated with CLE, ALE, and CLE/ALE extracts, respectively, for 4 weeks. The data demonstrated that CCl4 administration or Rad exposure induced high levels of urea and creatinine, with low levels of total protein and albumin in the serum. However, high levels of malondialdehyde (MDA), nitric oxide (NO), hydrogen peroxide (H2 O2 ), some pro-inflammatory markers such as interleukins (IL-1ß, IL-2, IL-6), TNF-α, NF-κB, the fibrotic marker; TGF-ß1, calcium, and copper, low contents of reduced glutathione (GSH), iron, and zinc, and suppression of the antioxidant enzymes' activity, superoxide dismutase (SOD), and catalase (CAT) were observed. In addition, the Wnt and ß-catenin protein expression ratios were up-regulated in the kidney tissues of the CCl4 , and Rad intoxicated animals. However, the combined treatment CCl4 /Rad augmented these measurements. On the other hand, CLE, ALE, and CLE/ALE treatments demonstrated nephroprotection in the kidney tissues of CCl4 /Rad intoxicated animals, in the order of CLE/ALE>ALE>CLE by ameliorating the investigated parameters. Kidney tissues' histopathological examinations confirmed these results. In conclusion, CLE and/or ALE demonstrated nephroprotection against CCl4 /Rad co-toxicity mediated by down-regulation of renal Wnt/ß-catenin protein expressions.


Assuntos
Cichorium intybus , Cynara scolymus , Insuficiência Renal , Ratos , Animais , Tetracloreto de Carbono/toxicidade , Estresse Oxidativo , Cynara scolymus/metabolismo , Antioxidantes/metabolismo , Insuficiência Renal/metabolismo , Insuficiência Renal/patologia , Extratos Vegetais/farmacologia , Cateninas/metabolismo , Cateninas/farmacologia , Fígado
4.
J Environ Radioact ; 272: 107361, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154420

RESUMO

The process of extracting metals from rock phosphate ore (RPO) by using microorganisms to convert them into soluble compounds is called biomining. Phosphorus is one of the elements proposed to be extracted from RPO. To understand the role of Streptomyces phospholyticus, 12 isolates of Streptomyces were isolated from RPO, their ability to grow on specific phosphate solubilization medium e.g., National Botanical Research Institute's phosphate growth agar (NBRIP) was studied, and the best strain with a 3 cm clear zone was selected. Its ability to grow at increasing RPO concentrations from 0.01 to 1 kgl-1 was investigated. This strain showed good growth, with extracellular red pigmentation for all concentrations, but no clear zone. In the modified liquid NBRIP, however, the Streptomyces growth patterns of the two concentrations of 0.25 kg and 1 kgl-1 RPO showed growth of single spherical red colonies with rhizoids on the surface, the colonies somehow grew and became embedded in the fine RPO granules. This ability to grow can resist gamma irradiation with a dose of 32 KGy. Within 3 days of growth, acidic and alkaline phosphatase were 76.2 and 67.1 µg p-nitrophenol g-1 ml-1, respectively. The RPO analysis showed that the %P in the ore was 16.5% at the beginning of the experiment, and after Streptomyces biotreatment, this percentage decreased to 8.4%, with a decomposition rate of 50.7%. This study, to our knowledge, is the first to investigate the efficiency of Streptomyces in mining phosphate rock ore in the laboratory, even at high concentrations, and to examine the role of irradiation as a preservative in increasing this efficiency.


Assuntos
Monitoramento de Radiação , Streptomyces , Fosfatos , Fósforo , Mineração
5.
Int J Mol Sci ; 24(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37958947

RESUMO

Ionizing radiation (IR) and reactive oxygen species (ROS)-induced oxidative stress can cause damage to cellular biomolecules, including DNA, proteins, and lipids. These harmful effects can compromise essential cellular functions and significantly raise the risk of metabolic dysfunction, accumulation of harmful mutations, genome instability, cancer, accelerated cellular senescence, and even death. Here, we present an investigation of HeLa cancer cells' early response to gamma IR (γ-IR) and oxidative stress after preincubation of the cells with natural extracts of the resurrection plant Haberlea rhodopensis. In light of the superior protection offered by plant extracts against radiation and oxidative stress, we investigated the cellular defence mechanisms involved in such protection. Specifically, we sought to evaluate the molecular effects of H. rhodopensis extract (HRE) on cells subjected to genotoxic stress by examining the components of the redox pathway and quantifying the transcription levels of several critical genes associated with DNA repair, cell cycle regulation, and apoptosis. The influence of HRE on genome integrity and the cell cycle was also studied via comet assay and flow cytometry. Our findings demonstrate that HREs can effectively modulate the cellular response to genotoxic and oxidative stress within the first two hours following exposure, thereby reducing the severity of such stress. Furthermore, we observed the specificity of genoprotective HRE doses depending on the source of the applied genotoxic stress.


Assuntos
Lamiales , Oxirredução , Estresse Oxidativo , Extratos Vegetais/farmacologia , Dano ao DNA , Expressão Gênica , Espécies Reativas de Oxigênio
6.
Res Vet Sci ; 165: 105050, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37856942

RESUMO

Honey bee venom is a valuable product with a wide range of biological effects, whose use is rapidly increasing in apitherapy. In this study, the effect of gamma-irradiated honey bee venom (doses of 0, 2, 4, 6, and 8 kGy, volume of 0.1 ml, and concentration of 0.2 mg/ml) was evaluated on median lethal dose (LD50) determinations, liver and kidney histology, biochemical marker level, and serum protein analyses. Hence, the LD50 induced by the honey bee venom irradiated at 4, 6, and 8 kGy was increased, compared with the one at 0 and 2 kGy. Normal histology was observed in the liver and kidney of the mice receiving the honey bee venom irradiated at 4, 6, and 8 kGy. The serum levels of alanine aminotransferase (ALT) and all serum proteins were reduced at 4, 6, and 8 kGy compared with 0 and 2 kGy. Therefore, gamma irradiation at 4, 6, and 8 kGy had no negative effect on LD50, liver and kidney tissues, ALT, and serum protein levels by decreasing the allergen compounds of the honey bee venom.


Assuntos
Venenos de Abelha , Camundongos , Animais , Venenos de Abelha/farmacologia , Fígado , Alérgenos , Rim , Modelos Animais , Proteínas Sanguíneas
7.
Cell Biochem Funct ; 41(8): 1275-1294, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37795914

RESUMO

Kidney stones have been associated with an increased risk of chronic kidney diseases, end-stage renal failure. This study is devoted to isolate nanobacteria from patients with active urolithiasis and investigate the in vitro and in vivo antinanobacterial activity of some antibiotics alone or in combination with extracts of irradiated herbs from certain medicinal plants. Nanobacteria were detected using scanning (SEM) and transmission (TEM) electron microscopy, protein electrophoresis (SDS-PAGE) and DNA profile. The antimicrobial susceptibility of some biofilm-producing nanobacterial isolates was evaluated. The effect of medicinal plant extracts on growth was tested. A combination treatment between the most potent extracts and antibiotics was tested on biofilm production, protein profile, release of 260 nm absorbing material, protein content, and ultrastructure of the strongest biofilm producers. In vivo study of nanobacteria and its treatment by the most potent agents was evaluated on male rats. Renal function was measured in serum; histological examination and oxidative stress parameters were determined in kidney tissues. Results showed that streptomycin, trimethoprim/sulfamethoxazole, doxycycline, and water extracts of irradiated khella at 6 kGy had antinanobacterial activity. Meanwhile, the synergistic effect of the aqueous extract of irradiated Khella and doxycycline showed higher inhibition activity on microbial growth and biofilm production. They affected dramatically the strength of its cell membrane and subsequently its ultrastructure. Moreover, these results are confirmed by ameliorations in renal function and histological alterations. It could be concluded that the combination of DO and an aqueous extract of irradiated khella has an antinephrotoxic effect against nanobacteria-induced renal toxicity.


Assuntos
Nanopartículas Calcificantes , Cálculos Renais , Humanos , Ratos , Animais , Doxiciclina/farmacologia , Cálculos Renais/tratamento farmacológico , Cálculos Renais/química , Cálculos Renais/microbiologia , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia
8.
World J Microbiol Biotechnol ; 39(11): 319, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37743395

RESUMO

Tuberose flowers (Calcutta Single variety) valued as ornamentals globally, have short shelf-lives of 8 days at 4 ± 1 °C and are therefore discarded post senescence. Previous investigations from our laboratory have established that a combination treatment using GRAS preservatives [(sucrose (4%) and CaCl2 (0.02%)]-cum-gamma-irradiation (0.02 kGy) could extend its shelf-life to 24 days, when stored at 4 ± 1 °C with concomitant enhancement in the content of its bioactive principle, viz. methyl eugenol. Supercritical carbon dioxide (SC-CO2) extract of the tuberose flower wastes post combination treatment therefore had a higher methyl eugenol content (4.11 ± 0.05 µg/g), vis-à-vis its non-treated counterpart (2.03 ± 0.03 µg/g), and thus significantly higher antioxidant and antimicrobial potencies (MIC values of 1.83 ± 0.02 mg/ml and 1.98 ± 0.03 mg/ml against S. aureus ATCC 25923 strain and MDR strain, respectively). The microencapsulated powder of the extract (MEp) obtained by spray drying was applied for healing of epidermal wounds created on New Zealand white rabbits, post skin irritancy test (wherein no clinical sign of toxicity, redness or swelling was observed). When MEp was applied, accelerated healing occurred which commenced on day 2 and was completed by day 6 vis-à-vis that of the control powder set (without extract) which showed no signs of wound healing. Therefore, the sensorially compromised-senesced tuberose flowers, a rich source of methyl eugenol, has been successfully valorized through utilization of the same in developing a novel topical antibiotic powder against potent skin pathogens.


Assuntos
Agave , Dióxido de Carbono , Animais , Coelhos , Pós , Staphylococcus aureus , Índia , Flores , Extratos Vegetais/farmacologia
9.
Sensors (Basel) ; 23(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36679488

RESUMO

Increased absorption of optical materials arising from exposure to ionizing radiation must be accounted for to accurately analyze laser-induced breakdown spectroscopy (LIBS) data retrieved from high-radiation environments. We evaluate this effect on two examples that mimic the diagnostics placed within novel nuclear reactor designs. The analysis is performed on LIBS data measured with 1% Xe gas in an ambient He environment and 1% Eu in a molten LiCl-KCl matrix, along with the measured optical absorption from the gamma- and neutron-irradiated low-OH fused silica and sapphire glasses. Significant changes in the number of laser shots required to reach a 3σ detection level are observed for the Eu data, increasing by two orders of magnitude after exposure to a 1.7 × 1017 n/cm2 neutron fluence. For all cases examined, the spectral dependence of absorption results in the introduction of systematic errors. Moreover, if lines from different spectral regions are used to create Boltzmann plots, this attenuation leads to statistically significant changes in the temperatures calculated from the Xe II lines and Eu II lines, lowering them from 8000 ± 610 K to 6900 ± 810 K and from 15,800 ± 400 K to 7200 ± 800 K, respectively, for exposure to the 1.7 × 1017 n/cm2 fluence. The temperature range required for a 95% confidence interval for the calculated temperature is also broadened. In the case of measuring the Xe spectrum, these effects may be mitigated using only the longer-wavelength spectral region, where radiation attenuation is relatively small, or through analysis using the iterative Saha-Boltzmann method.


Assuntos
Óxido de Alumínio , Análise de Dados , Masculino , Humanos , Vidro , Radiação Ionizante , Análise Espectral
10.
Food Res Int ; 163: 112149, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596101

RESUMO

Fishes are highly perishable, mainly stored and transported under frozen condition; however, they are mainly preferred as fresh or in chilled form for consumption because frozen storage compromises the texture quality and other sensory attributes. Shelf-life enhancement of rohu and seer fish steaks was studied using combination of ajwain extract (various concentrations) and γ-irradiation (various doses) under chilled storage (4 °C). These were analyzed periodically by microbiological, sensory, color and biochemical analyses during storage. Gas chromatography - mass spectrometry (GC-MS) analysis showed thymol as major component. High performance liquid chromatography (HPLC) analysis showed the presence of nine phenolic compounds including thymol in ajwain extract. The best result was achieved when samples were dipped in 10 % ajwain extract with 2 kGy gamma irradiation dose. An extended shelf-life of 5 and 10 days in case of rohu and seer fish steaks were attained respectively using this combination. These results were confirmed by microbial, biochemical and sensory analyses. The present study thus promises potential application of the above protocol in fishery industry for good quality of fish and commercial benefits.


Assuntos
Ammi , Apiaceae , Cyprinidae , Perciformes , Animais , Timol , Extratos Vegetais , Expectativa de Vida
11.
Appl Radiat Isot ; 192: 110602, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36508956

RESUMO

Using ionizing radiation in treating waste sludge from a drinking water treatment plant is a well-known technique. Sludge treated with ionizing radiation can be used as fertilizer in agriculture. In this paper, the effects of aging on the physicochemical characteristics, the content of microorganisms, molds, acrylamide, heavy metal concentration, and total nutrient content in waste sludge treated with e-beam and gamma irradiation were investigated. The possibility of using treated sludge as a fertilizer in agriculture was evaluated. It has been shown that the content of acrylamide in treated sludge after 15 months of storage does not exceed the limits for sludge to be used as fertilizer. If the sludge is stored in closed bags in a dark place, aging does not increase total microorganisms and molds. The research also showed that the sludge's physicochemical characteristics treated in this way do not decrease under the influence of aging. Finally, it has been shown that aging does not change the concentration of heavy metals and total nutrients in sludge treated by ionizing irradiation.


Assuntos
Água Potável , Metais Pesados , Esgotos/química , Solo/química , Fertilizantes/análise , Agricultura/métodos , Metais Pesados/análise , Radiação Ionizante , Acrilamidas
12.
World J Microbiol Biotechnol ; 39(2): 48, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36538179

RESUMO

Bacterial cellulose has drawn the attention for its unique properties and applications including; medicine, pharmacy, food, agricultural, textile and electronics. The present study focused on the production of bacterial cellulose nanofibrils (BCNF) from black tea as cost effective alternative medium in addition to study the effect of gamma radiation on BCNF properties. A symbiotic culture of bacteria and yeast (SCOBY) were isolated from commercial Kombucha beverage and were identified as Acinetobacter lowffii and Candida krusei, respectively. The symbiotic culture was used for production of BCNF on Hestrin-Schramm (HS), black tea (BT) and modified BT media. BCNF was purified (0.5 N NaOH) and quantified by dry weight, yield and productivity determination. Characterization and effect of gamma radiation (5-25 kGy) on BCNF were studied using Scanning Electron Microscope (SEM), Fourier transform infrared (FTIR) and X-Ray Diffraction (XRD). The highest BCNF production was achieved using BT medium with 0.2% tea and 6.0% commercial sugar (with dry weight 4.77-4.61 g/l and productivity 68.14% and 65.85%, respectively). Supplementation of BT medium with 1% ethanol, 0.27% Na2HPO4 and 0.5% yeast extract individually, enhanced the BCNF production (7.85, 6.84 and 5.73 g/l), respectively. FTIR spectrum of BCNF from sugared water (SW), HS and BT showed similar structure with high purity. As a conclusion, gamma irradiation has no effect on the BCNF structure while showed different effects on its crystallinity index and size with the different doses. The changes in CrI were ranged between (17 and 23.5%), while the crystallinity size (Cs) was affected by gamma irradiation in a positive relationship where the crystalline size was decreased (33%) by exposure to 5 kGy then increased by increasing the dose of radiation reaching 25.7% at 25 kGy. SEM graphs showed the morphology of microbial culture and its symbiotic relationship in addition to the ultrafine structure of non-irradiated and irradiated BCNF.


Assuntos
Celulose , Chá , Celulose/metabolismo , Bactérias/metabolismo , Bebidas , Fermentação , Leveduras/metabolismo , Meios de Cultura/química
13.
J Food Sci Technol ; 59(10): 3787-3793, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36193375

RESUMO

Irradiation effect on the physico-chemical characteristics and shelf stability of pointed gourd was investigated in research. It was estimated that moisture content, total phenol and total carotenoids was significantly (p≤0.05) decreased while physiological loss in weight, total soluble solids, lutein and α-cryptoxanthin were increased during the completion of study. The three carotenoid pigments (ß-carotene, lutein, α-cryptoxanthin) were identified by Thin Layer Chromatography (TLC) and spectrophotometric method and its changes reported during storage in control and irradiated sample. The principal component analysis showed that b* value, Physiological Loss Weight (PLW), adhesiveness and acidity have negative correlation with rest of the parameters during storage. The research will present a progressive strategy for increasing the storage stability of pointed gourd during transportation and storage in India's government and private mandis. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05395-3.

14.
Orthop Surg ; 14(10): 2657-2668, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36054510

RESUMO

OBJECTIVE: Pre-implantation sterilization procedures for tendons are important measures to reduce the risk of disease transmission, however these procedures may compromise tendon microarchitecture and biomechanical properties to varying degrees. We explore the effects of different sterilization procedures on the micro-histology, biomechanical strength and biochemical properties of human tendon allografts in vitro study. METHODS: The tendon allografts were harvested from cadaveric donors after the donors were serologically screened by antibody or nucleic acid testing of infectious agents. All samples were divided into five groups, which were fresh-frozen group (control group), 15 kGy gamma irradiation group, 25 kGy gamma irradiation group, 70% ethanol group, and peracetic acid-ethanol group. Each group included 10 tendons for testing. Histological staining and transmission electron microscopy were applied to observe the internal structure and arrangement of tendon collagen fibers, while the machine learning classifier was trained to distinguish the darker cross-sections of collagen fibers and brighter backgrounds of the electron micrograph to detect the distribution of diameters of tendon collagen fibers. The viscoelasticity, mechanical properties and material properties of tendon allografts were examined to detect the influence of different intervention factors on the biomechanical properties of tendons. RESULTS: Histological staining and transmission electron microscopy showed that the structure of fresh-frozen tendons was similar to the structures of other experimental groups, and no obvious fiber disorder or delamination was observed. In the uniaxial cyclic test, the cyclic creep of 25 kGy irradiation group (1.5%) and peracetic acid-ethanol group (1.5%) were significantly lower than that of the control group (3.6%, F = 1.52, P = 0.039) while in the load-to-failure test, the maximum elongation and maximum strain of the peracetic acid-ethanol group were significantly higher than those of the control group (F = 4.60, P = 0.010), and there was no significant difference in other biomechanical indicators. According to the experimental results of denatured collagen, it could be seen that no matter which disinfection procedure was used, the denaturation of the tendon sample would be promoted (F = 1.97, P = 0.186), and high-dose irradiation seemed to cause more damage to collagen fibers than the other two disinfection procedures (296.2 vs 171.1 vs 212.9 µg/g). CONCLUSION: Biomechanical experiments and collagen denaturation tests showed that 15 kGy gamma irradiation and 70% ethanol can preserve the biomechanical strength and biochemical properties of tendons to the greatest extent, and these two sterilization methods are worthy of further promotion.


Assuntos
Ácidos Nucleicos , Ácido Peracético , Aloenxertos , Fenômenos Biomecânicos , Etanol , Raios gama , Humanos , Ácido Peracético/farmacologia , Esterilização/métodos , Tendões
15.
Dokl Biochem Biophys ; 503(1): 85-89, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35538284

RESUMO

The effect of γ-radiation on the growth and cytogenetic endpoints of Allium cepa L. seedlings in a long period after irradiation in absorbed doses from 1.0 to 10.7 Gy were examined. The chromosome aberration rate was most sensitive to the radiation: it increased immediately after exposure at all doses. In the recovery period (up to 216 h) after irradiation, the chromosome aberration frequency naturally decreased but at the end of experiment in maximum doses remained above the control values. The impact of the initial level of chromosome aberrations on the inhibition of onion roots growth in the long terms after irradiation is discussed.


Assuntos
Cebolas , Plântula , Aberrações Cromossômicas , Análise Citogenética , Raios gama , Cebolas/genética , Cebolas/efeitos da radiação , Plântula/genética , Plântula/efeitos da radiação
16.
Molecules ; 27(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335128

RESUMO

Gamma irradiation is efficiently applied to many foods, but nevertheless there is a distinct lack of information about the changes of macro- and micronutrients (e.g., carbohydrates, lipids, organic acids, and phenolics) in dried rose hip (RH) fruits. Therefore, in this study, for the first time, the effect of gamma irradiation (10 and 25 kGy) on RH constituents is investigated. Different analytical techniques (GC-FID, HPLC-UV, HPSEC-RID, IR-FT, and SEM) are employed to examine this effect. The irradiation treatment (10 kGy) increased the glucose content by 30% and released cellobiose from RH fruits, thus revealing cellulose destruction. The extractability of total uronic acids increased from 51% (control) to 70.5% (25 kGy-irradiated), resulting in a higher pectin yield (10.8% < 12.8% < 13.4%) and molecular heterogeneity. Moreover, de-esterification was not a major effect of the irradiation-induced degradation of pectin. The sample exposure to the highest dose did not change the content of total carotenoids, ß-carotene, and (un)saturated fatty acids, but it affected the tocopherols levels. Gamma rays had a negligible effect on the phenolic constituents and did not affect ORAC and HORAC antioxidant activity. In conclusion, it can be compromised that the exposition of dried RH is safe and can be successfully applied to decontaminate fruits without affecting their nutritional value and biological activity.


Assuntos
Rosa , Ácido Ascórbico , Frutas , Pectinas , Compostos Fitoquímicos
17.
Vet Med Sci ; 8(2): 626-634, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34878724

RESUMO

BACKGROUND: Avian influenza virus (AIV) subtype H9N2 is a low pathogenic avian influenza virus (LPAIV). OBJECTIVE: This study aims to evaluate the humoral and cellular immunity in vaccinated mice and broiler chicken by irradiated AIV antigen plus carboxymethyl chitosan bounded iron oxide nanoparticles (CMC-IO NPs) as an adjuvant. METHODS: AIV subtype H9N2 with 108.5 EID50 /ml and haemagglutinin antigen assay about 10 log2 was irradiated by 30 kGy gamma radiation dose. Then, the gamma-irradiated AIV was used as an inactivated vaccine and conjugated with CMC-IO NPs to improve immune responses on mice. IO NPs must be applied in all activated tests using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysulfosuccinimide sodium salt (sulfo-NHS), and then functionalized by CMC as IO-CMC. Fourier transform infrared (FTIR) spectra on functionalized IO-CMC showed a peak of 638 cm-1 which is a band between metal and O (Fe-O). RESULTS: Based on the comparison between the two X-ray diffraction (XRD) patterns on Fe2 O3 -NPs and IO-CMC, the characteristics of IO-NPs did not change after carboxymethylation. A CHN Analyzer was applied to measure the molecular weight of IO-CMC that was calculated as 1045 g. IO-CMC, irradiated AIV-IO-CMC and formalin AIV-IO-CMC were injected into 42 BALB/c mice in six groups. The fourth group was the negative control, and the fifth and sixth groups were inoculated by irradiated AIV-ISA70 and formalin AIV-ISA70 vaccines. An increase in haemagglutination inhibition (HI) antibody titration was observed in the irradiated AIV-IO-CMC and formalin AIV-IO-CMC groups (p < 0.05). In addition, increases in the lymphoproliferative activity of re-stimulated splenic lymphocytes, interfron-γ (IFN-γ) and interleukin-2 (IL-2) concentration in the irradiated AIV-IO-CMC group demonstrated the activation of Type 1 helper cells. The concentration of IL-4 was without any significant increases in non-group. CONCLUSIONS: Accordingly, Th2 activation represented no increase. Finally, the finding showed that AIV-IO-CMC was effective on enhancing immunogenicity as irradiated AIV antigen administered with a clinically acceptable adjuvant (i.e. IO-CMC).


Assuntos
Quitosana , Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Influenza Aviária , Doenças dos Roedores , Animais , Antígenos Virais , Galinhas , Formaldeído , Raios gama , Nanopartículas Magnéticas de Óxido de Ferro , Camundongos
18.
J Biosci Bioeng ; 132(4): 372-380, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34380601

RESUMO

Gamma irradiation is the technique used to induce plant mutation and it has affected both the physiological and biochemical compounds of the plant. Some new rice lines are also created through the gamma-irradiation technique. We investigated the effect of gamma irradiation on plant growth, volatile compounds, and the biological activity of gamma-irradiated rice extract compared to non-gamma-irradiated rice extract. The results reveal that the gamma-irradiated rice growth was related to the proline content, as the low gamma dose induced rice growth and proline accumulation in gamma-irradiated rice. We induced the bioactive compounds, including the flavonoid content and phenolic content of gamma-irradiated rice, through the low gamma irradiation dose at 60-100 Gy. Interestingly, bioactive compounds were stimulated by a gamma dose similar to that of the biological activity (antioxidant activity and enzyme inhibition) of gamma-irradiated rice. The results suggest that gamma-irradiated rice extract's biological activity was closely related to the flavonoid and phenolic content of rice. We also identified the variety of volatile compounds in gamma-irradiated rice and they were also reported for the biological activity. Our results can generate a new rice line that exhibits high plant growth and is rich with bioactive compounds such as flavonoid and phenolic compounds which are related to the improvement of human health.


Assuntos
Oryza , Antioxidantes , Humanos , Fenóis/análise , Extratos Vegetais , Prolina , Tailândia
19.
Anal Biochem ; 618: 114121, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33515498

RESUMO

The impact of gamma radiation on the activation of rice innate immunity to blast disease caused by Magnaporthe oryzae is described. In the present study, fenugreek seed extracts radiated with different doses of gamma rays viz. 5Gy, 10Gy, 15Gy, 20Gy and 25Gy were examined for their presence of biocompounds as well as for its ability to induce plant growth promotion and resistance against rice blast disease. The results of GC-MS analysis detected antimicrobial properties in methanolic extract. Enhanced germination (97%) and vigor (2718) was noticed in seeds pretreated with 20 Gy of gamma radiation in comparison with non-irradiated controls. Under greenhouse conditions, a significant disease protection of 56.7% on 3rd and 4th day after inoculation against rice blast was observed in 15Gy-irradiated rice plants challenge-inoculated with M. oryzae. Further, a significant increase in the hydrogen peroxide, phenol and lignin deposition was noticed in 20Gy-irradiated rice plants. Additionally, rice plants pretreated with 15Gy induced maximum activities of peroxidase (POX) and polyphenol oxidase (PPO) compared to untreated control plants. These findings revealed that rice plants-pretreated with gamma radiation elicit resistance against rice blast disease as well as strengthening the growth parameters by modulating cellular and biochemical defense system.


Assuntos
Resistência à Doença/efeitos dos fármacos , Raios gama , Oryza , Doenças das Plantas/microbiologia , Extratos Vegetais/farmacologia , Trigonella/química , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Extratos Vegetais/química
20.
Food Sci Technol Int ; 27(4): 326-333, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32915658

RESUMO

This research work was undertaken to evaluate the physicochemical parameters of oil from the cherry kernel non-irradiated and irradiated at 3 and 6 kGy of gamma irradiation for two storage periods (0 and 12 months). The acid value, peroxide value, thiobarbituric acid reactive substances value, iodine value, saponification value refractive index (peroxide value), and the color parameters of cherry kernel oils were determined. The results indicated that the extracted cherry kernel oils were liquid at room temperature with color varying from light yellow to deep red. The physicochemical properties of cherry kernel oils including acid value, peroxide value, thiobarbituric acid reactive substances, iodine value, saponification value, and refractive index values were 1.19 mg KOH g-1, 9.01 meq2 kg-1, 0.014 mg MDA kg-1, 99.48 KOH g-1 I2 100 g-1, 194.50 mg KOH g-1, and 1.472, respectively. Generally, gamma irradiation doses and storage time increased acid value, peroxide value, thiobarbituric acid reactive substances, and refractive index value of cherry kernel oils, whereas no significant (p > 0.05) change due to irradiation was recorded in iodine value, saponification value, and in color parameter (L*, a*, b*, and ΔE values) of cherry kernel oils. However, the properties of cherry kernel oils revealed that the cherry kernel is a good source of oil which could be used for industrial purposes.


Assuntos
Frutas , Raios gama , Óleos de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA