Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1363415, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533261

RESUMO

Tanshinone IIA (Tan-IIA) is the main bioactive component of Chinese herbal medicine salvia miltiorrhiza (Danshen). Sodium sulfonate of Tan-IIA is widely used in the treatment of cardiovascular and cerebrovascular diseases. Tan-IIA also has inhibitory effects on tumor cells such as gastric cancer, but its therapeutic effect and mechanism on human neuroblastoma have not been evaluated, so its pharmacological mechanism is systematically evaluated by the combined method of network pharmacology and molecular docking. PharmMapper and SwissTargetPrediction predicted 331 potential Tan-IIA-related targets, and 1,152 potential neuroblastoma-related targets were obtained from GeneCards, DisGeNET, DrugBank, OMIM and Therapeutic Target databases (TTD), 107 common targets for Tan-IIA and neuroblastoma. Through gene ontology (GO) functional annotation, Kyoto Encyclopedia of Genes and Genomesa (KEGG) pathway enrichment, protein-protein interaction (PPI) network and cytoHubba plug-in, 10 related signal pathways (Pathways in cancer, PI3K-Akt signaling pathway, Prostate cancer, etc.) and 10 hub genes were identified. The results of molecular docking showed that Tan-IIA could interact with 10 targets: GRB2, SRC, EGFR, PTPN1, ESR1, IGF1, MAPK1, PIK3R1, AKT1 and IGF1R. This study analyzed the related pathways and targets of Tan-IIA in the treatment of human neuroblastoma, as well as the potential anticancer and anti-tumor targets and related signaling pathways of Tan-IIA, which provides a reference for us to find and explore effective drugs for the treatment of human neuroblastoma.

2.
Curr Pharm Des ; 30(6): 448-467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343057

RESUMO

BACKGROUND: Chuang-Ling-Ye (CLY) has been clinically proven to be an effective Chinese medicine for the treatment of diabetic foot ulcers (DFU). OBJECTIVES: This study aimed to investigate the possible mechanism of CLY in relation to DFU using network pharmacology and molecular docking. MATERIALS AND METHODS: Firstly, relevant targets of CLY against DFU were obtained from TCMSP, Swiss Target Prediction database and GEO database. Then, topological analysis was employed by Cytoscape to screen the top 6 core active ingredients and the top 8 hub targets. Furthermore, the OmicShare Tools were applied for gene ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis. Finally, the results of network pharmacology were verified by molecular docking method. RESULTS: CLY has 61 active compounds and 361 targets after de-duplication, and the top 8 hub targets were EGFR, TP53, CCND1, IL-1B, CREBBP, AR, PTGS2 and PGR. GO enrichment analysis is mainly related to signal transducer activity, receptor activity, and molecular transducer activity. KEGG pathway analysis indicated that these shared targets were primarily focused on AGE-RAGE signaling pathway in diabetic complications, HIF-1 signaling pathway, IL-17 signaling pathway, and JAK-STAT signaling pathway. Molecular docking results showed that physciondiglucoside, 2-cinnamoyl-glucose and kinobeon A were well bound with EGFR, IL-1B, AR and PTGS2. CONCLUSION: This study demonstrated that CLY has anti-oxidative stress and anti-inflammatory effects in the treatment of DFU through various constituents, multiple targets, and multiple pathways, which provides a valuable point of reference for future investigations on CLY.


Assuntos
Pé Diabético , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Pé Diabético/tratamento farmacológico , Pé Diabético/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Medicina Tradicional Chinesa
3.
BMC Complement Med Ther ; 24(1): 70, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303001

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is one of the leading causes of human death worldwide. Herbal prescription SH003 has been developed to treat several cancers including NSCLC. Due to the multi-component nature of SH003 with multiple targets and pathways, a network pharmacology study was conducted to analyze its active compounds, potential targets, and pathways for the treatment of NSCLC. METHODS: We systematically identified oral active compounds within SH003, employing ADME criteria-based screening from TM-MC, OASIS, and TCMSP databases. Concurrently, SH003-related and NSCLC-associated targets were amalgamated from various databases. Overlapping targets were deemed anti-NSCLC entities of SH003. Protein-protein interaction networks were constructed using the STRING database, allowing the identification of pivotal proteins through node centrality measures. Empirical validation was pursued through LC-MS analysis of active compounds. Additionally, in vitro experiments, such as MTT cell viability assays and western blot analyses, were conducted to corroborate network pharmacology findings. RESULTS: We discerned 20 oral active compounds within SH003 and identified 239 core targets shared between SH003 and NSCLC-related genes. Network analyses spotlighted 79 hub genes, including TP53, JUN, AKT1, STAT3, and MAPK3, crucial in NSCLC treatment. GO and KEGG analyses underscored SH003's multifaceted anti-NSCLC effects from a genetic perspective. Experimental validations verified SH003's impact on NSCLC cell viability and the downregulation of hub genes. LC-MS analysis confirmed the presence of four active compounds, namely hispidulin, luteolin, baicalein, and chrysoeriol, among the eight compounds with a median of > 10 degrees in the herb-compounds-targets network in SH003. Previously unidentified targets like CASP9, MAPK9, and MCL1 were unveiled, supported by existing NSCLC literature, enhancing the pivotal role of empirical validation in network pharmacology. CONCLUSION: Our study pioneers the harmonization of theoretical predictions with practical validations. Empirical validation illuminates specific SH003 compounds within NSCLC, simultaneously uncovering novel targets for NSCLC treatment. This integrated strategy, accentuating empirical validation, establishes a paradigm for in-depth herbal medicine exploration. Furthermore, our network pharmacology study unveils fresh insights into SH003's multifaceted molecular mechanisms combating NSCLC. Through this approach, we delineate active compounds of SH003 and target pathways, reshaping our understanding of its therapeutic mechanisms in NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Farmacologia em Rede , Neoplasias Pulmonares/tratamento farmacológico , Inibidores da Angiogênese , Western Blotting
4.
Sci Rep ; 14(1): 4413, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388757

RESUMO

Phytobiotic compositions are commercially used in broiler production, mostly to improve general health and the production parameters. Moreover, some of their active substances may change the expression of miRNA in different tissues. Therefore, the purpose of this study was to evaluate the effect of the phytobiotic composition (PBC) containing white mustard, calamus, turmeric, and common ivy on production parameters, oxidative stress markers and expression of selected miRNAs in pectoral muscle of broiler chickens. The experiment was performed on broiler chickens fed the control diet (without PBC), and a diet supplemented with 60 or 100 mg/kg of PBC for 35 days. After the experiment, samples (blood and muscle) were collected for analyses. The analyzed production parameters included: feed conversion ratio, feed intake and body weight. There was no effect on growth performance of broiler chickens but feeding diet supplemented with 60 mg/kg phytobiotics significantly increased the expression of miR-30a-5p, miR-181a-5p, and miR-206, and decreased that of miR-99a-5p, miR-133a-5p, miR-142-5p, and miR-222 in pectoral muscle of chickens. The addition of 100 mg/kg phytobiotics significantly increased miR-99a-5p and miR-181a-5p expression, and caused down-regulation of the expression of miR-26a-5p and miR-30a-5p. Chickens fed diet supplemented with 100 mg/kg PBC had lower level of lipid peroxidation products in blood, while in the muscle tissue it was higher in birds fed a diet with the addition of 60 mg/kg as compared to the control group. The results suggest that this unique composition of phytobiotics does not affect productive traits but can change expression of miRNAs that are crucial for muscle physiology and pathology in broiler chickens. This additive may also protect against the oxidative stress but the effect is dose dependent.


Assuntos
Galinhas , MicroRNAs , Animais , Galinhas/fisiologia , Músculos Peitorais , Suplementos Nutricionais , Dieta/veterinária , Estresse Oxidativo , MicroRNAs/genética , Ração Animal/análise
5.
Front Pharmacol ; 14: 1198425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693900

RESUMO

Polyalthia longifolia var. angustifolia Thw. (Annonaceae), is a famous traditional medicinal plant in Asia. Ample data specifies that the medicinal plant P. longifolia has anticancer activity; however, the detailed mechanisms of action still need to be well studied. Recent studies have revealed the cytotoxicity potential of P. longifolia leaf against HeLa cells. Therefore, the current study was conducted to examine the regulation of miRNAs in HeLa cancer cells treated with the standardized P. longifolia methanolic leaf extract (PLME). The regulation of miRNAs in HeLa cancer cells treated with the standardized PLME extract was studied through Illumina, Hi-Seq. 2000 platform of Next-Generation Sequencing (NGS) and various in silico bioinformatics tools. The PLME treatment regulated a subset of miRNAs in HeLa cells. Interestingly, the PLME treatment against HeLa cancer cells identified 10 upregulated and 43 downregulated (p < 0.05) miRNAs associated with apoptosis induction. Gene ontology (GO) term analysis indicated that PLME induces cell death in HeLa cells by inducing the pro-apoptotic genes. Moreover, the downregulated oncomiRs modulated by PLME treatment in HeLa cells were identified, targeting apoptosis-related genes through gene ontology and pathway analysis. The LC-ESI-MS/MS analysis identified the presence of Vidarabine and Anandamide compounds that were previously reported to exhibit anticancer activity. The findings of this study obviously linked the cell cytotoxicity effect of PLME treatment against the HeLa cells with regulating various miRNAs expression related to apoptosis induction in the HeLa cells. PLME treatment induced apoptotic HeLa cell death mechanism by regulating multiple miRNAs. The identified miRNAs regulated by PLME may provide further insight into the mechanisms that play a critical role in cervical cancer, as well as novel ideas regarding gene therapeutic strategies.

6.
Curr Issues Mol Biol ; 45(9): 7228-7241, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37754241

RESUMO

The incidence of type 2 diabetes (T2D) is rising, and finding new treatments is important. C. sativa is a plant suggested as a potential treatment for T2D, but how it works needs to be clarified. This study explored the pharmacological mechanism of C. sativa in treating T2D. We identified the active compounds in C. sativa and their targets. From there, we examined the genes associated with T2D and found overlapping genes. We conducted an enrichment analysis and created a protein-protein and target-compound interactions network. We confirmed the binding activities of the hub proteins and compounds with molecular docking. We identified thirteen active compounds from C. sativa, which have 150 therapeutic targets in T2D. The enrichment analysis showed that these proteins are involved in the hormone, lipid, and stress responses. They bind transcription factors and metals and participate in the insulin, PI3K/Akt, HIF-1, and FoxO signaling pathways. We found four hub proteins (EGFR, ESR1, HSP90AA1, and SRC) that bind to the thirteen bioactive compounds. This was verified using molecular docking. Our findings suggest that C. sativa's antidiabetic action is carried out through the insulin signaling pathway, with the participation of HIF-1 and FoxO.

7.
3 Biotech ; 13(8): 266, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37425093

RESUMO

Leishmania donovani is the causative organism for visceral leishmaniasis. Although this parasite was discovered over a century ago, nothing is known about role of potassium channels in L. donovani. Potassium channels are known for their crucial roles in cellular functions in other organisms. Recently the presence of a calcium-activated potassium channel in L. donovani was reported which prompted us to look for other proteins which could be potassium channels and to investigate their possible physiological roles. Twenty sequences were identified in L. donovani genome and subjected to estimation of physio-chemical properties, motif analysis, localization prediction and transmembrane domain analysis. Structural predictions were also done. The channels were majorly α-helical and predominantly localized in cell membrane and lysosomes. The signature selectivity filter of potassium channel was present in all the sequences. In addition to the conventional potassium channel activity, they were associated with gene ontology terms for mitotic cell cycle, cell death, modulation by virus of host process, cell motility etc. The entire study indicates the presence of potassium channel families in L. donovani which may have involvement in several cellular pathways. Further investigations on these putative potassium channels are needed to elucidate their roles in Leishmania. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03692-y.

8.
Heliyon ; 9(3): e14029, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911881

RESUMO

Acute lung injury (ALI) is a clinically severe lung illness with high incidence rate and mortality. Especially, coronavirus disease 2019 (COVID-19) poses a serious threat to world wide governmental fitness. It has distributed to almost from corner to corner of the universe, and the situation in the prevention and control of COVID-19 remains grave. Traditional Chinese medicine plays a vital role in the precaution and therapy of sicknesses. At present, there is a lack of drugs for treating these diseases, so it is necessary to develop drugs for treating COVID-19 related ALI. Fagopyrum dibotrys (D. Don) Hara is an annual plant of the Polygonaceae family and one of the long-history used traditional medicine in China. In recent years, its rhizomes (medicinal parts) have attracted the attention of scholars at home and abroad due to their significant anti-inflammatory, antibacterial and anticancer activities. It can work on SARS-COV-2 with numerous components, targets, and pathways, and has a certain effect on coronavirus disease 2019 (COVID-19) related acute lung injury (ALI). However, there are few systematic studies on its aerial parts (including stems and leaves) and its potential therapeutic mechanism has not been studied. The phytochemical constituents of rhizome of F. dibotrys were collected using TCMSP database. And metabolites of F. dibotrys' s aerial parts were detected by metabonomics. The phytochemical targets of F. dibotrys were predicted by the PharmMapper website tool. COVID-19 and ALI-related genes were retrieved from GeneCards. Cross targets and active phytochemicals of COVID-19 and ALI related genes in F. dibotrys were enriched by gene ontology (GO) and KEGG by metscape bioinformatics tools. The interplay network entre active phytochemicals and anti COVID-19 and ALI targets was established and broke down using Cytoscape software. Discovery Studio (version 2019) was used to perform molecular docking of crux active plant chemicals with anti COVID-19 and ALI targets. We identified 1136 chemicals from the aerial parts of F. dibotrys, among which 47 were active flavonoids and phenolic chemicals. A total of 61 chemicals were searched from the rhizome of F. dibotrys, and 15 of them were active chemicals. So there are 6 commonly key active chemicals at the aerial parts and the rhizome of F. dibotrys, 89 these phytochemicals's potential targets, and 211 COVID-19 and ALI related genes. GO enrichment bespoken that F. dibotrys might be involved in influencing gene targets contained numerous biological processes, for instance, negative regulation of megakaryocyte differentiation, regulation of DNA metabolic process, which could be put down to its anti COVID-19 associated ALI effects. KEGG pathway indicated that viral carcinogenesis, spliceosome, salmonella infection, coronavirus disease - COVID-19, legionellosis and human immunodeficiency virus 1 infection pathway are the primary pathways obsessed in the anti COVID-19 associated ALI effects of F. dibotrys. Molecular docking confirmed that the 6 critical active phytochemicals of F. dibotrys, such as luteolin, (+) -epicatechin, quercetin, isorhamnetin, (+) -catechin, and (-) -catechin gallate, can combine with kernel therapeutic targets NEDD8, SRPK1, DCUN1D1, and PARP1. In vitro activity experiments showed that the total antioxidant capacity of the aerial parts and rhizomes of F. dibotrys increased with the increase of concentration in a certain range. In addition, as a whole, the antioxidant capacity of the aerial part of F. dibotrys was stronger than that of the rhizome. Our research afford cues for farther exploration of the anti COVID-19 associated ALI chemical compositions and mechanisms of F. dibotrys and afford scientific foundation for progressing modern anti COVID-19 associated ALI drugs based on phytochemicals in F. dibotrys. We also fully developed the medicinal value of F. dibotrys' s aerial parts, which can effectively avoid the waste of resources. Meanwhile, our work provides a new strategy for integrating metabonomics, network pharmacology, and molecular docking techniques which was an efficient way for recognizing effective constituents and mechanisms valid to the pharmacologic actions of traditional Chinese medicine.

9.
Front Oncol ; 13: 1111799, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969029

RESUMO

Background: Solanum nigrum L. (SNL) (Longkui) is a Chinese herb that can be used to treat colon cancer. The present study explored the components and mechanisms of SNL in treating colon cancer by using network pharmacology and molecular docking. Methods: The components of SNL were collected from the TCMSP, ETCM, HERB, and NPASS databases. Meanwhile, the target proteins of these ingredients were collected/predicted by the TCMSP, SEA, SwissTargetPrediction, and the STITCH databases colon cancer-related target genes were identified from TCGA and GTEx databases. The interaction networks were established via Cytoscape 3.7.2. Gene Ontology and KEGG pathways were enriched by using the David 6.8 online tool. Finally, the binding of key components and targets was verified by molecular docking, and the cellular thermal shift assay (CETSA) was used to detect the efficiency of apigenin and kaempferol binding to the AURKB protein in CT26 cells. Results: A total of 37 SNL components, 796 SNL targets, 5,356 colon cancer genes, and 241 shared targets of SNL and colon cancer were identified. A total of 43 key targets were obtained through topology analysis. These key targets are involved in multiple biological processes, such as signal transduction and response to drug and protein phosphorylation. At the same time, 104 signaling pathways, such as pathways in cancer, human cytomegalovirus infection, and PI3K-Akt signaling pathway, are also involved. The binding of the four key components (i.e., quercetin, apigenin, kaempferol, and luteolin) and the key targets was verified by molecular docking. The CETSA results showed that apigenin and kaempferol were able to bind to the AURKB protein to exert anti-CRC effects. Conclusions: Quercetin, apigenin, kaempferol, and luteolin are the main components of SNL in treating colon cancer. SNL regulates multiple bioprocesses via signaling pathways, such as pathways in cancer, PI3K-Akt, and cell cycle signaling pathways.

10.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675181

RESUMO

Despite their advantages, biotechnological and omic techniques have not been applied often to characterize phytotoxicity in depth. Here, we show the distribution of phytotoxicity and glycoalkaloid content in a diploid potato population and try to clarify the source of variability of phytotoxicity among plants whose leaf extracts have a high glycoalkaloid content against the test plant species, mustard. Six glycoalkaloids were recognized in the potato leaf extracts: solasonine, solamargine, α-solanine, α-chaconine, leptinine I, and leptine II. The glycoalkaloid profiles of the progeny of the group with high phytotoxicity differed from those of the progeny of the group with low phytotoxicity, which stimulated mustard growth. RNA sequencing analysis revealed that the upregulated flavonol synthase/flavonone 3-hydroxylase-like gene was expressed in the progeny of the low phytotoxicity group, stimulating plant growth. We concluded that the metabolic shift among potato progeny may be a source of different physiological responses in mustard. The composition of glycoalkaloids, rather than the total glycoalkaloid content itself, in potato leaf extracts, may be a driving force of phytotoxicity. We suggest that, in addition to glycoalkaloids, other metabolites may shape phytotoxicity, and we assume that these metabolites may be flavonoids.


Assuntos
Flavonoides , Extratos Vegetais , Solanum tuberosum , Alcaloides/análise , Alcaloides/toxicidade , Diploide , Flavonoides/análise , Flavonoides/toxicidade , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Extratos Vegetais/toxicidade , Folhas de Planta/química
11.
Comb Chem High Throughput Screen ; 26(12): 2201-2225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36717990

RESUMO

BACKGROUND AND OBJECTIVE: Depressive disorder (DD) is a common chronic and highly disabling disease. Polygoni Multiflori Caulis (PMC), a traditional Chinese medicine, has been listed in the 2020 edition of the Chinese Pharmacopoeia. Here, the antidepressant effects and mechanisms of PMC were explored for the first time. METHODS: We observed the safety of PMC at a 10-fold clinically equivalent dose. Depressed mice were induced by chronic unpredictable mild stress (CUMS) and were used to evaluate the antidepressant effects of PMC via the sucrose preference test and the tail suspension test. The composition of PMC was identified by ultra-high performance liquid chromatography coupled with quadrupole exactive orbitrap mass spectrometer, and the active components, important targets, and potential mechanism of PMC in DD treatment were predicted via network pharmacology. Investigation included active compounds and DD-related targets screening, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation, PMC-compound-target-pathway- DD network construction, and Molecular docking. RESULTS: In the safety evaluation of PMC, no toxic side effects or deaths occurred. There were no significant differences in liver function (ALT, AST, and TP; P > 0.05) and kidney function (BUN, CRE, and UA; P > 0.05) in each group of mice. Compared to the control group, the model group of mice showed significantly decreased sucrose preference and significantly increased immobility time (P < 0.01 or P < 0.05). Compared with the model group, the mice in the PMC low, medium, and high dose groups showed a significant decrease in immobility time and a significant increase in sucrose preference. In the PMC-Compound-Target-Pathway-DD network, 54 active compounds, 83 common targets, and 13 major signaling pathways were identified for the treatment of DD. Molecular docking verified that the active compounds could effectively bind with the hub targets. CONCLUSION: PMC is a relatively safe antidepressant herbal medicine with its potential mechanism involving multiple compounds, targets, and pathways.


Assuntos
Transtorno Depressivo , Medicamentos de Ervas Chinesas , Animais , Camundongos , Cromatografia Líquida de Alta Pressão , Farmacologia em Rede , Simulação de Acoplamento Molecular , Sacarose , Medicamentos de Ervas Chinesas/farmacologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-36545745

RESUMO

BACKGROUND: Studies have indicated that Ban-Xia Xie-Xin Decoction (BXXXD) has therapeutic effects on type 2 diabetes mellitus (T2DM). However, due to the complexity of components and diversity of targets, the mechanisms are still not fully elucidated. OBJECTIVE: In this research, we systematically analysed the targets of BXXXD through the method of network pharmacology and further validated them through experiments. METHODS: The active components and therapeutic targets were identified, and these targets were analysed by the methods of gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) analysis. Then, based on these network pharmacology analyses, we validated the main targets through animal experiments. RESULTS: A total of 169 active components and 159 targets were identified. KEGG analysis showed that the mitogen-activated protein kinase (MAPK) signalling pathway, tumour necrosis factor (TNF) signalling pathway, the phosphatidylinositol 3' -kinase (PI3K), Akt signalling pathway, and other pathways were related to the treatment of T2DM by BXXXD. PPI network analysis showed that the key genes included signal transducers and activators of transcription 3 (STAT3), JUN, TNF, Recombinant V-Rel Reticuloendotheliosis Viral Oncogene Homolog A (RELA), Akt/PKB- 1 (Protein kinase B), TP53, mitogen-activated protein kinase-1 (MAPK-1), mitogen-activated protein kinase-3 (MAPK-3), interleukin- 6 (IL6), and mitogen-activated protein kinase-14 (MAPK- 14), respectively. Animal experiments showed that BXXXD could reduce blood glucose and improve insulin resistance, which may be related to the mechanisms of inhibiting TNF, interleukin-1 (IL-1), IL-6, and interleukin-17 (IL-17) and promoting Akt phosphorylation. CONCLUSION: Our research revealed the mechanisms of BXXXD in the treatment of diabetes, which laid a solid foundation for further studies on the molecular mechanisms of BXXXD in the treatment of T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt , Farmacologia em Rede , Transdução de Sinais , Glicemia , Interleucina-6 , Simulação de Acoplamento Molecular
13.
Plants (Basel) ; 11(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36559697

RESUMO

Non-alcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease with limited treatment options. The widely distributed plant Aloe vera has shown protective effects against NASH in animals, yet the precise mechanism remains unknown. In this study, we investigated the potential mechanisms underlying the anti-NASH effects of Aloe vera using a network pharmacology and molecular docking approach. By searching online databases and analyzing the Gene Expression Omnibus dataset, we obtained 260 Aloe vera-NASH common targets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that the common targets were strongly associated with the key pathological processes implicated in NASH, including lipid and glucose metabolism, inflammation, apoptosis, oxidative stress, and liver fibrosis. Four core proteins, AKT serine/threonine kinase 1 (AKT1), tumor necrosis factor alpha (TNFα), transcription factor c-Jun, and tumor suppressor protein p53, were identified from compound-target-pathway and protein-protein interaction networks. Molecular docking analysis verified that the active ingredients of Aloe vera were able to interact with the core proteins, especially AKT1 and TNFα. The results demonstrate the multi-compound, multi-target, and multi-pathway mechanisms of Aloe vera against NASH. Our study has shown the scientific basis for further experiments in terms of the mechanism to develop Aloe vera-based natural products as complementary treatments for NASH. Furthermore, it identifies novel drug candidates based on the structures of Aloe vera's active compounds.

14.
Toxicol Rep ; 9: 1655-1665, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518482

RESUMO

Cardiovascular disease is the most common disease in the world and the first among the causes of human death. Its morbidity and mortality increase annually, but no effective treatment is available. Therefore, new drugs should be developed to treat cardiovascular disease. Gentianella acuta (Michx.) Hulten (G. acuta) is an important Mongolian medicine in China and elicits protective effects on cardiovascular health. In this study, liquid chromatography-mass spectrometry (LC-MS) combined with network pharmacology was used to screen the main active ingredients and confirm that bellidifolin was one of the main components for the treatment of ischemic heart disease. Then, rat myocardial (H9c2) cells injury model induced by hydrogen peroxide (H2O2) in vitro was established to verify the effect of bellidifolin on oxidative stress stimulation, including determination of antioxidant enzyme activity and apoptosis. Transcriptome sequencing, qRT-PCR, and western blot were performed to further verify the antioxidant stress mechanism of bellidifolin. Results showed that bellidifolin pretreatment decreased the rate of apoptosis and the levels of lactate dehydrogenase (LDH), creatine kinase (CK), and alanine aminotransferase (ALT). Conversely, it increased the contents of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in a dose-dependent manner, indicating that bellidifolin caused a protective effect on cardiomyocyte injury. Bellidifolin minimized the H2O2-induced cell injury by activating the PI3K-Akt signal pathway and downregulating glycogen synthase kinase-3ß (GSK-3ß) and p-Akt1/Akt1. Therefore, this work revealed that G. acuta has a good development prospect as an edible medicinal plant in cardiovascular disease. Its bellidifolin component is a potential therapeutic agent for cardiovascular disease induced by oxidative stress damage.

15.
BMC Complement Med Ther ; 22(1): 275, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261841

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a common inflammatory skin disease that compromises the skin's barrier function and capacity to retain moisture. Cnidii Fructus (CF), the dried fruits of Cnidium monnieri, has long been used to treat atopic dermatitis (AD) in China. However, the anti-AD compounds and mechanisms of CF are not fully understood. In this study, we evaluated the active compounds and molecular targets of CF in treating AD. METHODS: The Traditional Chinese Medicine Systems Pharmacology database was used to acquire information regarding the compounds that occur in the herb. Targets of these compounds were predicted using the SwissTargetPrediction website tool. AD-related genes were collected from the GeneCards database. Gene ontology (GO) enrichment analysis and KEGG pathway analysis of proteins that are targeted by active compounds of CF and encoded by AD-related genes were performed using Database for Annotation, Visualization, and Integrated Discovery Bioinformatics Resources. A "compound-target" network was constructed and analyzed using Cytoscape Software. Molecular docking was performed using BIOVIA Discovery Studio Visualizer and AutoDock Vina. RESULTS: We identified 19 active compounds in CF, 532 potential targets for these compounds, and 1540 genes related to AD. Results of GO enrichment indicated that CF affects biological processes and molecular functions, such as inflammatory response and steroid hormone receptor activity, which may be associated with its anti-AD effects. KEGG pathway analyses showed that PI3K-Akt signaling, calcium signaling, Rap1 signaling, and cAMP signaling pathways are the main pathways involved in the anti-AD effects of CF. Molecular docking analyses revealed that the key active compounds in CF, such as (E)-2,3-bis(2-keto-7-methoxy-chromen-8-yl)acrolein, ar-curcumene, and diosmetin, can bind the main therapeutic targets AKT1, SRC, MAPK3, EGFR, CASP3, and PTGS2. CONCLUSIONS: Results of the present study establish a foundation for further investigation of the anti-AD compounds and mechanisms of CF and provide a basis for developing modern anti-AD agents based on compounds that occur in CF.


Assuntos
Dermatite Atópica , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Caspase 3 , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Frutas , Dermatite Atópica/tratamento farmacológico , Ciclo-Oxigenase 2 , Farmacologia em Rede , Acroleína , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Esteroides , Hormônios , Receptores ErbB
16.
World J Clin Cases ; 10(21): 7224-7241, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-36158000

RESUMO

BACKGROUND: The therapeutic effects of a combination of Chinese medicines called Biyu decoction have been clinically verified, although its molecular targets in psoriasis remain unknown. AIM: To explore the molecular mechanisms of Biyu decoction for psoriasis treatment. METHODS: In this network pharmacology and molecular docking study, the Traditional Chinese Medicine Systems Pharmacology database was searched for Biyu decoction active ingredients. GeneCards, Online Mendelian Inheritance in Man, PharmGkb, Therapeutic Target Database, and DrugBank databases were searched for psoriasis-related genes. The genes targeted by the decoction's active ingredient and disease genes were intersected to obtain predictive targets of the drug during psoriasis treatment. Cytoscape 3.8.0 was used to construct a drug component/ target disease network. The The functional protein association networks database and Cytoscape were used to construct a protein-protein interaction network and streamline the core network. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used for pathway enrichment analysis. Molecular docking technology was used to verify the drug component/target disease network. RESULTS: We screened 117 major active ingredients, including quercetin, kaempferol, naringenin, and acetyl-shikonin, and identified 213 gene targets, such as MAPK3, JUN, FOS, MYC, MAPK8, STAT3, and NFKBIA. Using a molecular docking analysis, the main active ingredients demonstrated good binding to the core targets. The Gene Ontology analysis showed that these ingredients were significantly associated with biological activities, such as transcription factor DNA binding, RNA polymerase II-specific DNA binding of transcription factors, and cytokine receptor binding; responses to lipopolysaccharides, molecules of bacterial origin, and oxidative stress; and were mainly distributed in membrane rafts, microdomains, and regions. The Kyoto Encyclopedia of Genes and Genomes analysis showed that decoction ingredients act on Th17 cell differentiation, tumor necrosis factor and mitogen-activated protein signaling pathways, the interleukin-17 signaling pathway, and the PI3K-Akt signaling pathway. CONCLUSION: Biyu decoction may be effective against psoriasis through multi-component, multi-target, and multi-channel synergy.

17.
Genes (Basel) ; 13(8)2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-36011344

RESUMO

Tinospora cordifolia, commonly known as "Giloe" in India, is a shrub belonging to the family Menispermaceae. It is an important medicinal plant known for its antipyretic, anti-inflammatory, antispasmodic, and antidiabetic properties and is used in the treatment of jaundice, gout, and rheumatism. Despite its economic importance, the limited information related to its genomic resources prohibits its judicious exploitation through molecular breeding or biotechnological approaches. In this study, we generated a meta-transcriptome assembly of 43,090 non-redundant transcripts by merging the RNASeq data obtained from Roche 454 GS-FLX, and Illumina platforms, and report the first transcriptome-based database for simple sequence repeats and transcription factors ("TinoTranscriptDB" (Tinospora cordifolia Transcriptome Database)). We annotated 26,716 (62%) of the total transcripts successfully from National Center for Biotechnology Information non-redundant protein (NCBI-NR), gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Swiss-Prot, and Pfam databases. This database contains information of 2620 perfect simple sequence repeats (P-SSRs) with a relative abundance of 340.12 (loci/Mb), and relative density of 6309.29 (bp/Mb). Excluding mono-nucleotides, the most abundant SSR motifs were tri-nucleotides (54.31%), followed by di-nucleotides (37.51%), tetra-nucleotides (4.54%), penta-nucleotides (3.16%) and hexa-nucleotides (0.45%). Additionally, we also identified 4,311 transcription factors (TFs) and categorized them into 55 sub-families. This database is expected to fill the gap in genomic resource availability in T. cordifolia and thus accelerate molecular breeding and related functional and other applied studies aimed towards genetic improvements of T. cordifolia and related species.


Assuntos
Plantas Medicinais , Tinospora , Bases de Dados Factuais , Humanos , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , Plantas Medicinais/genética , Tinospora/genética , Fatores de Transcrição/genética
18.
Mater Today Bio ; 16: 100382, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36033373

RESUMO

Large bone defects remain an unsolved clinical challenge because of the lack of effective vascularization in newly formed bone tissue. 3D bioprinting is a fabrication technology with the potential to create vascularized bone grafts with biological activity for repairing bone defects. In this study, vascular endothelial cells laden with thermosensitive bio-ink were bioprinted in situ on the inner surfaces of interconnected tubular channels of bone mesenchymal stem cell-laden 3D-bioprinted scaffolds. Endothelial cells exhibited a more uniform distribution and greater seeding efficiency throughout the channels. In vitro, the in situ bioprinted endothelial cells can form a vascular network through proliferation and migration. The in situ vascularized tissue-engineered bone also resulted in a coupling effect between angiogenesis and osteogenesis. Moreover, RNA sequencing analysis revealed that the expression of genes related to osteogenesis and angiogenesis is upregulated in biological processes. The in vivo 3D-bioprinted in situ vascularized scaffolds exhibited excellent performance in promoting new bone formation in rat calvarial critical-sized defect models. Consequently, in situ vascularized tissue-engineered bones constructed using 3D bioprinting technology have a potential of being used as bone grafts for repairing large bone defects, with a possible clinical application in the future.

19.
Nutrients ; 14(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35956419

RESUMO

BACKGROUND: Diabetes is an increasingly prevalent global disease caused by the impairment in insulin production or insulin function. Diabetes in the long term causes both microvascular and macrovascular complications that may result in retinopathy, nephropathy, neuropathy, peripheral arterial disease, atherosclerotic cardiovascular disease, and cerebrovascular disease. Considerable effort has been expended looking at the numerous genes and pathways to explain the mechanisms leading to diabetes-related complications. Curcumin is a traditional medicine with several properties such as being antioxidant, anti-inflammatory, anti-cancer, and anti-microbial, which may have utility for treating diabetes complications. This study, based on the system biology approach, aimed to investigate the effect of curcumin on critical genes and pathways related to diabetes. METHODS: We first searched interactions of curcumin in three different databases, including STITCH, TTD, and DGIdb. Subsequently, we investigated the critical curated protein targets for diabetes on the OMIM and DisGeNET databases. To find important clustering groups (MCODE) and critical hub genes in the network of diseases, we created a PPI network for all proteins obtained for diabetes with the aid of a string database and Cytoscape software. Next, we investigated the possible interactions of curcumin on diabetes-related genes using Venn diagrams. Furthermore, the impact of curcumin on the top scores of modular clusters was analysed. Finally, we conducted biological process and pathway enrichment analysis using Gene Ontology (GO) and KEGG based on the enrichR web server. RESULTS: We acquired 417 genes associated with diabetes, and their constructed PPI network contained 298 nodes and 1651 edges. Next, the analysis of centralities in the PPI network indicated 15 genes with the highest centralities. Additionally, MCODE analysis identified three modular clusters, which highest score cluster (MCODE 1) comprises 19 nodes and 92 edges with 10.22 scores. Screening curcumin interactions in the databases identified 158 protein targets. A Venn diagram of genes related to diabetes and the protein targets of curcumin showed 35 shared proteins, which observed that curcumin could strongly interact with ten of the hub genes. Moreover, we demonstrated that curcumin has the highest interaction with MCODE1 among all MCODs. Several significant biological pathways in KEGG enrichment associated with 35 shared included the AGE-RAGE signaling pathway in diabetic complications, HIF-1 signaling pathway, PI3K-Akt signaling pathway, TNF signaling, and JAK-STAT signaling pathway. The biological processes of GO analysis were involved with the cellular response to cytokine stimulus, the cytokine-mediated signaling pathway, positive regulation of intracellular signal transduction and cytokine production in the inflammatory response. CONCLUSION: Curcumin targeted several important genes involved in diabetes, supporting the previous research suggesting that it may have utility as a therapeutic agent in diabetes.


Assuntos
Antioxidantes , Curcumina , Diabetes Mellitus , Insulinas , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Biologia Computacional , Curcumina/farmacologia , Curcumina/uso terapêutico , Citocinas , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genética , Humanos , Insulinas/uso terapêutico , Fosfatidilinositol 3-Quinases
20.
Pain Physician ; 25(4): E629-E640, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35793187

RESUMO

BACKGROUND: Thalamic pain (TP), also known as central post-stroke pain, is a chronic neuropathic pain syndrome that follows a stroke and is a severe pain that is usually intractable. No universally applicable and effective therapies have been proposed. Emerging studies have reported that electroacupuncture (EA) can potentially be used as an effective therapy for the treatment of neuropathic pain. However, whether EA influences TP and if so, by what potential mechanism, remains poorly understood. OBJECTIVE: The aim of this study was to detect the efficacy of EA and explore possible mechanisms for treating TP. STUDY DESIGN: Controlled animal study. SETTING: The laboratory at the Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine. METHODS: Male Sprague Dawley rats were randomly divided into 3 groups (n = 15 / group): sham-operated (SH) group, thalamic pain model (TP) group, EA treatment (EA) group. After the TP rat model was successfully established, EA was used for intervention. During the experiment, the mechanical pain thresholds of rats were detected among the groups. The right thalamus of the rats was extracted on postoperative day 28 for RNA-sequencing (RNA-Seq) analysis to find the changes in gene expression in different groups of rats. The key genes were screened using reverse transcription-polymerase chain reaction (RT-PCR) detection and subsequently identified with western blotting and immunofluorescence. RESULTS: The mechanical withdrawal threshold (MWT) value of the right facial skin in the TP group and the EA group decreased significantly on the 3rd day after surgery, compared to the SH group (P < 0.01). From 7 to 28 days, the MWT value increased continually in the EA group; however, there was no significant change in the TP group. The results of RNA-seq showed that compared to the TP group, 377 genes changed in the EA group. Moreover, ADCY1 expression increased significantly in the TP group as compared to the SH group, while EA treatment reversed the expression of ADCY1. LIMITATIONS: In addition to ADCY1, the mechanism(s) of other signaling pathways in TP need to be explored in future research. CONCLUSIONS: EA treatment may promote the recovery of TP model rat by regulating ADCY1 expression.


Assuntos
Eletroacupuntura , Neuralgia , Animais , Eletroacupuntura/métodos , Humanos , Masculino , Neuralgia/metabolismo , Limiar da Dor , Ratos , Ratos Sprague-Dawley , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA