Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 460-486, jul. 2024. graf, ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1538009

RESUMO

This review presents advances in the implementation of high - throughput se quencing and its application to the knowledge of medicinal plants. We conducted a bibliographic search of papers published in PubMed, Science Direct, Google Scholar, Scopus, and Web of Science databases and analyzed the obtained data using VOSviewer (versi on 1.6.19). Given that medicinal plants are a source of specialized metabolites with immense therapeutic values and important pharmacological properties, plant researchers around the world have turned their attention toward them and have begun to examine t hem widely. Recent advances in sequencing technologies have reduced cost and time demands and accelerated medicinal plant research. Such research leverages full genome sequencing, as well as RNA (ribonucleic acid) sequencing and the analysis of the transcr iptome, to identify molecular markers of species and functional genes that control key biological traits, as well as to understand the biosynthetic pathways of bioactive metabolites and regulatory mechanisms of environmental responses. As such, the omics ( e.g., transcriptomics, metabolomics, proteomics, and genomics, among others) have been widely applied within the study of medicinal plants, although their usage in Colombia is still few and, in some areas, scarce. (185)


El extracto de cloroformo (CE) y las fracciones obtenidas de las raíces de Aldama arenaria se evaluaron para determinar su actividad antiproliferativa in vitro contra 10 líneas ce lulares tumorales humanas [leucemia (K - 562), mama (MCF - 7), ovario que expresa un fenotipo resistente a múltiples fármacos (NCI/ADR - RES), melanoma (UACC - 62), pulmón (NCI - H460), próstata (PC - 3), colon (HT29), ovario (OVCAR - 3), glioma (U251) y riñón (786 - 0)]. CE presentó actividad antiproliferativa débil a moderada (log GI 50 medio 1.07), mientras que las fracciones 3 y 4, enriquecidas con diterpenos de tipo pimarane [ent - pimara - 8 (14), ácido 15 - dien - 19 - oico y ent - 8(14),15 - pimaradien - 3 ß - ol], presentaron activid ad moderada a potente para la mayoría de las líneas celulares, con un log GI 50 medio de 0.62 y 0.59, respectivamente. Los resultados mostraron una acción antiproliferativa in vitro prometedora de las muestras obtenidas de A. arenaria , con los mejores resul tados para NCI/ADR - RES, HT29 y OVCAR - 3, y valores de TGI que van desde 5.95 a 28.71 µg.mL - 1, demostrando que los compuestos de esta clase pueden ser prototipos potenciales para el descubrimiento de nuevos agentes terapéuticos


Assuntos
Plantas Medicinais , Colômbia , Multiômica
2.
Phytomedicine ; 128: 155300, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518639

RESUMO

BACKGROUND: This study was conducted to elucidate the critical molecular pathways underlying the protective effects of remifentanil against hepatic ischemia-reperfusion injury in rats. Our approach integrated network pharmacology analysis with high-throughput sequencing to achieve a comprehensive understanding of the mechanisms involved. STUDY DESIGN/METHODS: The study utilized GSE24430 gene expression data from GEO to investigate remifentanil's impact on Hepatic Ischemia-Reperfusion Injury in rats. Weighted Correlation Network Analysis (WGCNA) was employed to pinpoint crucial genes and identify modules of co-expressed genes. Differential analysis with the "Limma" package revealed genes differentially expressed in IRI vs. control groups. PubChem and PharmMapper provided target genes affected by remifentanil. Protein-protein interaction networks were constructed via GeneCards and STRING. Functional analysis pinpointed core genes involved in remifentanil's IRI alleviation. IRI rat models were established, and hepatic injury indicators, liver structure via H&E staining, autophagosome counts via electron microscopy, and gene/protein expression via RT-qPCR and Western blot were assessed. High-throughput sequencing analyzed molecular pathways affected by varying remifentanil doses in IRI rats. RESULTS: In the study, we discovered four primary co-expression modules associated with hepatic IRI, and the grey module exhibited the highest correlation with hepatic IRI.A total of sixty-eight genes that were differentially expressed were found to have a connection with hepatic IRI.Network pharmacology analysis found that remifentanil may alleviate hepatic IRI through Fmol.found that the Fmol/Parkin signaling pathway may alleviate hepatic IRI via Additionally, the database autophagy. The established hepatic IRI rat models further confirmed the above findings. CONCLUSION: Our study established that remifentanil triggers the Fmol/Parkin signaling cascade, amplifying the expression levels of Fmol and Parkin. This process culminates in the activation of autophagy within hepatic cells, ultimately alleviating hepatic ischemia-reperfusion injury (IRI).


Assuntos
Fígado , Farmacologia em Rede , Ratos Sprague-Dawley , Remifentanil , Traumatismo por Reperfusão , Transdução de Sinais , Ubiquitina-Proteína Ligases , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Remifentanil/farmacologia , Transdução de Sinais/efeitos dos fármacos , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Ratos , Ubiquitina-Proteína Ligases/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Mapas de Interação de Proteínas
3.
Sci Total Environ ; 924: 171686, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38485026

RESUMO

Methane-oxidizing bacteria (MOB) have long been considered as a microbial indicator for oil and gas prospecting. However, due to the phylogenetically narrow breath of ecophysiologically distinct MOB, classic culture-dependent approaches could not discriminate MOB population at fine resolution, and accurately reflect the abundance of active MOB in the soil above oil and gas reservoirs. Here, we presented a novel microbial anomaly detection (MAD) strategy to quantitatively identify specific indicator methylotrophs in the surface soils for bioprospecting oil and gas reservoirs by using a combination of 13C-DNA stable isotope probing (SIP), high-throughput sequencing (HTS), quantitative PCR (qPCR) and geostatistical analysis. The Chunguang oilfield of the Junggar Basin was selected as a model system in western China, and type I methanotrophic Methylobacter was most active in the topsoil above the productive oil wells, while type II methanotrophic Methylosinus predominated in the dry well soils, exhibiting clear differences between non- and oil reservoir soils. Similar results were observed by quantification of Methylobacter pmoA genes as a specific bioindicator for the prediction of unknown reservoirs by grid sampling. A microbial anomaly distribution map based on geostatistical analysis further showed that the anomalous zones were highly consistent with petroleum, geological and seismic data, and validated by subsequent drilling. Over seven years, a total of 24 wells have been designed and drilled into the targeted anomaly, and the success rate via the MAD prospecting strategy was 83 %. Our results suggested that molecular techniques are powerful tools for oil and gas prospecting. This study indicates that the exploration efficiency could be significantly improved by integrating multi-disciplinary information in geophysics and geomicrobiology while reducing the drilling risk to a greater extent.


Assuntos
Methylococcaceae , Petróleo , Campos de Petróleo e Gás , Metano , Solo , Bioprospecção , Microbiologia do Solo , Filogenia , Oxirredução
4.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339084

RESUMO

The gut microbiota of healthy breastfed infants is often dominated by bifidobacteria. In an effort to mimic the microbiota of breastfed infants, modern formulas are fortified with bioactive and bifidogenic ingredients. These ingredients promote the optimal health and development of infants as well as the development of the infant microbiota. Here, we used INFOGEST and an in vitro batch fermentation model to investigate the gut health-promoting effects of a commercial infant formula supplemented with a blend containing docosahexaenoic acid (DHA) (20 mg/100 kcal), polydextrose and galactooligosaccharides (PDX/GOS) (4 g/L, 1:1 ratio), milk fat globule membrane (MFGM) (5 g/L), lactoferrin (0.6 g/L), and Bifidobacterium animalis subsp. lactis, BB-12 (BB-12) (106 CFU/g). Using fecal inoculates from three healthy infants, we assessed microbiota changes, the bifidogenic effect, and the short-chain fatty acid (SCFA) production of the supplemented test formula and compared those with data obtained from an unsupplemented base formula and from the breast milk control. Our results show that even after INFOGEST digestion of the formula, the supplemented formula can still maintain its bioactivity and modulate infants' microbiota composition, promote faster bifidobacterial growth, and stimulate production of SCFAs. Thus, it may be concluded that the test formula containing a bioactive blend promotes infant gut microbiota and SCFA profile to something similar, but not identical to those of breastfed infants.


Assuntos
Bifidobacterium animalis , Microbiota , Lactente , Feminino , Humanos , Fórmulas Infantis , Leite Humano , Suplementos Nutricionais , Aleitamento Materno , Bifidobacterium , Fezes/microbiologia , Oligossacarídeos/farmacologia
5.
Environ Sci Pollut Res Int ; 31(7): 10766-10784, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38200199

RESUMO

Currently, there is limited understanding of the structures and variabilities of bacterial communities in oil-contaminated soil within shale gas development. The Changning shale gas well site in Sichuan province was focused, and high-throughput sequencing was used to investigate the structures of bacterial communities and functions of bacteria in soil with different degrees of oil pollution. Furthermore, the influences of the environmental factors including pH, moisture content, organic matter, total nitrogen, total phosphorus, oil, and the biological toxicity of the soil on the structures of bacterial communities were analyzed. The results revealed that Proteobacteria and Firmicutes predominated in the oil-contaminated soil. α-Proteobacteria and γ-Proteobacteria were the main classes under the Proteobacteria phylum. Bacilli was the main class in the Firmicutes phylum. Notably, more bacteria were only found in CN-5 which was the soil near the storage pond for abandoned drilling mud, including Marinobacter, Balneola, Novispirillum, Castellaniella, and Alishewanella. These bacteria exhibited resilience to higher toxicity and demonstrated proficiency in oil degradation. The functions including carbohydrate transport and metabolism, energy metabolism, replication, recombination and repair replication, signal transduction mechanisms, and amino acid transport and metabolism responded differently to varying concentrations of oil. The disparities in bacterial genus composition across samples stemmed from a complex play of pH, moisture content, organic matter, total nitrogen, total phosphorus, oil concentration, and biological toxicity. Notably, bacterial richness correlated positively with moisture content, while bacterial diversity showed a significant positive correlation with pH. Acidobacteria exhibited a significant positive correlation with moisture content. Litorivivens and Luteimonas displayed a significant negative correlation with pH, while Rhizobium exhibited a significant negative correlation with moisture content. Pseudomonas, Proteiniphilum, and Halomonas exhibited positive correlations not only with organic matter but also with oil concentration. Total nitrogen exhibited a significant positive correlation with Taonella and Sideroxydans. On the other hand, total phosphorus showed a significant negative correlation with Sphingomonas. Furthermore, Sphingomonas, Gp6, and Ramlibacter displayed significant negative correlations with biological toxicity. The differential functions exhibited no significant correlation with environmental factors but displayed a significant positive correlation with the Proteobacteria phylum. Aridibacter demonstrated a significant positive correlation with cell motility and cellular processes and signaling. Conversely, Pseudomonas, Proteiniphilum, and Halomonas were negatively correlated with differential functions, particularly in amino acid metabolism, carbohydrate metabolism, and membrane transport. Compared with previous research, more factors were considered in this research when studying structural changes in bacterial communities, such as physicochemical properties and biological toxicity of soil. In addition, the correlations of differential functions of communities with environmental factors, bacterial phyla, and genera were investigated.


Assuntos
Gás Natural , Campos de Petróleo e Gás , Bactérias/metabolismo , Proteobactérias , Firmicutes , Solo/química , Acidobacteria , Minerais/metabolismo , Fósforo/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Nitrogênio/análise , Aminoácidos/metabolismo , Microbiologia do Solo
6.
Int J Biol Macromol ; 254(Pt 2): 127808, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926310

RESUMO

Gut microbiota and their metabolic processes depend on the intricate interplay of gut microbiota and their metabolic processes. Bacillus licheniformis, a beneficial food supplement, has shown promising effects on stabilizing gut microbiota and metabolites. However, the precise mechanisms underlying these effects remain elusive. In this study, we investigated the impact of polysaccharide-producing B. licheniformis as a dietary supplement on the gut microbiome and metabolites through a combination of scanning electron microscopy (SEM), histological analysis, high-throughput sequencing (HTS), and metabolomics. Our findings revealed that the B. licheniformis-treated group exhibited significantly increased jejunal goblet cells. Moreover, gut microbial diversity was lower in the treatment group as compared to the control, accompanied by noteworthy shifts in the abundance of specific bacterial taxa. Enrichment of Firmicutes, Lachnospiraceae, and Clostridiales_bacterium contrasted with reduced levels of Campylobacterota, Proteobacteria, Parasutterella, and Helicobacter. Notably, the treatment group showed significant weight gain after 33 days, emphasizing the polysaccharide's impact on host metabolism. Delving into gut metabolomics, we discovered significant alterations in metabolites. Nine metabolites, including olprinone, pyruvic acid, and 2-methyl-3-oxopropanoate, were upregulated, while eleven, including defoslimod and voclosporin were down-regulated, shedding light on phenylpropanoid biosynthesis, tricarboxylic acid cycle (TCA cycle), and the glucagon signaling pathway. This comprehensive multi-omics analysis offers compelling insights into the potential of B. licheniformis as a dietary polysaccharide supplement for gut health and host metabolism, promising significant implications for gut-related issues.


Assuntos
Bacillus licheniformis , Microbioma Gastrointestinal , Animais , Bovinos , Multiômica , Tibet , Metabolômica , Suplementos Nutricionais , Bactérias , Polissacarídeos/farmacologia , RNA Ribossômico 16S
7.
Sci China Life Sci ; 67(2): 258-273, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37837531

RESUMO

Advancements in genomics have dramatically accelerated the research on medicinal plants, and the development of herbgenomics has promoted the "Project of 1K Medicinal Plant Genome" to decipher their genetic code. However, it is difficult to obtain their high-quality whole genomes because of the prevalence of polyploidy and/or high genomic heterozygosity. Whole genomes of 123 medicinal plants were published until September 2022. These published genome sequences were investigated in this review, covering their classification, research teams, ploidy, medicinal functions, and sequencing strategies. More than 1,000 institutes or universities around the world and 50 countries are conducting research on medicinal plant genomes. Diploid species account for a majority of sequenced medicinal plants. The whole genomes of plants in the Poaceae family are the most studied. Almost 40% of the published papers studied species with tonifying, replenishing, and heat-cleaning medicinal effects. Medicinal plants are still in the process of domestication as compared with crops, thereby resulting in unclear genetic backgrounds and the lack of pure lines, thus making their genomes more difficult to complete. In addition, there is still no clear routine framework for a medicinal plant to obtain a high-quality whole genome. Herein, a clear and complete strategy has been originally proposed for creating a high-quality whole genome of medicinal plants. Moreover, whole genome-based biological studies of medicinal plants, including breeding and biosynthesis, were reviewed. We also advocate that a research platform of model medicinal plants should be established to promote the genomics research of medicinal plants.


Assuntos
Plantas Medicinais , Plantas Medicinais/genética , Melhoramento Vegetal , Genômica/métodos , Sequenciamento Completo do Genoma , Produtos Agrícolas/genética , Genoma de Planta/genética
8.
Water Res ; 250: 121010, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142507

RESUMO

Cylindrospermopsin (CYN) can induce phytoplankton community to secrete alkaline phosphatase (ALP), which is one of the important strategies for the bloom-forming cyanobacterium Raphidiopsis to thrive in extremely low-phosphorus (P) waters. However, how bacterioplankton community, another major contributor to ALPs in waters, couples to Raphidiopsis through CYN, and the role of this coupling in supporting the dominance of Raphidiopsis in nature remain largely unknown. Here, we conducted microcosm experiments to address this knowledge gap, using a combination of differential filtration-based and metagenomics-based methods to identify the sources of ALPs. We found that, compared with algal-derived ALPs, bacteria-derived ALPs exhibited a more pronounced and sensitive response to CYN. This response to CYN was enhanced under low-P conditions. Interestingly, we found that Verrucomicrobia made the largest contribution to the total abundance of pho genes, which encode ALPs. Having high gene abundance of the CYN-sensing PI3K-AKT signaling pathway, Verrucomicrobia's proportion increased with higher concentrations of CYN under low-P conditions, thereby explaining the observed increase in pho gene abundance. Compared with other cyanobacterial genera, Raphidiopsis had a higher abundance of the pst gene. This suggests that Raphidiopsis exhibited a greater capacity to uptake the inorganic P generated by ALPs secreted by other organisms. Overall, our results reveal the mechanism of CYN-induced ALP secretion and its impact on planktonic P-cycling, and provide valuable insights into the role of CYN in supporting the formation of Raphidiopsis blooms.


Assuntos
Alcaloides , Cianobactérias , Fosfatidilinositol 3-Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Cianobactérias/metabolismo , Toxinas de Cianobactérias , Fósforo/metabolismo , Uracila
9.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6030-6038, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114209

RESUMO

This study aimed to explore the correlation between rhizosphere soil microorganisms of wild Arnebia euchroma and the content of medicinal components to provide guidance for the selection of the ecological planting base. The total DNA of rhizosphere soil microorganisms of wild A. euchroma was extracted, and the microbial community structure of rhizosphere soil microorganisms was analyzed by IlluminaMiseq high-throughput sequencing technology. The content of total hydroxynaphthoquinone pigment and ß,ß'-dimethylacrylalkannin in medicinal materials was determined by high-performance liquid chromatography(HPLC). The physicochemical pro-perties of rhizosphere soil of wild A. euchroma in main producing areas were determined, and the correlation of soil microbial abundance with index component content and soil physicochemical properties was analyzed by SPSS software. The results showed that the species composition of rhizosphere fungi and bacteria in A. euchroma from different habitats was similar at the phylum and genus levels, but their relative abundance, richness index(Chao1), and community diversity(Simpson) index were different. Correlation analysis showed that the content of available phosphorus in soil was positively correlated with the content of total hydroxynaphthoquinone pigment and ß,ß'-dimethylacrylalkannin, and the abundance of five fungal genera such as Solicoccozyma and six bacterial genera such as Pseudo-nocardia and Bradyrhizobium was positively correlated with the content of medicinal components in medicinal materials. The abundance of Bradyrhizobium was significantly positively correlated with the content of ß,ß'-dimethylacrylalkanin. The abundance of fungi such as Archaeorhizomyces was significantly positively correlated with the content of available phosphorus in rhizosphere soil, and Bradyrhizobium was significantly negatively correlated with soil pH. Therefore, the abundance of fungi and bacteria in the rhizosphere of A. euchroma has a certain correlation with the medicinal components and the physicochemical properties of the rhizosphere soil, which can provide a scientific basis for the selection of ecological planting bases in the later stage.


Assuntos
Boraginaceae , Rizosfera , Microbiologia do Solo , Bactérias/genética , Fósforo , Solo
10.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958540

RESUMO

Aconitum carmichaelii is a herbaceous herb indigenous to China that has been cultivated for traditional medicine for centuries. Virus-like symptoms of A. carmichaelii plants were observed on leaves in some A. carmichaelii plantations in Zhanyi and Wuding Counties, Yunnan Province, southwest China. High-throughput sequencing (HTS) was performed on 28 symptomatic plants, and the results revealed infection with 11 viruses, including 2 novel viruses and 9 previously described viruses: Aconitum amalgavirus 1 (AcoAV-1), aconite virus A (AcVA), cucumber mosaic virus (CMV), currant latent virus (CuLV), apple stem grooving virus (ASGV), chilli veinal mottle virus (ChiVMV), tomato spotted wilt orthotospovirus (TSWV), tobacco vein distorting virus (TVDV), and potato leafroll virus (PLRV). Two novel viruses tentatively named Aconitum potyvirus 1 and Aconitum betapartitivirus 1, were supported by sequence and phylogenetic analysis results of their genomes. We proposed the names Potyvirus aconiti and Betapartitivirus aconiti. RT-PCR assays of 142 plants revealed the predominance and widespread distribution of CMV, AcVA, and AcoPV-1 in plantations. The detection of isolates of CuLV, ASGV, ChiVMV, TSWV, TVDV, and PLRV infections for the first time in A. carmichaelii expands their known host ranges.


Assuntos
Aconitum , Cucumovirus , Infecções por Citomegalovirus , Potyvirus , Secoviridae , Vírus , Filogenia , Viroma , China
11.
Microbiol Spectr ; 11(6): e0100923, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37921460

RESUMO

IMPORTANCE: Host-associated microbial communities play an important role in the fitness of insect hosts. However, the factors shaping microbial communities in wild populations, including environmental factors and interactions among microbial species, remain largely unknown. The tea green leafhopper has a wide geographical distribution and is highly adaptable, providing a suitable model for studying the effect of ecological drivers on microbiomes. This is the first large-scale culture-independent study investigating the microbial communities of M. onukii sampled from different locations. Altitude as a key environmental factor may have shaped microbial communities of M. onukii by affecting the relative abundance of endosymbionts, especially Wolbachia. The results of this study, therefore, offer not only an in-depth view of the microbial diversity of this species but also an insight into the influence of environmental factors.


Assuntos
Hemípteros , Animais , Altitude , Chá
12.
Food Res Int ; 174(Pt 1): 113615, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986470

RESUMO

Long-term storage of Liupao tea (LPT) is usually believed to enhance its quality and commercial value. The non-volatile metabolites variations and the fungal succession play a key role for organoleptic qualities during the storage procedure. To gain in-depth understanding the impact of storage time on the quality of LPT, two different brands of LPT with different storage time, including Maosheng LPTs (MS) with 0, 5, 10 and 15 years and Tianyu LPTs (TY) with 0, 3, 5, 8 and 10 years, were resorted to investigate the changes of non-volatile metabolites and fungi as well as their correlation by multi-omics. A total of 154 and 119 differential metabolites were identified in these two different brands of MS and TY, respectively, with the aid of high-performance liquid chromatography with quadrupole-time-of-flight mass spectrometry. In both categories of LPTs, the transformation of differential metabolites in the various stages referred to the formation of alkaloids, increase of organic acids, biosynthesis of terpenoids as well as glycosylation and methylation of flavonoids. Thereinto, glycosylation and methylation of flavonoids were the critical stages for distinguishing MS and TY, which were discovered in MS and TY stored for about 10 and 8 years, respectively. Moreover, the results of high-throughput sequencing showed that the key fungal genera in the storage of LPTs consisted of Eurotium, Aspergillus, Blastobotrys, Talaromyces, Thermomyces and Trichomonascus. It was confirmed on the basis of multivariate analysis that the specific fungal genera promoted the transformation of metabolites, affecting the tea quality to some extent. Therefore, this study provided a theoretical basis for the process optimization of LPT storage.


Assuntos
Micobioma , Chá , Cromatografia Líquida , Chá/química , Espectrometria de Massas em Tandem , Flavonoides/química , Sequenciamento de Nucleotídeos em Larga Escala
13.
J Pharm Biomed Anal ; 236: 115728, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37793314

RESUMO

BACKGROUND: Pingchuan formula is a traditional Chinese herbal prescription for asthma, but its components and underlying mechanisms remain unclear. Here, we evaluated its anti-asthmatic actvity and regulatory effects on the gut microbiota in mice based on the traditional Chinese medicine Zang-Fu theory, which proposed the exterior-interior relationship between the lung and the large intestine. METHODS: Mouse model withovalbumin (OVA)-induced asthma was used to assess the protective effect of the water extract of Pingchuan formula (PC). The chemical compounds of PC and mouse serum metabolites were identified by Ultraperformance liquid chromatography-Q Exactive HF-X spectrometry. Gut microbiota was evaluated by 16 S rRNA gene sequencing. The gut microbiota was depleted with a broad-spectrum antibiotic mixture (Abx) to explore whether it plays a role in the protective effects of PC. RESULTS: PC mainly contains phenols, flavonoids, alkaloids, carboxylic acids, and their derivatives. PC attenuated OVA-induced asthma in mice by alleviating inflammatory infiltration, indicated by decreased levels of IL-18, IL-6, IL-4, and Eotaxin in lung tissues. PC treatment altered the serum metabolites and affected the pyrimidine pathway. In addition, our results showed that acacetin and abscisic acid were the key serum metabolites PC treatment changed the composition of gut microbiota by increasing the relative abundance of Clostridia_UCG_014 and Akkermansia while decreasing Blautia, Barnesiella, and Clostridium_Ⅲ at the genus level. Importantly, the Abx treatment partly abolished the anti-asthmatic effect of PC. CONCLUSION: We demonstrated that PC could alleviate OVA-induced asthma in mice and protect against inflammatory infiltration in lungs via modulating the serum metabolites and gut microbiota, thereby providing a new reference for the therapeutic effect of PC.


Assuntos
Antiasmáticos , Asma , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Camundongos , Animais , Ovalbumina , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/metabolismo , Antiasmáticos/farmacologia , Antiasmáticos/uso terapêutico
14.
Genes (Basel) ; 14(10)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37895182

RESUMO

Dahlia (Dahlia variabilis) is a widely cultivated ornamental and medicinal plant in China. Recently, dahlia plants with symptoms of leaf mottling and distortion were collected in Hohhot, Inner Mongolia, China. The presence of dahlia common mosaic virus (DCMV), an unassigned species in the genus Caulimovirus, was confirmed by high-throughput sequencing. Three fragments of DCMV Inner Mongolia isolate (DCMV-IN) were PCR-amplified with specific primers, sequenced and assembled into the complete genome sequence with a GenBank accession number of OR494328. The double-stranded circular DNA genome of DCMV-IN consists of 7949 bp and contains six open reading frames (ORFs). Sequence analysis showed that DCMV-IN shared high sequence identities with other DCMV isolates available in the GenBank database. Phylogenetic analysis of DCMV isolates and other representative caulimoviruses based on genome sequence clustered four DCMV isolates to a single branch which was closest to dahlia mosaic virus (DMV). No recombination event was detected among the four DCMV isolates.


Assuntos
Caulimovirus , Dahlia , Caulimovirus/genética , Dahlia/genética , Filogenia , Genoma Viral , Reação em Cadeia da Polimerase
15.
Food Res Int ; 172: 113117, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689884

RESUMO

GuangChenpi (GCP), the dried pericarps of Citrus reticulata 'Chachi', has been consumed daily as a food and dietary supplement in China for centuries. Its health benefits are generally recognized to be dependent on storage time. However, the specific roles of microorganisms and metabolites during long-term storage are still unclear. In this study, comparative metabolomics and high-throughput sequencing techniques were used to investigate the effects of co-existing microorganisms on the metabolites in GCP stored from 1 to 30 years. In total, 386 metabolites were identified and characterized. Most compounds were flavonoids (37%), followed by phenolic acids (20%). Seventeen differentially upregulated metabolites were identified as potential key metabolites in GCP, and 8 of them were screened out as key active ingredients by Venn diagram comparative analyses and verified by network pharmacology and molecular docking. In addition, long-term storage could promote the accumulation of secondary metabolites. Regarding the GCP microbiota, Xeromyces dominated the whole 30-year aging process.Moreover, Spearman correlation analysis indicated that Bacillus thuringiensis and Xeromyces bisporus, the dominant bacterial and fungal species, were strongly associated with the key active metabolites. Our results suggested that the change of active ingredients caused by the dominant microbial is one of the mechanisms affecting the GCP aging process. Our study provides novel functional insights and research perspectives on microorganism-associated metabolite changes that may improve the GCP aging process.


Assuntos
Citrus , Simulação de Acoplamento Molecular , Suplementos Nutricionais , Sequenciamento de Nucleotídeos em Larga Escala , Metabolômica
16.
BMC Genom Data ; 24(1): 53, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723451

RESUMO

BACKGROUND: Peucedanum praeruptorum Dunn, a traditional Chinese herbal medicine, contains coumarin and volatile oil components that have clinical application value. However, early bolting often occurs in the medicinal materials of Apiaceae plants. The rhizomes of the medicinal parts are gradually lignified after bolting, resulting in a sharp decrease in the content of coumarins. At present, the link between coumarin biosynthesis and early bolting in P. praeruptorum has not been elucidated. RESULTS: Combining the genome sequencing and the previous transcriptome sequencing results, we reanalyzed the differential transcripts of P. praeruptorum before and after bolting. A total of 62,088 new transcripts were identified, of which 31,500 were unknown transcripts. Functional classification and annotation showed that many genes were involved in the regulation of transcription, defense response, and carbohydrate metabolic processes. The main domains are the pentatricopeptide repeat, protein kinase, RNA recognition motif, leucine-rich repeat, and ankyrin repeat domains, indicating their pivotal roles in protein modification and signal transduction. Gene structure analysis showed that skipped exon (SE) was the most dominant alternative splicing, followed by the alternative 3' splice site (A3SS) and the alternative 5' splice site (A5SS). Functional enrichment of differentially expressed genes showed that these differentially expressed genes mainly include transmembrane transporters, channel proteins, DNA-binding proteins, polysaccharide-binding proteins, etc. In addition, genes involved in peroxisome, hexose phosphate pathway, phosphatidylinositol signaling system, and inositol phosphate metabolism pathway were greatly enriched. A protein-protein interaction network analysis discoverd 1,457 pairs of proteins that interact with each other. The expression levels of six UbiA genes, three UGT genes, and four OMT genes were higher during the bolting stage. This observation suggests their potential involvement in the catalytic processes of prenylation, glycosylation, and methylation of coumarins, respectively. A total of 100 peroxidase (PRX) genes were identified being involved in lignin polymerization, but only nine PRX genes were highly expressed at the bolting stage. It is worth noting that 73 autophagy-related genes (ATGs) were first identified from the KEGG pathway-enriched genes. Some ATGs, such as BHQH00009837, BHQH00013830, and novel8944, had higher expression levels after bolting. CONCLUSIONS: Comparative transcriptome analysis and large-scale genome screening provide guidance and new opinions for the identification of bolting-related genes in P. praeruptorum.


Assuntos
Apiaceae , Transcriptoma , Transcriptoma/genética , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Éxons , Apiaceae/genética
17.
Front Pharmacol ; 14: 1218046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731740

RESUMO

Tumor suppressor genes (TSGs) are commonly downregulated in colon cancer and play a negative role in tumorigenesis and cancer progression by affecting genomic integrity, the cell cycle, and cell proliferation. Curcumin (CUR), a Chinese herb-derived phytochemical, exerts antitumor effects on colon cancer. However, it remains unclear whether CUR exerts its antitumor effects by reactivating TSGs in colon cancer. Here, we demonstrated that CUR inhibited HT29 and HCT116 proliferation and migration by cell-counting kit-8, colony-formation, and wound-healing assays. Furthermore, the comprehensive bioinformatics analysis of mRNA sequencing revealed that 3,505 genes were significantly upregulated in response to CUR in HCT116 cells. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses showed that the most upregulated genes were enriched in cancer pathways containing 37 TSGs. Five (ARHGEF12, APAF1, VHL, CEBPA, and CASP8) of the 37 upregulated TSGs were randomly selected for real-time fluorescence polymerase chain reaction and the verification results showed that these five genes were significantly reactivated after CUR treatment, suggesting that TSGs are related to CUR-mediated colon cancer inhibition. ARHGEF12 is a newly identified TSG and a potential therapeutic target for colon cancer. Furthermore, molecular docking was performed to predict the binding sites of CUR and ARHGEF12, suggesting that CUR can prevent colon cancer cell invasion and metastasis by inhibiting ARHGEF12 and RhoA binding. In conclusion, the present study reveals that CUR inhibits colon cancer cell proliferation and migration by reactivating TSGs, revealing a new mechanism and potential target for colon cancer treatment.

18.
Sci Total Environ ; 902: 166038, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562632

RESUMO

Petroleum hydrocarbons are widespread in seawater. As an important sea area in northern China, the content and distribution of petroleum hydrocarbons in seawater need our attention because of the high toxicity and lasting polluting effects on the ecological environment of the Yellow Sea and Bohai Sea. In addition, there are few reports comparing the diversity of oil-degrading bacteria before and after enrichment. Therefore, we collected surface seawater from 10 sites in the Yellow Sea and Bohai Sea in the autumn of 2020 to study the distribution characteristics of total petroleum hydrocarbons (TPH) and the diversity of oil-degrading bacteria. The concentration of TPH was 81.65 µg/L-139.55 µg/L at ten sites in the Bohai Sea and the Yellow Sea, which conformed to the China Grade II water quality standard (GB3097-1997). Moreover, the pristine/phytane (PR/PH) value of most sites was close to 1, indicating that the area was obviously polluted by exogenous petroleum hydrocarbons. We found that oil-degrading bacteria in the seawater of the Yellow Sea and the Bohai Sea had a good degradation effect on C11-C14 short chain alkanes (degradation rate of 59.19-73.22 %) and C1-C4 phenanthrene (degradation rate of 48.19-60.74 %). In terms of the diversity of oil-degrading bacteria, Gammaproteobacteria and Alphaproteobacteria dominated the enriched bacterial communities. Notably, the relative abundance of Alcanivorax changed significantly before and after enrichment. We proposed that surface seawater in the Bohai Sea and Yellow Sea could form oil-degrading bacteria mainly composed of Alcanivorax, which had great potential for oil pollution remediation.


Assuntos
Poluição por Petróleo , Petróleo , Água do Mar/química , Hidrocarbonetos/metabolismo , Alcanos/metabolismo , Bactérias/metabolismo , Petróleo/análise , China , Biodegradação Ambiental
19.
Plant Dis ; 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480252

RESUMO

Siraitia grosvenorii, known as "Luohanguo or monk fruit", is a perennial vine belonging to the family Cucurbitaceae. It is cultivated for its fruits, which are used as a Chinese traditional medicine to treat throat, lung and intestine ailments, or as raw material to extract sweet cucurbitane-glycosides as sugar substitute sweeteners (Chen et al., 2007). The production of S. grosvenorii is limited by viral diseases especially cucumber green mottle mosaic virus (CGMMV), papaya ringspot virus (PRSV), watermelon mosaic virus, and zucchini yellow mosaic virus (Liao et al., 2005; Xie et al., 2020). In 2022, virus-like disease consisting of leaf mottling, crinkling, and ringspot was observed on S. grosvenorii plants grown in an insect-proof greenhouse in Guilin City, Guangxi Province, China, with an incidence rate of ~17%. High-throughput sequencing (HTS) was applied to identify potential viruses in the diseased plants. Briefly, total RNA was extracted from a pool of 28 leaf samples (with or without symptoms) of S. grosvenorii using Trizol reagent according to manufacturer's instructions (Invitrogen, U.S.A.). The rRNA was depleted (Epicentre Ribo-zero™ rRNA Removal Kit, Epicentre, U.S.A.), before steps of cDNA library construction (NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina®, NEB, U.S.A.), and sequencing (Hiseq 4000 platform, Illumina, U.S.A.). The subsequent bioinformatics analyses were performed according to Liu et al. (2021). HTS of the sample and raw reads processing resulted in 8.4 Gb clean data. The clean reads (150 bp) were de novo assembled into 87,414 contigs (≥200 bp), using CLC Genomics Workbench 21 (Qiagen, Germany). The contigs were annotated by local BLASTX, resulting in matches to CGMMV, PRSV, and watermelon silver mottle virus (WSMoV). Three contigs of 6,557 bp, 4,950 bp, and 3,594 bp were most identical to L (GenBank accession no. JX177647), M (MW051789), and S (KM242056) segments of WSMoV. The complete genome sequences corresponding to the contigs derived from the sample (designated as GL-1 variant of WSMoV, OQ401466-OQ401468) were obtained by reads mapping to segments of these isolates. The reads coverage was ≥99.75% in each RNA segment and the depth of the coverage was in a range of 74-285. To detect the presence of GL-1 in S. grosvenorii plants, three primer pairs D7280F/D7382R (5'-TGATAGCCTGATGAACACCA/5'-TGTCTCTAAACCTTCTACCGC, Tm = 55℃, product size 172 bp), D4512F/D4703R (5'-GCATTGAACTCGCTCACAC/5'-AGTAGACGACCCTGAAGACCT, Tm = 55℃, 192 bp), and D109F/D451R (5'-TTATGGCACAAGAGACAACAGAG/5'-GGGCGTTATGTTCAGTATATTGG, Tm = 56℃, 342 bp) were designed in the L, M, and S segments, respectively. Fresh symptomatic and asymptomatic leaf tissues (n=38) were collected from three fields and their extracted nucleic acids were individually tested with the primers designed by two-steps RT-PCR using TaKaRa RNA PCR kit Ver.3.0 (Takara, Japan). Expected amplicons were obtained in symptomatic samples (n=7) showing mottling, crinkling, and chlorosis. Other samples (n=31) with or without symptoms were negative to WSMoV infection. The amplicons were sequenced, and the sequences obtained shared >99% nt identities with the corresponding GL-1 sequences in GenBank. This is the first report of WSMoV on S. grosvenorii, which provides the basic information for virus disease management.

20.
Phytomedicine ; 118: 154984, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37487253

RESUMO

BACKGROUND: Gastric carcinoma (GC) treatment needs to be developed rapidly. Compound Kushen Injection (CKI), a formula from traditional Chinese medicine, has been used clinically in combination with chemotherapy to treat GC with satisfactory results. However, the molecular mechanism by which CKI acts to cure GC is still unclear. METHODS: In the present study, in vivo and in vitro experiments were used to assess the efficacy of CKI. Using ceRNA microarray and TMT technologies, the molecular mechanism of CKI was further investigated at the transcriptional and protein levels, and a bioinformatics approach was employed to investigate and functionally validate key CKI targets in GC. RESULTS: When combined with cisplatin (DDP), CKI significantly increased its efficacy in preventing the proliferation and metastasis of GC cells and malignant-looking tumors in mice. High-throughput sequencing data and bioinformatics analysis showed that CKI regulated the TNF signaling pathway, epithelial-mesenchymal transition (EMT), with VCAM1 as a key target. The transcription factors CEBPB, JUN, RELA, NFKB1, the EMT mesenchymal-like cell markers N-cadherin and vimentin, as well as the expression of VCAM1 and its upstream signaling driver TNF, were all downregulated by CKI. In contrast, the expression of the EMT epithelial-like cell marker E-cadherin was upregulated. CONCLUSION: CKI can effectively inhibit GC growth and metastasis, improve body's immunity, and protect normal tissues from damage. The molecular mechanism by which CKI inhibits metastasis of GC is by regulating VCAM1 induced by the TNF signaling pathway to inhibit EMT of GC. Our results provide an important clue to clarify precisely the multi-scale molecular mechanism of CKI in the treatment of GC.


Assuntos
Antineoplásicos , Carcinoma , Neoplasias Gástricas , Animais , Camundongos , Transição Epitelial-Mesenquimal , Antineoplásicos/farmacologia , Transdução de Sinais , Neoplasias Gástricas/genética , Caderinas , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA