Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Phytother Res ; 38(7): 3370-3400, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38655878

RESUMO

Gout, or hyperuricemia is a multifactorial and multi-faceted metabolic disease that is quite difficult to manage and/or treat. Conventional therapies such as non-steroidal anti-inflammatory drugs (NSAIDs) such as allopurinol, corticosteroids and colchicine amongst others, have helped in its management and treatment to some extent. This study aimed to compile and analyze the different herbal remedies used in the management of hyperuricemia and gout. A literature search was conducted from key databases (PubMed, ScienceDirect, Cochrane Library, Google Scholar) using relevant keywords via the PRISMA model. Smilax riparia A.DC. from Traditional Chinese Medicine is used in many countries for its therapeutic effect on lowering serum urate levels. No single study was able to establish the efficacy of a specific traditionally used herb via in vitro, in vivo, and clinical studies. Patients were found to use a panoply of natural remedies, mainly plants to treat hyperuricemia and gout, which have been validated to some extent by in vitro, in vivo, and clinical studies. Nonetheless, further research is needed to better understand the ethnopharmacological relationship of such herbal remedies.


Assuntos
Gota , Hiperuricemia , Hiperuricemia/tratamento farmacológico , Gota/tratamento farmacológico , Humanos , Animais , Fitoterapia , Smilax/química , Medicina Tradicional Chinesa/métodos , Medicamentos de Ervas Chinesas/uso terapêutico , Ácido Úrico/sangue , Extratos Vegetais/uso terapêutico , Extratos Vegetais/farmacologia , Plantas Medicinais/química
2.
Saudi Pharm J ; 32(4): 101980, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38439949

RESUMO

Xanthine oxidase (XO) has been widely recognized as a pivotal enzyme in developing hyperuricemia, primarily contributing to the excessive production of uric acid during purine metabolism in the liver. One of the standard treatment approaches involves reducing uric acid levels by inhibiting XO activity. In this study, the leaf extract of Dolichandrone spathacea, traditionally used in folk medicine, was found to inhibit XO activity in the ethyl acetate and butanol fractions at a concentration of 100 µg/mL, their values were 78.57 ± 3.85 % (IC50 = 55.93 ± 5.73 µg/ml) and 69.43 ± 8.68 % (IC50 = 70.17 ± 7.98 µg/ml), respectively. The potential XO inhibitory components were isolated by bioactivity assays and the HR-ESI-MS and NMR spectra system. The main constituents of leaf extracts of Dolichandrone spathacea, six compounds, namely trans-4-methoxycinnamic acid (3), trans-3,4-dimethoxycinnamic acid (4), p-coumaric acid (5), martynoside (6), 6-O-(p-methoxy-E-cinnamoyl)-ajugol (7), and scolymoside (17), were identified as potent XO inhibitors with IC50 values ranging from 19.34 ± 1.63 µM to 64.50 ± 0.94 µM. The enzyme kinetics indicated that compounds 3-5, 7, and 17 displayed competitive inhibition like allopurinol, while compound 6 displayed a mixed-type inhibition. Computational studies corroborated these experimental results, highlighting the interactions between potential metabolites and XO enzyme. The hydrogen bonds played crucial roles in the binding interaction, especially, scolymoside (17) forms a hydrogen bond with Mos3004, exhibited the lowest binding energy (-18.3286 kcal/mol) corresponding to the lowest IC50 (19.34 ± 1.63 µM). Furthermore, nine compounds were isolated for the first time from this plant. In conclusion, Dolichandrone spathacea and its constituents possess the potential to modulate the xanthine oxidase enzyme involved in metabolism.

3.
Front Pharmacol ; 15: 1294755, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515855

RESUMO

Hyperuricemia (HUA), a severe metabolic disease derived from purine metabolism disorder, will lead to abnormally increased serum uric acid (SUA) levels in the body. Studies have shown that HUA is highly related to gout, hypertension, diabetes, coronary heart disease, chronic kidney diseases, and so on. Traditional Chinese medicine (TCM) shows excellent results in treating HUA because of its unique advantages of multi-metabolites and multi-targets. This article reports on the use of TCM components for uric acid (UA)-lowering activity with excellent efficacy and low side effects based on established HUA models. This work summarizes the advantages and limitations of various HUA disease models for efficacy evaluation. Applications of TCM in HUA treatment have also been discussed in detail. This paper reveals recent research progress on HUA in constructing evaluation models and systematic TCM interventions. It will provide a scientific reference for establishing the HUA model and suggest future TCM-related HUA studies.

4.
J Ethnopharmacol ; 327: 117946, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38447615

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In China, Xanthoceras sorbifolium Bunge was first documented as "Wen Guan Hua" in the "Jiu Huang Ben Cao" in 1406 A.D. According to the "National Compilation of Chinese Herbal Medicine," X. sorbifolium leaves are sweet and flat in nature and can dispel wind and dampness, suggesting that their extract can be used to treat rheumatoid arthritis. X. sorbifolium Bunge has also been used to treat arteriosclerosis, hyperlipidemia, hypertension, chronic hepatitis, and rheumatism, complications associated with hyperuricemic nephropathy (HN), a condition characterized by kidney damage resulting from high levels of uric acid (UA) in the blood. AIM OF THE STUDY: The purpose of this study was to investigate the effects and underlying mechanisms of a 70% ethanol extract from X. sorbifolium leaves (EX) in alleviating HN. MATERIALS AND METHODS: A mouse model of hyperuricemia was established to initially evaluate the hypouricemic effects and determine the effective dose of EX. Phytochemical analyses were conducted using ultra high-performance liquid chromatography and liquid chromatography-mass spectroscopy. The potential key pathways of EX in the alleviation of HN were inferred using network pharmacology and bioinformatics. An HN rat model was then established, and experiments including biomarker detection, western blotting, reverse transcription quantitative polymerase chain reaction, immunohistochemical and Masson's trichrome staining, and transmission electron microscopy were conducted to evaluate the effect of EX on UA transporter expression in vitro. RESULTS: Network pharmacology and bioinformatics analyses revealed that the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway was the key pathway for the alleviation of HN progression by EX. EX treatment reduced serum biomarkers in HN rats, downregulated the expression of p-PI3K, p-AKT, glucose transporter 9 (GLUT9), urate transporter 1 (URAT1), Collagen I, matrix metalloproteinase (MMP)-2, and MMP-9, and upregulated the expression of ATP binding cassette subfamily G member 2 (ABCG2) to improve renal interstitial fibrosis in HN rats. A high content of both quercitrin and cynaroside were identified in EX; their administration inhibited the increased expression of GLUT9 and URAT1 in damaged HK-2 cells. CONCLUSION: Our study provides evidence that EX alleviates HN. The potential mechanism underlying this effect may be the regulation of UA transporters, such as GLUT9 and URAT1, by limiting the activation of the PI3K/AKT signaling pathway to improve renal injury.


Assuntos
Hiperuricemia , Nefropatias , Camundongos , Ratos , Animais , Ácido Úrico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Rim , Nefropatias/metabolismo , Transdução de Sinais , Biomarcadores/metabolismo
5.
J Ethnopharmacol ; 327: 118014, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38460576

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chronic kidney disease can be caused by numerous diseases including obesity and hyperuricemia (HUA). Obesity may exacerbate the renal injury caused by HUA. Red ginseng, a steamed products of Panax ginseng Meyer root, is known for its remarkable efficacy in improving metabolic syndrome, such as maintaining lipid metabolic balance. However, the role of red ginseng on hyperuricemia-induced renal injury in obese cases remains unclear. AIM OF THE STUDY: This study aimed to investigate the action of red ginseng extract (RGE) on lipotoxicity-induced renal injury in HUA mice. MATERIALS AND METHODS: A high-fat diet (HFD)-induced obesity model was employed to initially investigate the effects of RGE on body weight, TC, OGTT, renal lipid droplets, and renal function indices such as uric acid, creatinine, and urea nitrogen. Renal structural improvement was demonstrated by H&E staining. Subsequently, an animal model combining obesity and HUA was established to further study the impact of RGE on OAT1 and ACC1 expression levels. The mechanisms underlying renal injury regulation by RGE were postulated on the basis of RNA sequencing, which was verified by immunohistochemical (including F4/80, Ki67, TGF-ß1, α-SMA, and E-cadherin), Masson, and Sirius red staining. RESULTS: RGE modulated HFD-induced weight gain, glucose metabolism, and abnormalities of uric acid, urea nitrogen, and creatinine. RGE alleviated the more severe renal histopathological changes induced by obesity combined with HUA, with down-regulated the protein levels of ACC1, F4/80, Ki67, TGF-ß1, and α-SMA, and up-regulated OAT1 and E-cadherin. CONCLUSIONS: RGE has ameliorative effects on chronic kidney disease caused by obesity combined with HUA by maintaining lipid balance and reducing renal inflammation and fibrosis.


Assuntos
Hiperuricemia , Panax , Insuficiência Renal Crônica , Camundongos , Animais , Hiperuricemia/tratamento farmacológico , Hiperuricemia/patologia , Fator de Crescimento Transformador beta1 , Ácido Úrico , Creatinina , Antígeno Ki-67 , Obesidade/tratamento farmacológico , Fibrose , Panax/química , Caderinas , Nitrogênio , Lipídeos , Ureia
6.
Fitoterapia ; 175: 105926, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537887

RESUMO

Hyperuricemia (HUA) is a metabolic disease characterized by the increase of serum uric acid (UA) level. Sargentodoxae Caulis (SC) is a commonly used herbal medicine for the treatment of gouty arthritis, traumatic swelling, and rheumatic arthritis in clinic. In this study, a total of fifteen compounds were identified in SC water extract using UHPLC-Q-TOF-MS/MS, including three phenolic acids, seven phenolic glycosides, four organic acids, and one lignan. Then, to study the hypouricemia effect of SC, a HUA mouse model was induced using a combination of PO, HX, and 20% yeast feed. After 14 days of treatment with the SC water extract, the levels of serum UA, creatinine (CRE), blood urea nitrogen (BUN) were reduced significantly, and the organ indexes were restored, the xanthine oxidase (XOD) activity were inhibited as well. Meanwhile, SC water extract could ameliorate the pathological status of kidneys and intestine of HUA mice. Additionally, quantitative real-time PCR (qRT-PCR) and western blotting results showed that SC water extract could increase the expression of ATP binding cassette subfamily G member 2 (ABCG2), organic cation transporter 1 (OCT1), organic anion transporter 1 (OAT1) and organic anion transporter 3 (OAT3), whereas decrease the expression of glucose transporter 9 (GLUT9). This study provided a data support for the clinical application of SC in the treatment of HUA.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Hiperuricemia , Ácido Úrico , Xantina Oxidase , Animais , Camundongos , Hiperuricemia/tratamento farmacológico , Masculino , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácido Úrico/sangue , Xantina Oxidase/metabolismo , Modelos Animais de Doenças , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Rim/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Transportadores de Ânions Orgânicos/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Hidroxibenzoatos/isolamento & purificação , Hidroxibenzoatos/farmacologia
7.
J Med Food ; 27(4): 312-329, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377550

RESUMO

Hyperuricemia (HUA) is a metabolic disease and contributes to renal injury (RI). Vine grape tea polyphenols (VGTP) have been widely used to treat HUA and RI. However, the potential mechanism of VGTP activity remains unclear. To explore the underlying mechanism of VGTP treatment for HUA-induced RI based on network pharmacology that is confirmed by an in vivo study. All ingredients of VGTP were retrieved using a Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and Comparative Toxicogenomics Database systems. The related targets of HUA and RI were obtained from GeneCards and National Center for Biotechnology Information (NCBI) databases. Some ingredients and targets were selected for molecular docking verification. One hour after administering potassium oxonate (300 mg/kg), VGTP (50, 100, and 200 mg/kg/d) was orally administered to HUA mice for 4 weeks. Histopathology and western blotting were performed in renal tissue. Our results showed that VGTP significantly reduced blood urea nitrogen, creatinine, uric acid, and significantly improved the RI and fibrosis of HUA mice. There were 54 active ingredients and 62 targets of HUA-induced RI. Further studies showed that VGTP decreased the expression of Bax, cleaved caspase 3, transforming growth factor-ß (TGF-ß1), CHOP, p-STAT3, and P53, and increased Bcl-2 expression in renal tissue. The related signaling pathways have apoptosis, TGF-ß1, P53 and STAT, and endoplasmic reticulum stress (ERS). In this study, VGTP exerted antihyperuricemic and anti fibrosis effects by regulating the apoptosis and ERS signaling pathways. VGTP is expected to become a drug for combating HUA and RI.


Assuntos
Hiperuricemia , Vitis , Animais , Camundongos , Hiperuricemia/tratamento farmacológico , Farmacologia em Rede , Fator de Crescimento Transformador beta1 , Simulação de Acoplamento Molecular , Proteína Supressora de Tumor p53 , Rim
8.
Foods ; 13(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38397567

RESUMO

BACKGROUND: Hyperuricaemia (HUA) is a disorder of purine metabolism in the body. We previously synthesized a hesperitin (Hsp)-Cu(II) complex and found that the complex possessed strong uric acid (UA)-reducing activity in vitro. In this study we further explored the complex's UA-lowering and nephroprotective effects in vivo. METHODS: A mouse with HUA was used to investigate the complex's hypouricemic and nephroprotective effects via biochemical analysis, RT-PCR, and Western blot. RESULTS: Hsp-Cu(II) complex markedly decreased the serum UA level and restored kidney tissue damage to normal in HUA mice. Meanwhile, the complex inhibited liver adenosine deaminase (ADA) and xanthine oxidase (XO) activities to reduce UA synthesis and modulated the protein expression of urate transporters to promote UA excretion. Hsp-Cu(II) treatment significantly suppressed oxidative stress and inflammatory in the kidney, reduced the contents of cytokines and inhibited the activation of the nucleotide-binding oligomerization domain (NOD)-like receptor thermal protein domain associated protein 3 (NLRP3) inflammatory pathway. CONCLUSIONS: Hsp-Cu(II) complex reduced serum UA and protected kidneys from renal inflammatory damage and oxidative stress by modulating the NLRP3 pathway. Hsp-Cu(II) complex may be a promising dietary supplement or nutraceutical for the therapy of hyperuricemia.

9.
Heliyon ; 10(3): e24865, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38322942

RESUMO

Ethnopharmacological relevance: Shizhifang Decoction, a traditional Chinese medicine prescription formulated by Professor Zheng Pingdong of Shuguang Hospital, has been widely utilized in clinical settings for the treatment of hyperuricemia due to its proven safety and efficacy. Objective: In this study, we used network pharmacology, molecular docking technology, and experimental validation to elucidate the therapeutic effects and underlying mechanisms of Shizhifang Decoction in managing hyperuricemia. Methods: Quality control and component identification of the freeze-dried powder of Shizhifang Decoction were conducted using ultra-high performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry. Active ingredients and their corresponding targets were obtained from Traditional Chinese Medicine Systems Pharmacology, Traditional Chinese Medicine Information Database, The Encyclopedia of Traditional Chinese Medicine, and other databases. Disease-related targets for hyperuricemia were collected from GeneCards and DisGeNET databases. The Venny platform is used to screen common targets for drug active ingredients and diseases. Subsequently, we constructed an active component-target-disease interaction network using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, create a component disease common target network using Cytoscape 3.9.1 software, from which core targets were selected. Import common targets into the Database for Annotation, Visualization and Integrated Discovery (DAVID) for Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis. Molecular docking was then conducted to validate the binding capacity of key active ingredients and their associated targets in Shizhifang Decoction. The theoretical predictions were further confirmed through in vitro and in vivo experiments. Result: A total of 35 active ingredients and 597 action targets were identified, resulting in 890 disease-related targets for hyperuricemia. After comprehensive analysis, 99 common targets were determined. Protein-protein interaction network analysis revealed crucial relationships between these targets and hyperuricemia. Among them, 12 core targets (CASP3, IL1B, IL6, TNF, TP53, GAPDH, PTGS2, MYC, INS, VEGFA, ESR1, PPARG) were identified. Gene Ontology enrichment analysis demonstrated significant associations with the regulation of inflammatory response, cell apoptosis, and the positive regulation of extracellular regulated protein kinases 1 and extracellular regulated protein kinases 2 cascades. Kyoto Encyclopedia of Genes and Genomes pathway analysis highlighted inflammation and apoptosis-related pathways as critical mediators of Shizhifang Decoction's effects on hyperuricemia. Molecular docking studies further supported the interactions between apoptosis-related proteins and active ingredients in the extracellular regulated protein kinases 1/2 signaling pathway. In vitro experiments confirmed the downregulation of apoptosis-related proteins (caspase-3, Bax, Bcl-2) and the inhibition of the extracellular regulated protein kinases 1/2 signaling pathway by Shizhifang Decoction. These findings were also validated in animal models, demonstrating the potential of Shizhifang Decoction to mitigate renal injury induced by hyperuricemia through extracellular regulated protein kinases 1/2-mediated inhibition of renal tubular epithelial cell apoptosis. Conclusion: Our study provides valuable insights into the main mechanism by which Shizhifang Decoction ameliorates hyperuricemia. By targeting the ERK1/2 signaling pathway and modulating cell apoptosis, Shizhifang Decoction exhibits promising therapeutic potential for the treatment of hyperuricemia. These findings support the continued exploration and development of Shizhifang Decoction as a potential herbal remedy for hyperuricemia management.

10.
Phytomedicine ; 124: 155305, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176275

RESUMO

BACKGROUND: Hyperuricemia (HUA) is a metabolic disease characterized by a high level of uric acid (UA). The extensive historical application of traditional Chinese medicine (TCM) offers a range of herbs and prescriptions used for the treatment of HUA-related disorders. However, the core herbs in the prescriptions and their mechanisms have not been sufficiently explained. PURPOSE: Our current investigation aimed to estimate the anti-HUA effect and mechanisms of Paeonia veitchii Lynch, an herb with high use frequency identified from data mining of TCM prescriptions. METHODS: Prescriptions for HUA/gout treatment were statistically analyzed through a data mining approach to determine the common nature and use frequency of their composition herbs. The chemical constituents of Paeonia veitchii extract (PVE) were analyzed by UPLC-QTOF-MS/MS, while its UA-lowering effect was further evaluated in adenosine-induced liver cells and potassium oxonate (PO) and hypoxanthine (HX)-induced HUA mice. RESULTS: A total of 225 prescriptions involving 246 herbs were sorted out. The properties, flavors and meridians of the appearing herbs were mainly cold, bitter and liver, respectively, while their efficacy was primarily concentrated on clearing heat and dispelling wind. Further usage frequency analysis yielded the top 20 most commonly used herbs, in which PVE presented significant inhibitory activity (IC50 = 131.33 µg/ml) against xanthine oxidase (XOD), and its constituents showed strong binding with XOD in a molecular docking study and further were experimentally validated through XOD enzymatic inhibition and surface plasmon resonance (SPR). PVE (50 to 200 µg/ml) dose-dependently decreased UA levels by inhibiting XOD expression and activity in BRL 3A liver cells. In HUA mice, oral administration of PVE exhibited a significant UA-lowering effect, which was attributed to the reduction of UA production by inhibiting XOD activity and expression, as well as the enhancement of UA excretion by regulating renal urate transporters (URAT1, GLUT9, OAT1 and ABCG2). Noticeably, all doses of PVE treatment did not cause any liver injury, and displayed a renal protective effect. CONCLUSIONS: Our results first comprehensively clarified the therapeutic effect and mechanisms of PVE against HUA through suppressing UA production and promoting UA excretion with hepatic and renal protection, suggesting that PVE could be a promising UA-lowering candidate with a desirable safety profile for the treatment of HUA and prevention of gout.


Assuntos
Gota , Hiperuricemia , Paeonia , Camundongos , Animais , Hiperuricemia/induzido quimicamente , Ácido Úrico/metabolismo , Xantina Oxidase/metabolismo , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Rim
11.
Molecules ; 29(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38257230

RESUMO

Hazel leaf, a by-product of hazelnuts, is commonly used in traditional folk medicine in Portugal, Sweden, Iran and other regions for properties such as vascular protection, anti-bleeding, anti-edema, anti-infection, and pain relief. Based on our previous studies, the polyphenol extract from hazel leaf was identified and quantified via HPLC fingerprint. The contents of nine compounds including kaempferol, chlorogenic acid, myricetin, caffeic acid, p-coumaric acid, resveratrol, luteolin, gallic acid and ellagic acid in hazel leaf polyphenol extract (ZP) were preliminary calculated, among which kaempferol was the highest with 221.99 mg/g, followed by chlorogenic acid with 8.23 mg/g. The inhibition of ZP on α-glucosidase and xanthine oxidase activities was determined via the chemical method, and the inhibition on xanthine oxidase was better. Then, the effect of ZP on hyperuricemia zebrafish was investigated. It was found that ZP obviously reduced the levels of uric acid, xanthine oxidase, urea nitrogen and creatinine, and up-regulated the expression ofOAT1 and HPRT genes in hyperuricemia zebrafish. Finally, the targeted network pharmacological analysis and molecular docking of nine polyphenol compounds were performed to search for relevant mechanisms for alleviating hyperuricemia. These results will provide a valuable basis for the development and application of hazel leaf polyphenols as functional ingredients.


Assuntos
Corylus , Hiperuricemia , Animais , Polifenóis/farmacologia , Ácido Clorogênico/farmacologia , Simulação de Acoplamento Molecular , Peixe-Zebra , Farmacologia em Rede , Quempferóis , Hiperuricemia/tratamento farmacológico , Xantina Oxidase , Extratos Vegetais/farmacologia
12.
Nutrients ; 16(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257077

RESUMO

Hyperuricemia (HUA) is a prevalent chronic disease, characterized by excessive blood uric acid levels, that poses a significant health risk. In this study, the preventive effects and potential mechanisms of ethanol extracts from Chinese sumac (Rhus chinensis Mill.) fruits on HUA and uric acid nephropathy were comprehensively investigated. The results demonstrated a significant reduction in uric acid levels in hyperuricemia mice after treatment with Chinese sumac fruit extract, especially in the high-dose group, where the blood uric acid level decreased by 39.56%. Visual diagrams of the kidneys and hematoxylin and eosin (H&E)-stained sections showed the extract's effectiveness in protecting against kidney damage caused by excessive uric acid. Further investigation into its mechanism revealed that the extract prevents and treats hyperuricemia by decreasing uric acid production, enhancing uric acid excretion, and mitigating the oxidative stress and inflammatory reactions induced by excessive uric acid in the kidneys. Specifically, the extract markedly decreased xanthine oxidase (XOD) levels and expression in the liver, elevated the expression of uric acid transporters ABCG2, and lowered the expression of uric acid reabsorption proteins URAT1 and SLC2A9. Simultaneously, it significantly elevated the levels of endogenous antioxidant enzymes (SOD and GSH) while reducing the level of malondialdehyde (MDA). Furthermore, the expression of uric-acid-related proteins NLRP3, ACS, and Caspase-3 and the levels of IL-1ß and IL-6 were significantly reduced. The experimental results confirm that Chinese sumac fruit extract can improve HUA and uric acid nephropathy in mice fed a high-purine yeast diet. This finding establishes a theoretical foundation for developing Chinese sumac fruit as a functional food or medicine for preventing and treating HUA.


Assuntos
Ailanthus , Hiperuricemia , Nefropatias , Rhus , Animais , Camundongos , Saccharomyces cerevisiae , Frutas , Ácido Úrico , Hiperuricemia/induzido quimicamente , Hiperuricemia/prevenção & controle , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Extratos Vegetais/farmacologia , Dieta
13.
J Agric Food Chem ; 72(5): 2573-2584, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38240209

RESUMO

Hyperuricemia (HUA) is a metabolic disorder characterized by an increase in the concentrations of uric acid (UA) in the bloodstream, intricately linked to the onset and progression of numerous chronic diseases. The tripeptide Pro-Glu-Trp (PEW) was identified as a xanthine oxidase (XOD) inhibitory peptide derived from whey protein, which was previously shown to mitigate HUA by suppressing UA synthesis and enhancing renal UA excretion. However, the effects of PEW on the intestinal UA excretion pathway remain unclear. This study investigated the impact of PEW on alleviating HUA in rats from the perspective of intestinal UA transport, gut microbiota, and intestinal barrier. The results indicated that PEW inhibited the XOD activity in the serum, jejunum, and ileum, ameliorated intestinal morphology changes and oxidative stress, and upregulated the expression of ABCG2 and GLUT9 in the small intestine. PEW reversed gut microbiota dysbiosis by decreasing the abundance of harmful bacteria (e.g., Bacteroides, Alloprevotella, and Desulfovibrio) and increasing the abundance of beneficial microbes (e.g., Muribaculaceae, Lactobacillus, and Ruminococcus) and elevated the concentration of short-chain fatty acids. PEW upregulated the expression of occludin and ZO-1 and decreased serum IL-1ß, IL-6, and TNF-α levels. Our findings suggested that PEW supplementation ameliorated HUA by enhancing intestinal UA excretion, modulating the gut microbiota, and restoring the intestinal barrier function.


Assuntos
Dipeptídeos , Microbioma Gastrointestinal , Hiperuricemia , Ratos , Animais , Hiperuricemia/metabolismo , Ácido Úrico/metabolismo , Proteínas do Soro do Leite , Peptídeos
14.
J Tradit Chin Med ; 44(1): 182-187, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38213253

RESUMO

OBJECTIVE: To evaluate the effect of Dahuang Mudan Tang (, DHMD) and allopurinol on the treatment of chronic kidney disease staged G1-G3b patients with hyperuricemia and to provide novel insights into the clinical management of chronic kidney disease complications. METHODS: A total of 80 chronic kidney patients staged G1-G3b with hyperuricemia were randomly grouped to receive single allopurinol treatment (control) and combined treatment with DHMD (treated) for 8 weeks. The kidney function and proteinuria indicators of patients were compared between pre-and post-treatment. The oxidative stress and inflammation responses were evaluated by corresponding indicators and cytokines. The clinical efficiency rate and adverse reaction events were also summarized to assess the therapeutic efficiency and safety. RESULTS: The kidney function and proteinuria of enrolled patients were alleviated after their therapies, behaved as the increasing estimated glomerular filtration rate and decreasing serum creatinine, serum uric acid, urea nitrogen, 24 h urine protein levels. On the other hand, the malondialdehyde level and pro-inflammation cytokines were suppressed by the therapies, and the superoxide dismutase was found to be significantly enhanced. Patients in the treated groups showed a better recovery in kidney function, proteinuria, oxidative stress, and inflammation response. Moreover, patients in the treated group showed a higher efficiency rate (95%) and fewer adverse reaction events (5%). CONCLUSIONS: The combination of allopurinol with DHMD significantly promoted the recovery of chronic kidney disease stage G1-G3b patients with hyperuricemia, which can be considered a novel clinical therapeutic strategy.


Assuntos
Hiperuricemia , Insuficiência Renal Crônica , Humanos , Alopurinol/uso terapêutico , Alopurinol/farmacologia , Hiperuricemia/tratamento farmacológico , Hiperuricemia/complicações , Ácido Úrico , Resultado do Tratamento , Insuficiência Renal Crônica/tratamento farmacológico , Proteinúria/complicações , Proteinúria/tratamento farmacológico , Estresse Oxidativo , Rim , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Citocinas
15.
J Ethnopharmacol ; 321: 117527, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056535

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: With the rapid development of China's economic level, great changes have taken place in people's diet structure, gout has become a common disease that puzzles people's health, seriously affects the realization of China's "Healthy China" strategic goal. Gouty arthritis (GA) is a common joint disease caused by chronic purine metabolism disorder. Currently, drugs used to treat GA are allopurinol and colchicine. However, these drugs can only temporarily relieve the clinical symptoms of GA with significant side effects. More and more basic and clinical studies have confirmed that Traditional Chinese medicine has definite curative effect on GA. AIM OF THE STUDY: To elucidate the potential molecular mechanism of Tongfengkang (TFK) in the treatment of GA, and to provide experimental basis for the search and development of efficient and low-toxicity Chinese medicine for GA treatment. MATERIALS AND METHODS: Aqueous extract of TFK (AETFK) were determined by liquid phase high resolution mass spectrometry and the possible effective constituents were screened out. Acute GA model rats were established to detect the anti-inflammatory and detumification effects of AETFK on GA and explore the potential mechanism. The effect of AETFK on serum uric acid and urinary uric acid levels in acute GA rats was determined by automatic biochemical analyzer, and the effect of AETFK on the expression of acute GA-related immunoinflammatory factors were determined by protein thermal fluorescence chip. The effect of AETFK on the concentration of neutrophils in the joint fluid of acute GA rats were determined by Reichs-Giemsa staining. The effect of AETFK on macrophage activation was detected by ELISA. In order to further investigate the mechanism of AETFK in the treatment of GA, a rat model of hyperuricemia was established to detect the effect of AETFK on the level of uric acid in hyperuricemia model rats. Biochemical indexes of liver and kidney and hematoxylin-eosin staining (HE) were used to evaluate the effects of AETFK on the organs, and to preliminatively evaluate the safety of ventilation confufang. RESULTS: Compared with the model group, the joint swelling degree of GA rats in AETFK treatment group were significantly reduced, and the levels of blood uric acid and urine uric acid were also significantly decreased. Protein thermal fluorescence microarray results showed that the levels of gout - related inflammatory factors in GA rats in AETFK treatment group were significantly lower than those in control group. Reichsen-giemsa staining and ELISA showed that AETFK could reduce the activation of macrophages and the accumulation of neutrophils in the joint fluid. The results of liver and kidney biochemical indexes and HE staining showed that no obvious tissue damage was observed in the organs of rats treated with AETFK. CONCLUSIONS: AETFK not only has significant anti-inflammatory effects on GA, but also can significantly reduce the level of blood uric acid in GA rats, without obvious toxic and side effects. These effects may be related to AETFK's inhibition of neutrophil enrichment and macrophage activation during early inflammation.


Assuntos
Artrite Gotosa , Medicamentos de Ervas Chinesas , Gota , Hiperuricemia , Humanos , Ratos , Animais , Artrite Gotosa/tratamento farmacológico , Artrite Gotosa/metabolismo , Ácido Úrico , Gota/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Anti-Inflamatórios/farmacologia
16.
Fitoterapia ; 172: 105718, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37931719

RESUMO

The strategies or drugs for preventing and treating Hyperuricemia (HUA) are still lacking. As a traditional Chinese medicine (TCM) with a profound history, Ampelopsis grossedentata has been shown to play diverse biological roles. The purpose of the present study was to evaluate hypouricemic effect of A. grossedentata, and investigate its involved material basis and mechanism. A HUA mice model was established to evaluate the therapeutic effects of A. grossedentata. And then some extracts from A. grossedentata were prepared, isolated and analyzed. Furthermore, network pharmacology, based on the above results, was used to discover potential active ingredients and therapeutic targets, and they were further verified and explored by molecular docking and in vitro experiments. In vivo experiments showed that A. grossedentata exerted hypouricemic effect on mice of HUA. The core active ingredients (quercetin, myricetin and dihydromyricetin etc.) and core targets (PTGS2, XOD and ABCG2 etc.) for A. grossedentata to treat HUA were predicted by network pharmacology. And molecular docking showed that the spontaneous binding activities of above components and targets were marvelous. In vitro experiments further demonstrated that A. grossedentata exerted hypouricemic effect by decreasing the levels of UA, XOD, antioxidant factors, inflammatory factors, GLUT9 and URAT1 in HK-2 cells of HUA. Taken together, this study integrates multi-level interaction network with in vivo/vitro experiments to systematically reveal the material basis and mechanism of A. grossedentata in treating HUA, which provides a scientific basis for further study of A. grossedentata and HUA.


Assuntos
Ampelopsis , Hiperuricemia , Camundongos , Animais , Hiperuricemia/tratamento farmacológico , Ampelopsis/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Antioxidantes/farmacologia
17.
Int J Rheum Dis ; 27(1): e14986, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38014453

RESUMO

BACKGROUND: Studies have demonstrated the association of hyperuricemia with hypertension, metabolic syndrome, cardiovascular disease, and chronic renal disease. Although Western medicine presents promising effects for treating hyperuricemia and gout, identifying a safe and effective alternative to traditional Chinese medicine (TCM) for treating hyperuricemia is essential. OBJECTIVE: To evaluate the efficacy and safety of TCM formulas, "Wu-Ling San" and "Yin Chen Wu-Ling San," in patients with hyperuricemia. METHODS: A randomized, double-blinded, placebo-controlled clinical trial in adults with hyperuricemia was conducted. Sixty patients with serum urate level higher than 8 mg/dL were enrolled in the study. Patients were then randomized into three arms: "Wu-Ling San," "Yin Chen Wu-Ling San," and placebo for 4 weeks. Efficacy and safety were evaluated at weeks 2, 4, and 8. Primary and secondary endpoints were set to evaluate the serum urate concentration and related indicators at weeks 2, 4, and 8. RESULTS: No significant differences were observed among the three arms in terms of the serum urate level (<6 mg/dL) at week 4. The serum urate level was lower in the "Yin Chen Wi-Ling" arm at week 8 (8.1 mg/dL vs. 9.1 mg/dL, p = .034). The serum urate levels were significantly different in both the "Wu-Ling San" and "Yin Chen Wu-Ling San" arms from those at the baseline (p < .05). CONCLUSIONS: Two TCM formulas were found to be relatively safe for the short-term treatment of the patients with hyperuricemia. No statistically significant difference was observed in reaching the target-serum urate level <6 mg/dL.


Assuntos
Gota , Hiperuricemia , Adulto , Humanos , Hiperuricemia/diagnóstico , Hiperuricemia/tratamento farmacológico , Ácido Úrico , Medicina Tradicional Chinesa , Gota/diagnóstico , Gota/tratamento farmacológico , Supressores da Gota/efeitos adversos , Resultado do Tratamento
18.
Biomed Chromatogr ; 38(3): e5807, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38118432

RESUMO

This study seeks to investigate the therapeutic effects of Si Miao San (SMS) on hyperuricemia and its underlying mechanisms, particularly focusing on the role of intestinal flora. The key components of SMS were identified using high-performance liquid chromatography (HPLC). To establish a rat model of hyperuricemia, an intraperitoneal injection of potassium oxonate was performed, followed by oral administration of various concentrations of SMS. The study evaluated the status of hyperuricemia, renal pathology, xanthine oxidase (XO) activity, and intestinal flora. Utilizing HPLC, we identified five active components of SMS. Following SMS intervention, there was a significant reduction in serum levels of uric acid (UA), blood urea nitrogen, and creatinine, accompanied by an increase in urine UA levels in rats with hyperuricemia. Distinct pathological injuries were evident in the renal tissues of hyperuricemic rats, and these were partially alleviated following SMS intervention. Moreover, SMS exhibited a dose-dependent reduction in XO activity both in the serum and hepatic tissues. Notably, SMS contributed to an enhancement in the diversity of intestinal flora in hyperuricemic rats. The intervention of SMS resulted in a reduction in the abundance of certain bacterial species, including Parabacteroides johnsonii, Corynebacterium urealyticum, and Burkholderiales bacterium. This suggests that SMS may exert anti-hyperuricemia effects, potentially by modulating the composition of intestinal flora.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Hiperuricemia , Ratos , Animais , Hiperuricemia/tratamento farmacológico , Rim , Ácido Úrico , Xantina Oxidase
19.
Molecules ; 28(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38067624

RESUMO

The ATP-binding cassette (ABC) transporter ABCG2 is a significant urate transporter with a high capacity, and it plays a crucial role in the development of hyperuricemia and gout. Therefore, it has the potential to be targeted for therapeutic interventions. Cortex Fraxini, a traditional Chinese medicine (TCM), has been found to possess anti-hyperuricemia properties. However, the specific constituents of Cortex Fraxini responsible for this effect are still unknown, particularly the compound that is responsible for reducing uric acid levels in vivo. In this study, we propose a target screening protocol utilizing bio-affinity ultrafiltration mass spectrometry (BA-UF-MS) to expediently ascertain ABCG2 ligands from the plasma of rats administered with Cortex Fraxini. Our screening protocol successfully identified fraxin as a potential ligand that interacts with ABCG2 when it functions as the target protein. Subsequent investigations substantiated fraxin as an activated ligand of ABCG2. These findings imply that fraxin exhibits promise as a drug candidate for the treatment of hyperuricemia. Furthermore, the utilization of BA-UF-MS demonstrates its efficacy as a valuable methodology for identifying hit compounds that exhibit binding affinity towards ABCG2 within TCMs.


Assuntos
Medicamentos de Ervas Chinesas , Gota , Hiperuricemia , Ratos , Animais , Ultrafiltração , Ligantes , Medicamentos de Ervas Chinesas/química , Transportadores de Cassetes de Ligação de ATP , Espectrometria de Massas
20.
Foods ; 12(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38137270

RESUMO

Hyperuricemia is a medical condition characterized by an elevated level of serum uric acid, closely associated with other metabolic disorders, and its global incidence rate is increasing. Increased synthesis or decreased excretion of uric acid can lead to hyperuricemia. Protein peptides from various food sources have demonstrated potential in treating hyperuricemia, including marine organisms, ovalbumin, milk, nuts, rice, legumes, mushrooms, and protein-rich processing by-products. Through in vitro experiments and the establishment of cell or animal models, it has been proven that these peptides exhibit anti-hyperuricemia biological activities by inhibiting xanthine oxidase activity, downregulating key enzymes in purine metabolism, regulating the expression level of uric acid transporters, and restoring the composition of the intestinal flora. Protein peptides derived from food offer advantages such as a wide range of sources, significant therapeutic benefits, and minimal adverse effects. However, they also face challenges in terms of commercialization. The findings of this review contribute to a better understanding of hyperuricemia and peptides with hyperuricemia-alleviating activity. Furthermore, they provide a theoretical reference for developing new functional foods suitable for individuals with hyperuricemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA