Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Phytomedicine ; 124: 155294, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176271

RESUMO

BACKGROUND: Innate immune memory of macrophages is closely linked to histone modifications. While various studies have demonstrated that the polysaccharide of Asparagus cochinchinensis (Lour.) Merr (ACMP), extracted through alcohol-alkali extraction, enhances macrophages' non-specific immune function; no literature currently addresses whether ACMP's regulatory effect is related to innate immune memory and histone modification. PURPOSE: This study aims to investigate if ACMP induces innate immune memory emergence in macrophages via pattern recognition receptor (PRR). STUDY DESIGN: After co-incubating different doses of ACMP with RAW264.7 cells and BMDM cells, we observed changes in signaling pathways related to PRR and assessed the presence of innate immune memory phenomenon in the cells. METHODS: We observed the morphological characteristics of the ACMP using a scanning electron microscope, infrared spectrum, and HPLC pre-column derivatization method. We used q-PCR, Western blot, RNA-seq, and CUT&Tag-seq methods to examine ACMP's regulation of macrophage immune response and innate immune memory and explored its specific mechanism. RESULTS: ACMP, primarily composed of Man, GlcN, Rha, Fuc, GalA, Xyl, Glc, Gal, Ara, and, exhibited a molar ratio of each monosaccharide (1.41: 0.35: 0.49: 0.18: 1.00: 97.12: 0.36: 3.58: 1.14). ACMP regulated immunological function in macrophages through the TLR4-MAPK-JNK/p38/ERK pathway. ACMP induced elevated levels of chromosomal H3K4me1, enhancing TNF-α, IL-1ß, and other genes' responsiveness, allowing macrophages to develop innate immune memory to ACMP stimulation. CONCLUSION: This study first time demonstrates that ACMP regulates immunological function through the TLR4-MAPK-JNK/ERK/p38 signaling pathway, distinct from prior reports. ACMP induces innate immune memory in macrophages in response to its immune stimulation by promoting increased H3K4me1 on chromosomes. This mechanism may be crucial in how plant polysaccharides regulate macrophages and the body's immune function.


Assuntos
Aminopiridinas , Memória Epigenética , Receptor 4 Toll-Like , Humanos , Masculino , Receptor 4 Toll-Like/metabolismo , Código das Histonas , Transdução de Sinais , Macrófagos , Polissacarídeos/farmacologia , Imunidade
2.
Small ; 19(21): e2206441, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36799196

RESUMO

Although photothermal therapy (PTT) can noninvasively kill tumor cells and exert synergistic immunological effects, the immune responses are usually harmed due to the lack of cytotoxic T cells (CTLs) pre-infiltration and co-existing of intricate immunosuppressive tumor microenvironment (TME), including the programmed cell death ligand 1 (PD-L1)/cluster of differentiation 47 (CD47)/regulatory T cells (Tregs)/M2-macrophages overexpression. Indoleamine 2, 3-dioxygenase inhibitor (NLG919) or bromodomain extra-terminal inhibitor (OTX015) holds great promise to reprogram suppressive TME through different pathways, but their collaborative application remains a formidable challenge because of the poor water solubility and low tumor targeting. To address this challenge, a desirable nanomodulator based on dual immune inhibitors loaded mesoporous polydopamine nanoparticles is designed. This nanomodulator exhibits excellent biocompatibility and water solubility, PTT, and bimodal magnetic resonance/photoacoustic imaging abilities. Owing to enhanced permeability and retention effect and tumor acidic pH-responsiveness, both inhibitors are precisely delivered and locally released at tumor sites. Such a nanomodulator significantly reverses the immune suppression of PD-L1/CD47/Tregs, promotes the activation of CTLs, regulates M2-macrophages polarization, and further boosts combined therapeutic efficacy, inducing a strong immunological memory. Taken together, the nanomodulator provides a practical approach for combinational photothermal-immunotherapy, which may be further broadened to other "immune cold" tumors.


Assuntos
Nanopartículas , Neoplasias , Humanos , Antígeno B7-H1 , Antígeno CD47 , Fototerapia/métodos , Imunoterapia , Neoplasias/terapia , Água , Microambiente Tumoral , Linhagem Celular Tumoral
3.
MedComm (2020) ; 3(1): e121, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35281787

RESUMO

Traditionally, immune memory is regarded as an exclusive hallmark of adaptive immunity. However, a growing body of evidence suggesting that innate immune cells show adaptive characteristics has challenged this dogma. In the past decade, trained immunity, a de facto innate immune memory, has been defined as a long-term functional reprogramming of cells of the innate immune system: the reprogramming is evoked by endogenous or exogenous insults, the cells return to a nonactivated state and subsequently show altered inflammatory responses against a second challenge. Trained immunity became regarded as a mechanism selected in evolution to protect against infection; however, a maladaptive effect might result in hyperinflammation. This dual effect is consistent with the Yin-Yang theory in traditional Chinese philosophy, in which Yang represents active, positive, and aggressive factors, whereas Yin represents passive, negative, and inhibitory factors. In this review, we give a brief overview of history and latest progress about trained immunity, including experimental models, inductors, molecular mechanisms, clinical application and so on. Moreover, this is the first time to put forward the theory of Yin-Yang balance to understand trained immunity. We envision that more efforts will be focused on developing novel immunotherapies targeting trained immunity in the coming years.

4.
Theranostics ; 11(14): 6860-6872, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093858

RESUMO

Background: Immunotherapy has profoundly changed the landscape of cancer management and represented the most significant breakthrough. Yet, it is a formidable challenge that the majority of cancers - the so-called "cold" tumors - poorly respond to immunotherapy. To find a general immunoregulatory modality that can be applied to a broad spectrum of cancers is an urgent need. Methods: Magnetic hyperthermia (MHT) possesses promise in cancer therapy. We develop a safe and effective therapeutic strategy by using magnetism-mediated targeting MHT-immunotherapy in "cold" colon cancer. A magnetic liposomal system modified with cell-penetrating TAT peptide was developed for targeted delivery of a CSF1R inhibitor (BLZ945), which can block the CSF1-CSF1R pathway and reduce M2 macrophages. The targeted delivery strategy is characterized by its magnetic navigation and TAT-promoting intratumoral penetration. Results: The liposomes (termed TAT-BLZmlips) can induce ICD and cause excessive CRT exposure on the cell surface, which transmits an "eat-me" signal to DCs to elicit immunity. The combination of MHT and BLZ945 can repolarize M2 macrophages in the tumor microenvironment to relieve immunosuppression, normalize the tumor blood vessels, and promote T-lymphocyte infiltration. The antitumor effector CD8+ T cells were increased after treatment. Conclusion: This work demonstrated that TAT-BLZmlips with magnetic navigation and MHT can remodel tumor microenvironment and activate immune responses and memory, thus inhibiting tumor growth and recurrence.


Assuntos
Neoplasias do Colo/terapia , Terapia Combinada/métodos , Hipertermia , Imunoterapia/métodos , Lipossomos/química , Magnetoterapia/métodos , Nanopartículas de Magnetita/química , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Benzotiazóis/farmacocinética , Benzotiazóis/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/imunologia , Feminino , Humanos , Lipossomos/metabolismo , Lipossomos/efeitos da radiação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/terapia , Ácidos Picolínicos/farmacocinética , Ácidos Picolínicos/farmacologia , Ratos , Microambiente Tumoral/efeitos dos fármacos , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806610

RESUMO

Microglia, the innate immune cells of the CNS, exhibit long-term response changes indicative of innate immune memory (IIM). Our previous studies revealed IIM patterns of microglia with opposing immune phenotypes: trained immunity after a low dose and immune tolerance after a high dose challenge with pathogen-associated molecular patterns (PAMP). Compelling evidence shows that innate immune cells adopt features of IIM via immunometabolic control. However, immunometabolic reprogramming involved in the regulation of IIM in microglia has not been fully addressed. Here, we evaluated the impact of dose-dependent microglial priming with ultra-low (ULP, 1 fg/mL) and high (HP, 100 ng/mL) lipopolysaccharide (LPS) doses on immunometabolic rewiring. Furthermore, we addressed the role of PI3Kγ on immunometabolic control using naïve primary microglia derived from newborn wild-type mice, PI3Kγ-deficient mice and mice carrying a targeted mutation causing loss of lipid kinase activity. We found that ULP-induced IIM triggered an enhancement of oxygen consumption and ATP production. In contrast, HP was followed by suppressed oxygen consumption and glycolytic activity indicative of immune tolerance. PI3Kγ inhibited glycolysis due to modulation of cAMP-dependent pathways. However, no impact of specific PI3Kγ signaling on immunometabolic rewiring due to dose-dependent LPS priming was detected. In conclusion, immunometabolic reprogramming of microglia is involved in IIM in a dose-dependent manner via the glycolytic pathway, oxygen consumption and ATP production: ULP (ultra-low-dose priming) increases it, while HP reduces it.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase/imunologia , Imunidade Inata/imunologia , Memória Imunológica/imunologia , Trifosfato de Adenosina/imunologia , Animais , Glicólise/imunologia , Tolerância Imunológica/imunologia , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/imunologia , Consumo de Oxigênio/imunologia , Moléculas com Motivos Associados a Patógenos/imunologia , Transdução de Sinais/imunologia
6.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233585

RESUMO

Glioblastomas (GBs) are malignant brain tumours with poor prognosis even after aggressive therapy. Programmed cell death-1 (PD-1) immune checkpoint blockade is a promising strategy in many types of cancer, but its therapeutic effects in GB remain low and associated with immune infiltration. Previous work suggests that oscillations of magnetic resonance spectroscopic imaging (MRSI)-based response pattern with chemotherapy could act as a biomarker of efficient immune system attack onto GBs. The presence of such oscillations with other monotherapies such as anti-PD-1 would reinforce its monitoring potential. Here, we confirm that the oscillatory behaviour of the response biomarker is also detected in mice treated with anti PD-1 immunotherapy both in combination with temozolomide and as monotherapy. This indicates that the spectral pattern changes observed during therapy response are shared by different therapeutic strategies, provided the host immune system is elicited and able to productively attack tumour cells. Moreover, the participation of the immune system in response is also supported by the rate of cured animals observed with different therapeutic strategies (in the range of 50-100% depending on the treatment), which also held long-term immune memory against tumour cells re-challenge. Taken together, our findings open the way for a translational use of the MRSI-based biomarker in patient-tailored GB therapy, including immunotherapy, for which reliable non-invasive biomarkers are still missing.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Imunológicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Receptor de Morte Celular Programada 1/genética , Temozolomida/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Biomarcadores Farmacológicos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Esquema de Medicação , Cronofarmacoterapia , Avaliação Pré-Clínica de Medicamentos , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/mortalidade , Imunoglobulina G/farmacologia , Memória Imunológica/efeitos dos fármacos , Imunoterapia/métodos , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Análise de Sobrevida , Carga Tumoral/efeitos dos fármacos
7.
Theranostics ; 10(4): 1814-1832, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32042338

RESUMO

Melanoma is one of the deadliest malignancies with a high risk of relapse and metastasis. Long-term, tumor-specific, and systemic immunity induced by local intervention is ideal for personalized cancer therapy. Laser immunotherapy (LIT), a combination of local irradiation of laser and local administration of an immunostimulant, was developed to achieve such an immunity. Although LIT showed promising efficacy on tumors, its immunological mechanism is still not understood, especially its spatio-temporal dynamics. Methods: In this study, we investigated LIT-induced immunological responses using a 980-nm laser and a novel immunostimulant, N-dihydrogalactochitosan (GC). Then we followed the functions of key immune cells spatially and temporally using intravital imaging and immunological assays. Results: Immediately after LIT, GC induced a rapid infiltration of neutrophils which ingested most GC in tumors. The cytokines released to the serum peaked at 12 h after LIT. Laser irradiations produced photothermal effects to ablate the tumor, release damage-associated molecular patterns, and generate whole-cell tumor vaccines. LIT-treated tumor-bearing mice efficiently resisted the rechallenged tumor and prevented lung metastasis. Intravital imaging of tumor at rechallenging sites in LIT-treated mice revealed that the infiltration of tumor-infiltrating lymphocytes (TILs) increased with highly active motility. Half of TILs with arrest and confined movements indicated that they had long-time interactions with tumor cells. Furthermore, LIT has synergistic effect with checkpoint blockade to improve antitumor efficacy. Conclusion: Our research revealed the important role of LIT-induced neutrophil infiltration on the in situ whole-cell vaccine-elicited antitumor immune response and long-term T cell immune memory.


Assuntos
Memória Imunológica/efeitos da radiação , Imunoterapia/métodos , Melanoma/patologia , Infiltração de Neutrófilos/efeitos da radiação , Linfócitos T/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Feminino , Neoplasias Pulmonares/secundário , Melanoma/mortalidade , Melanoma/terapia , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica/prevenção & controle , Fototerapia/métodos
8.
ACS Appl Mater Interfaces ; 11(45): 42661-42670, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31638366

RESUMO

Radiotherapy was considered to induce an abscopal effect initiated through antigen release and presented by dendritic cells (DC), while the immunosuppressive tumor microenvironment (TEM) attenuated the effects. Herein, we utilized bioactive polysaccharides extracted from the natural herb Astragalus membranaceus and developed polysaccharide nanoparticles (ANPs) that can reverse TEM and, accordingly, enhance the radiation-induced abscopal effect. ANP showed ability to prolong the survival rate of tumor-bearing mice. In addition, ANP dramatically inhibited the growth of the primary tumor subjected to radiation as well as the secondary tumor distant from the primary lesion. Mechanistic study demonstrated that an ANP-induced immune response was mainly reflected by DC activation, represented by phenotypic maturation and enhanced antigen presentation through the TLR4 signaling pathway. Mature DC induced by ANP migrated to the tumor-draining lymph node and initiated T-cell expansion. Specifically, DC activation was successfully translated into an increase in CD4+ T/Treg and CD8+ T/Treg ratios within both primary (irradiated) and secondary (unirradiated) tumors. Our results also indicated that the systemic antitumor immune response and immune memory were enhanced with the increase in IFN-γ production and effector memory T-cell population. Our work provided a novel strategy to facilitate the incorporation of immunoactive macromolecules purified from natural herbs into modern nanotechnology in the era of immunotherapy.


Assuntos
Astragalus propinquus/química , Células Dendríticas/imunologia , Neoplasias/radioterapia , Extratos Vegetais/administração & dosagem , Polissacarídeos/administração & dosagem , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Neoplasias/imunologia
9.
Vaccine ; 37(51): 7455-7462, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31590936

RESUMO

Bovine respiratory disease (BRD) remains a major health problem despite extensive use of vaccines during the post-weaning period. Apparent vaccine failure is attributed, in part, to primary vaccination during the period of greatest risk for BRD, providing inadequate time for onset of protective immunity. The current study investigated whether intranasal (IN) vaccination of 3-6 week old calves with a modified-live viral (MLV) vaccine induced sufficient immune memory to prevent respiratory disease and accelerate onset of protective immunity 5 months later. Vaccine groups included naïve controls, a single IN vaccination at 3-6 weeks of age, primary IN vaccination at 6 months, and either an IN or subcutaneous (SC) booster vaccination at 6 months (n = 10/group). All calves were challenged with BHV-1 four days after vaccination at 6 months of age. Primary IN vaccination at 6 months did not significantly reduce clinical disease but significantly (P < 0.01) reduced virus shedding. A single IN vaccination at 3-6 weeks of age significantly (P < 0.05) reduced weight loss but did not reduce fever or virus shedding. Both IN and SC booster vaccinations, significantly (P < 0.01) reduced clinical disease but virus shedding was significantly (P < 0.001) reduced only by IN booster vaccination. Reduction in virus shedding was significantly (P < 0.01) greater following booster versus primary IN vaccination at 6 months. All vaccination regimes significantly (P < 0.01) reduced secondary bacterial pneumonia and altered interferon responses relative to naïve controls. Only IN booster vaccination significantly (P < 0.05) increased BHV-1 specific IgA in nasal secretions. These results confirm primary MLV IN vaccination at 3 to 6 weeks of age, when virus neutralizing maternal antibody was present, induced immune memory with a 5 month duration. This immune memory supported rapid onset of protective immunity four days after an IN booster vaccination.


Assuntos
Herpesvirus Bovino 1/imunologia , Vacinas contra Herpesvirus/administração & dosagem , Imunização Secundária/métodos , Memória Imunológica/efeitos dos fármacos , Rinotraqueíte Infecciosa Bovina/prevenção & controle , Pneumonia Bacteriana/prevenção & controle , Administração Intranasal , Animais , Animais Recém-Nascidos , Anticorpos Antivirais/sangue , Bovinos , Colostro/química , Colostro/imunologia , Feminino , Herpesvirus Bovino 1/efeitos dos fármacos , Herpesvirus Bovino 1/patogenicidade , Imunidade nas Mucosas/efeitos dos fármacos , Imunoglobulina A/sangue , Rinotraqueíte Infecciosa Bovina/imunologia , Rinotraqueíte Infecciosa Bovina/mortalidade , Rinotraqueíte Infecciosa Bovina/virologia , Masculino , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/mortalidade , Gravidez , Análise de Sobrevida , Vacinação/métodos , Vacinas Atenuadas , Carga Viral/efeitos dos fármacos , Eliminação de Partículas Virais/efeitos dos fármacos , Redução de Peso/efeitos dos fármacos
10.
Adv Healthc Mater ; 5(10): 1169-76, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26987867

RESUMO

A plain mesoporous silica nanoparticle without any immunomodulatory molecules significantly enhances anticancer immunity in vivo. Comprehensive mechanism of mesoporous-silica-nanoparticle-induced cancer immunotherapy is analyzed in this paper. The mesoporous silica nanoparticle promotes both Th1 and Th2 immune responses, as it accelerates lymphocytes proliferation, stimulates IFN-γ, IL-2, IL-4, and IL-10 cytokine secretion by lymphocytes ex vivo, and increases IgG, IgG1, IgG2a, IgM, and IgA antibody titers in mice serum compared with those of alum and adjuvant-free groups. Moreover, the mesoporous silica nanoparticle enhances effector memory CD4(+) and CD8(+) T cell populations in three most important immune organs (bone marrow, lymph node, and spleen) of mice compared with those of alum and adjuvant-free groups three months after adjuvant injection. The present study paves the way for the application of mesoporous silica nanoparticle as immunoadjuvant for cancer immunotherapy.


Assuntos
Nanopartículas/administração & dosagem , Neoplasias/imunologia , Neoplasias/terapia , Dióxido de Silício/administração & dosagem , Dióxido de Silício/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células/efeitos dos fármacos , Feminino , Imunoglobulinas/imunologia , Memória Imunológica/efeitos dos fármacos , Memória Imunológica/imunologia , Imunoterapia/métodos , Interferon gama/imunologia , Interleucinas/imunologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Baço/efeitos dos fármacos , Baço/imunologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th2/efeitos dos fármacos , Células Th2/imunologia
11.
Angew Chem Int Ed Engl ; 55(5): 1899-903, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26404897

RESUMO

The use of appropriate adjuvants that support the generation of robust and long-lasting antitumor immune responses is crucial for tumor immunotherapy owing to the immunosuppressive environment of the growing tumor. However, the most commonly used adjuvant, aluminum hydroxide, is ineffective for generating such immune responses and therefore not suitable for cancer immunotherapy. It is now shown that plain hollow mesoporous silica nanospheres markedly improve the antitumor immunity, the Th1 and Th2 immunity, and the CD4(+) and CD8(+) effector memory T cell population in bone marrow in vivo and may thus be used as immunoadjuvants to treat cancer in humans.


Assuntos
Antineoplásicos/farmacologia , Nanosferas , Neoplasias/terapia , Dióxido de Silício/química , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Imunoterapia , Neoplasias/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA