Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
EFSA J ; 22(4): e8719, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38650612

RESUMO

Surveillance data published since 2010, although limited, showed that there is no evidence of zoonotic parasite infection in market quality Atlantic salmon, marine rainbow trout, gilthead seabream, turbot, meagre, Atlantic halibut, common carp and European catfish. No studies were found for greater amberjack, brown trout, African catfish, European eel and pikeperch. Anisakis pegreffii, A. simplex (s. s.) and Cryptocotyle lingua were found in European seabass, Atlantic bluefin tuna and/or cod, and Pseudamphistomum truncatum and Paracoenogonimus ovatus in tench, produced in open offshore cages or flow-through ponds or tanks. It is almost certain that fish produced in closed recirculating aquaculture systems (RAS) or flow-through facilities with filtered water intake and exclusively fed heat-treated feed are free of zoonotic parasites. Since the last EFSA opinion, the UV-press and artificial digestion methods have been developed into ISO standards to detect parasites in fish, while new UV-scanning, optical, molecular and OMICs technologies and methodologies have been developed for the detection, visualisation, isolation and/or identification of zoonotic parasites in fish. Freezing and heating continue to be the most efficient methods to kill parasites in fishery products. High-pressure processing may be suitable for some specific products. Pulsed electric field is a promising technology although further development is needed. Ultrasound treatments were not effective. Traditional dry salting of anchovies successfully inactivated Anisakis. Studies on other traditional processes - air-drying and double salting (brine salting plus dry salting) - suggest that anisakids are successfully inactivated, but more data covering these and other parasites in more fish species and products is required to determine if these processes are always effective. Marinade combinations with anchovies have not effectively inactivated anisakids. Natural products, essential oils and plant extracts, may kill parasites but safety and organoleptic data are lacking. Advanced processing techniques for intelligent gutting and trimming are being developed to remove parasites from fish.

2.
Lasers Med Sci ; 39(1): 95, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538952

RESUMO

Photodynamic inactivation (PDI) technology is a promising alternative to antibiotics. This technology is defined as the inhibition of bacterial growth with photosensitizers while irradiated with low-level laser light in the wavelength of 532 ± 2.08 nm. A challenging area in this field is selecting photosensitizers with antibacterial potential. In this paper, to enhance the antibacterial efficiency, the photosensitizers (the selected plant extracts) with a high absorption peak at the selected laser frequency, 532 nm, were prepared. Low-concentration ethanolic plant extracts of Hibiscus sabdariffa and Opuntia ficus-indica were found to exhibit significant antibacterial activity against, Acinetobacter baumannii ATCC 19606 and, Staphylococcus aureus ATCC 33591 as two important human pathogenic bacteria. The effectiveness of these natural photosensitizers was measured by determining their Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values and by performing a time-killing assay in the absence and the presence of laser irradiation. Our results showed that the combination of low-level laser irradiation and the selected photosensitizers had excellent potential for treating in vitro bacterial infections. Therefore, PDI technology has great potential as a viable alternative to traditional antibiotics for combating bacterial infections. This study presents a promising avenue for further exploration of PDI and the use of laser technology in medical science.


Assuntos
Plantas Medicinais , Infecções Estafilocócicas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Testes de Sensibilidade Microbiana
3.
Molecules ; 29(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38338429

RESUMO

Photodynamic inactivation (PDI) is a highly effective treatment that can eliminate harmful microorganisms in a variety of settings. This study explored the efficacy of a curcumin-rich extract, Curcuma L., (Cur)- and essential oil component, trans-cinnamaldehyde, (Ca)-mediated PDI against Listeria monocytogenes ATCC 15313 (Lm) including planktonic cells and established biofilms on silicone rubber (Si), polytetrafluoroethylene (PTFE), stainless steel 316 (SS), and polyethylene terephthalate (PET). Applying Ca- and Cur-mediated PDI resulted in planktonic cell reductions of 2.7 and 6.4 log CFU/cm2, respectively. Flow cytometric measurements (FCMs) coupled with CFDA/PI and TOTO®-1 staining evidenced that Ca- doubled and Cur-mediated PDI quadrupled the cell damage. Moreover, the enzymatic activity of Lm cells was considerably reduced by Cur-mediated PDI, indicating its superior efficacy. Photosensitization also affected Lm biofilms, but their reduction did not exceed 3.7 log CFU/cm2. Cur-mediated PDI effectively impaired cells on PET and PTFE, while Ca-mediated PDI caused no (TOTO®-1) or only slight (PI) cell damage, sparing the activity of cells. In turn, applying Ca-mediate PDI to Si largely diminished the enzymatic activity in Lm. SS contained 20% dead cells, suggesting that SS itself impacts Lm viability. In addition, the efficacy of Ca-mediated PDI was enhanced on the SS, leading to increased damage to the cells. The weakened viability of Lm on Si and SS could be linked to unfavorable interactions with the surfaces, resulting in a better effect of Ca against Lm. In conclusion, Cur demonstrated excellent photosensitizing properties against Lm in both planktonic and biofilm states. The efficacy of Ca was lower than that of Cur. However, Ca bears potent antibiofilm effects, which vary depending on the surface on which Lm resides. Therefore, this study may help identify more effective plant-based compounds to combat L. monocytogenes in an environmentally sustainable manner.


Assuntos
Acroleína/análogos & derivados , Listeria monocytogenes , Compostos de Quinolínio , Tiazóis , Curcuma , Antibacterianos/farmacologia , Biofilmes , Politetrafluoretileno
4.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37974046

RESUMO

AIMS: The objectives of this study were to evaluate the effect of combination treatment with cold plasma (CP), vacuum packaging (VP), and hot water (HW) on the inactivation of foodborne pathogens on buckwheat seeds, and determined the germination rates of seeds and the quality of sprouts following combination treatment. METHODS AND RESULTS: Buckwheat seeds inoculated with Salmonella Typhimurium and Listeria monocytogenes were treated with CP, HW, CP + HW, VP + HW, or CP + VP + HW. The germination rates of the HW-, CP + HW-, VP + HW-, and CP + VP + HW-treated seeds and the antioxidant activities and rutin contents of the CP + HW- and CP + VP + HW-treated sprouts were determined. HW, CP + HW, and CP + VP + HW were found to reduce the levels of the two pathogens to below the detection limit (1.0 log CFU g-1) at 70°C. However, HW and CP + HW significantly reduced the germination rate of buckwheat seeds. CP + VP + HW did not affect the germination rate of seeds nor the antioxidant activities and rutin content of buckwheat sprouts. CONCLUSIONS: These results indicate that CP + VP + HW can be used as a novel control method to reduce foodborne pathogens in seeds without causing quality deterioration.


Assuntos
Fagopyrum , Listeria monocytogenes , Salmonella typhimurium , Vácuo , Antioxidantes , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Água , Sementes , Rutina/farmacologia , Germinação
5.
Photodiagnosis Photodyn Ther ; 44: 103875, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37923285

RESUMO

INTRODUCTION: The Trichophyton rubrum complex comprises the majority of dermatophyte fungi (DM) responsible for chronic cases of onychomycosis, which is treated with oral or topical antifungals. However, owing to antifungal resistance, alternative therapies, such as photodynamic therapy (PDT), are needed. This study investigated the frequency of the T. rubrum species complex in onychomycosis cases in the northwestern region of Paraná state, Brazil, and evaluated the efficacy of (PDT) using P123-encapsulated hypericin (Hyp-P123) on clinical isolates of T. rubrum in the planktonic cell and biofilm forms. MATERIAL AND METHODS: The frequency of the T. rubrum complex in onychomycosis cases from 2017 to 2021 was evaluated through a data survey of records from the Laboratory of Medical Mycology (LEPAC) of the State University of Maringa (UEM). To determine the effect of PDT-Hyp-P123 on planktonic cells of T. rubrum isolates, 1 × 105 conidia/mL were treated with ten different concentrations of Hyp-P123 and then irradiated with 37.8 J/cm2. Antibiofilm activity of PDT-Hyp-P123 was tested against T. rubrum biofilm in the adhesion phase (3 h), evaluated 72 h after irradiation (37.8 J/cm2), and the mature biofilm (72 h), evaluated immediately after irradiation. In this context, three different parameters were evaluated: cell viability, metabolic activity and total biomass. RESULTS: The T. rubrum species complex was the most frequently isolated DM in onychomycosis cases (approximately 80 %). A significant reduction in fungal growth was observed for 75 % of the clinical isolates tested with a concentration from 0.19 µmol/L Hyp-P123, and 56.25 % had complete inhibition of fungal growth (fungicidal action); while all isolates were azole-resistant. The biofilm of T. rubrum isolates (TR0022 and TR0870) was inactivated in both the adhesion phase and the mature biofilm. CONCLUSION: PDT-Hyp-P123 had antifungal and antibiofilm activity on T. rubrum, which is an important dermatophyte responsible for onychomycosis cases.


Assuntos
Onicomicose , Fotoquimioterapia , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Onicomicose/tratamento farmacológico , Onicomicose/microbiologia , Fotoquimioterapia/métodos , Azóis/farmacologia , Azóis/uso terapêutico , Trichophyton , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Biofilmes
6.
J Microorg Control ; 28(3): 123-128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37866894

RESUMO

Clavibacter michiganensis, a gram-positive actinomycete, is a major seed-borne tomato pathogen. We investigated the inactivation efficacy of low-pressure plasma treatment against C. michiganensis inoculated on tomato seeds by placing them on a mesh sheet above the bottom dielectric glass plate. The 2- and 5-minute plasma treatment reduced C. michiganensis populations on the tomato seeds by 0.8 and 1.8 log cfu/seed, respectively. The reduction rates were similar to those of C. michiganensis on shirona (cruciferous) seeds, which have different shapes and surface structures. In contrast, the inactivation of C. michiganensis cells using plasma was more difficult than that of X. campestris cells. Additionally, it was found that placing seeds on a mesh sheet laid on the dielectric glass plate was remarkably effective in inactivating the pathogens on tomato seeds. Since the tomato seeds were susceptible to damage from plasma treatment, methods to reduce its damage need to be investigated.


Assuntos
Actinobacteria , Micrococcaceae , Solanum lycopersicum , Sementes
7.
Foods ; 12(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37685139

RESUMO

The microbial quality of raw milk artisanal cheeses is not always guaranteed due to the possible presence of pathogens in raw milk that can survive during manufacture and maturation. In this work, an overview of the existing information concerning lactic acid bacteria and plant extracts as antimicrobial agents is provided, as well as thermisation as a strategy to avoid pasteurisation and its negative impact on the sensory characteristics of artisanal cheeses. The mechanisms of antimicrobial action, advantages, limitations and, when applicable, relevant commercial applications are discussed. Plant extracts and lactic acid bacteria appear to be effective approaches to reduce microbial contamination in artisanal raw milk cheeses as a result of their constituents (for example, phenolic compounds in plant extracts), production of antimicrobial substances (such as organic acids and bacteriocins, in the case of lactic acid bacteria), or other mechanisms and their combinations. Thermisation was also confirmed as an effective heat inactivation strategy, causing the impairment of cellular structures and functions. This review also provides insight into the potential constraints of each of the approaches, hence pointing towards the direction of future research.

8.
Int J Biol Macromol ; 253(Pt 5): 127085, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37774819

RESUMO

This study aimed to investigate the application of biopolymeric materials (chitosan, gelatin, and pomegranate peel extract as photosensitizer) and antimicrobial photodynamic therapy (aPDT) on the physicochemical and microbial safety of strawberries. The photosensitizer potential of the materials was confirmed by a light-dose-dependent photobleaching profile. The application of light (525 nm; 50 J cm-2) decreased by >2 log CFU mL-1 the survival of Staphylococcus aureus on the surface of the photoactive-biopolymeric films. Moreover, the materials did not present in vivo cytotoxicity using Danio rerio (Zebrafish) as well as cytophytotoxic, genotoxic, or mutagenic potentials against Allium cepa plant model, which points out their safety to be used as films without posing a risk to the humans and the environment. The photoactive-polymeric coatings were able to maintain the strawberries weight, and the association with green light was 100 % effective in delaying fungal contamination. These coated-strawberries presented a significant reduction in S. aureus survival after light application (5.47-4.34 log CFU mL-1). The molecular level analysis of the photoactive compound cyanidin-3-glucoside indicates absorption on UV-Vis consistent with aPDT action. Therefore, this study showed that the antimicrobial effects of aPDT combined with photoactive-biopolymeric coatings were enhanced, while the quality of the strawberries was maintained.


Assuntos
Anti-Infecciosos , Quitosana , Fragaria , Punica granatum , Humanos , Animais , Quitosana/farmacologia , Quitosana/química , Punica granatum/química , Fragaria/microbiologia , Fármacos Fotossensibilizantes , Gelatina , Staphylococcus aureus , Peixe-Zebra , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
9.
Int J Food Microbiol ; 406: 110395, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-37734280

RESUMO

The demand for products that are minimally processed and produced in a sustainable way, without the use of chemical preservatives or antibiotics have increased over the last years. Novel non-thermal technologies such as cold atmospheric plasma (CAP) and natural antimicrobials such as grape seed extract (GSE) are attractive alternatives to conventional food decontamination methods as they can meet the above demands. The aim of this study was to investigate the microbial inactivation potential of GSE, CAP (in this case, a remote air plasma with an ozone-dominated RONS output) and their combination against L. monocytogenes on five different 3D in vitro models of varying rheological, structural, and biochemical composition. More specifically, we studied the microbial dynamics, as affected by 1 % (w/v) GSE, CAP or their combination, in three monophasic Xanthan Gum (XG) based 3D models of relatively low viscosity (1.5 %, 2.5 % and 5 % w/v XG) and in a biphasic XG/Whey Protein (WPI) and a triphasic XG/WPI/fat model. A significant microbial inactivation (comparable to liquid broth) was achieved in presence of GSE on the surface of all monophasic models regardless of their viscosity. In contrast, the GSE antimicrobial effect was diminished in the multiphasic systems, resulting to only a slight disturbance of the microbial growth. In contrast, CAP showed better antimicrobial potential on the surface of the complex multiphasic models as compared to the monophasic models. When combined, in a hurdle approach, GSE/CAP showed promising microbial inactivation potential in all our 3D models, but less microbial inactivation in the structurally and biochemically complex multiphasic models, with respect to the monophasic models. The level of inactivation also depended on the duration of the exposure to GSE. Our results contribute towards understanding the antimicrobial efficacy of GSE, CAP and their combination as affected by robustly controlled changes of rheological and structural properties and of the biochemical composition of the environment in which bacteria grow. Therefore, our results contribute to the development of sustainable food safety strategies.


Assuntos
Extrato de Sementes de Uva , Listeria monocytogenes , Gases em Plasma , Extrato de Sementes de Uva/farmacologia , Conservação de Alimentos/métodos , Microbiologia de Alimentos , Gases em Plasma/farmacologia , Contagem de Colônia Microbiana , Antibacterianos/farmacologia
10.
Genes (Basel) ; 14(8)2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37628707

RESUMO

CASK-related disorders are a form of rare X-linked neurological diseases and most of the patients are females. They are characterized by several symptoms, including microcephaly with pontine and cerebellar hypoplasia (MICPCH), epilepsy, congenital nystagmus, and neurodevelopmental disorders. Whole-genome sequencing has identified various mutations, including nonsense and missense mutations, from patients with CASK-related disorders, revealing correlations between specific mutations and clinical phenotypes. Notably, missense mutations associated with epilepsy and intellectual disability were found throughout the whole region of the CASK protein, while missense mutations related to microcephaly and MICPCH were restricted in certain domains. To investigate the pathophysiology of CASK-related disorders, research groups have employed diverse methods, including the generation of CASK knockout mice and the supplementation of CASK to rescue the phenotypes. These approaches have yielded valuable insights into the identification of functional domains of the CASK protein associated with a specific phenotype. Additionally, recent advancements in the AI-based prediction of protein structure, such as AlphaFold2, and the application of genome-editing techniques to generate CASK mutant mice carrying missense mutations from patients with CASK-related disorders, allow us to understand the pathophysiology of CASK-related disorders in more depth and to develop novel therapeutic methods for the fundamental treatment of CASK-related disorders.


Assuntos
Microcefalia , Feminino , Animais , Camundongos , Masculino , Microcefalia/genética , Mutação , Camundongos Knockout , Fenótipo , Doenças Raras
11.
Environ Res ; 236(Pt 2): 116829, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544470

RESUMO

Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have drawn much more attention due to their high risk on human health and ecosystem. In this study, the performance of sulfidated nanoscale zero-valent iron (S-nZVI)/periodate (PI) system toward ARB inactivation and ARGs removal was systematically investigated. The S-nZVI/PI system could realize the complete inactivation of 1 × 108 CFU/mL kanamycin, ampicillin, and tetracycline-resistant E. coli HB101 within 40 min, meanwhile, possessed the ability to remove the intracellular ARGs (iARGs) (including aphA, tetA, and tnpA) carried by E. coli HB101. Specifically, the removal of aphA, tetA, and tnpA by S-nZVI/PI system after 40 min reaction was 0.31, 0.47, and 0.39 log10copies/mL, respectively. The reactive species attributed to the E. coli HB101 inactivation were HO• and O2•-, which could cause the destruction of E. coli HB101 morphology and enzyme system (such as superoxide dismutase and catalase), the loss of intracellular substances, and the damage of iARGs. Moreover, the influence of the dosage of PI and S-nZVI, the initial concentration of E. coli HB101, as well as the co-existing substance (such as HCO3-, NO3-, and humic acid (HA)) on the inactivation of E. coli HB101 and its corresponding iARGs removal was also conducted. It was found that the high dosage of PI and S-nZVI and the low concentration of E. coli HB101 could enhance the disinfection performance of S-nZVI/PI system. The presence of HCO3-, NO3-, and HA in S-nZVI/PI system showed inhibiting role on the inactivation of E. coli HB101 and its corresponding iARGs removal. Overall, this study demonstrates the superiority of S-nZVI/PI system toward ARB inactivation and ARGs removal.

12.
Oncol Res Treat ; 46(9): 362-369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37482056

RESUMO

INTRODUCTION: Pathogen inactivation (PI) utilizing amotosalen and UVA light (INTERCEPT® Blood System) is a well-established method for the production of safer platelet concentrates (PCs). While many studies describe clinical and logistical benefits of PI, the implications and potential challenges from a hospital management perspective have not yet been analyzed - health economic analyses considering reimbursement of PI are lacking. The objective of this analysis was to examine the real-life inpatient treatment costs from a hospital perspective and to assess the economic impact of PI-PC versus conventional PC (CONV-PC) administration in Germany. METHODS: Real-life cost data for inpatient cancer cases from 2020 of the University Hospital Cologne were identified by operating and procedure codes. The German diagnosis-related groups, extra fees, case mix index (CMI), length of stay (LOS), and average resource consumption of PC were evaluated from a micro-management perspective. The potential economic impact of implementing PI-treated PCs was modeled retrospectively. RESULTS: In total, 951 inpatient cases were analyzed (CMI [median 4.7-9.9], LOS [median 26 days], number of cases in intensive care units [38%]). The median DRG fee was between EUR 13,800 and EUR 26,400. According to our model, the use of PI-PC compared to CONV-PC would result in savings between EUR 184 and EUR 306 per case. CONCLUSION: From a hospital management perspective, oncological cases requiring PC transfusion are associated with a high CMI (reimbursement per DRG flat fee) and moderate costs with sufficient add-on payment for PI on a case level. Investment and process costs for PI implementation can be analyzed for site-specific scenarios.


Assuntos
Grupos Diagnósticos Relacionados , Neoplasias , Humanos , Estudos Retrospectivos , Hospitalização , Unidades de Terapia Intensiva , Hospitais Universitários
13.
Environ Sci Pollut Res Int ; 30(36): 86425-86436, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37405603

RESUMO

A biological aluminum-based P-inactivation agent (BA-PIA) has been developed and demonstrated to effectively remove nitrogen and phosphorus; however, whether it can control the release of nitrogen and phosphorus in sediment still needs study. This study aimed to examine the effect of BA-PIA on controlling sediment nitrogen and phosphorus release. BA-PIA was prepared by artificial aeration. The use of BA-PIA in controlling nitrogen and phosphorus release was studied using water and sediment from a landscape lake in static simulation experiments. The sediment microbial community was analyzed using high-throughput sequencing. Static simulation showed that the reduction rates of total nitrogen (TN) and total phosphorus (TP) by BA-PIA were 66.8 ± 1.46% and 96.0 ± 0.98%, respectively. In addition, capping of BA-PIA promotes the conversion of easily released nitrogen (free nitrogen) in the sediment to stable nitrogen (acid-hydrolyzable nitrogen). The content of weakly adsorbed phosphorus and iron-adsorbed phosphorus in the sediment was reduced. The relative abundance of nitrifying bacteria, denitrifying bacteria, and microorganisms carrying phosphatase genes (such as Actinobacteria) in the sediment increased by 109.78%. The capping of BA-PIA not only effectively removed the nitrogen and phosphorus in water but greatly reduced the risk of nitrogen and phosphorus release from sediment. BA-PIA was able to make up for the deficiency of the aluminum-based phosphorus-locking agent (Al-PIA) that only removes phosphorus, giving it improved application prospects.


Assuntos
Alumínio , Poluentes Químicos da Água , Fósforo , Nitrogênio/análise , Fatores Biológicos , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Lagos , Água
14.
J Therm Spray Technol ; 32(4): 818-830, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521526

RESUMO

The objective of this study was to prepare a copper-coated rubber surface using cold spray technology with improved virucidal and antimicrobial properties to fight against highly transmissible viruses and bacteria. A successful cold spray coating was produced using irregular-shaped pure Cu powder on an escalator handrail rubber. The powder particles and the deposited coatings (single and double pass) were characterized in terms of particle morphology and size distribution, coating surface and coat/substrate cross-section properties. The bonding between powder and rubber surfaces was purely mechanical interlocking. The Cu powder penetration depth within the rubber surface increases with a number of depositions pass. The virucidal properties of the coated surface were tested utilizing surrogates for SARS-CoV-2: HCoV-229E, a seasonal human coronavirus, and baculovirus, a high-titer enveloped insect cell virus. A double-pass coated surface showed significant baculovirus inactivation relative to a bare rubber control surface after 2-h (approximately 1.7-log) and 4-h (approximately 6.2-log), while a 4-h exposure reduced HCoV-229E titer to below the limit of detection. A similar microbial test was performed using E. coli, showing a 4-log microbial reduction after 2-h exposure relative to the bare rubber. These promising results open a new application for cold spray in the health sector. Supplementary Information: The online version contains supplementary material available at 10.1007/s11666-023-01553-x.

15.
J Hazard Mater Adv ; 9: 100217, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37521749

RESUMO

The unprecedented situation of the COVID-19 pandemic heavily polluted water bodies whereas the presence of SARS-CoV-2, even in treated wastewater in every corner of the world is reported. The main aim of the present study is to show the effectiveness and feasibility of some well-known desalination technologies which are reverse osmosis (RO), Electrodialysis (ED), Membrane Distillation (MD), multi effect distillation (MED), and multi stage flashing (MSF) during the COVID-19 pandemic. Systems' effectiveness against the novel coronavirus based on three parameters of nasopharynx/nasal saline-irrigation, temperature of operation and pretreatment methods are evaluated. First, based on previous clinical studies, it showed that using saline solution (hypertonic saline >0.9% concentration) for gargling/irrigating of nasal/nasopharynx/throat results in reducing and replication of the viral in patients, subsequently the feed water of desalination plants which has concentration higher than 3.5% (35000ppm) is preventive against the SARS-CoV-2 virus. Second, the temperature operation of thermally-driven desalination; MSF and MED (70-120°C) and MD (55-85°C) is high enough to inhibit the contamination of plant structure and viral survival in feed water. The third factor is utilizing various pretreatment process such as chlorination, filtration, thermal/precipitation softening, ultrafiltration (mostly for RO, but also for MD, MED and MSF), which are powerful treatment methods against biologically-contaminated feed water particularly the SARS-CoV-2. Eventually, it can be concluded that large-scale desalination plants during COVID-19 and similar situation are completely reliable for providing safe drinking water.

16.
Regen Biomater ; 10: rbad044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37265605

RESUMO

Microbial pathogens, including bacteria, fungi and viruses, greatly threaten the global public health. For pathogen infections, early diagnosis and precise treatment are essential to cut the mortality rate. The emergence of aggregation-induced emission (AIE) biomaterials provides an effective and promising tool for the theranostics of pathogen infections. In this review, the recent advances about AIE biomaterials for anti-pathogen theranostics are summarized. With the excellent sensitivity and photostability, AIE biomaterials have been widely applied for precise diagnosis of pathogens. Besides, different types of anti-pathogen methods based on AIE biomaterials will be presented in detail, including chemotherapy and phototherapy. Finally, the existing deficiencies and future development of AIE biomaterials for anti-pathogen applications will be discussed.

17.
Pharmaceutics ; 15(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37111567

RESUMO

The efficiency of photodynamic therapy is often limited by the scarcity of oxygen at the target site. To address this problem, this work proposes the development of a new nanosystem for antimicrobial photodynamic therapy applications (aPDT) where the natural-origin photosensitizer curcumin (CUR) is immersed in an oxygen-rich environment. Inspired by the perfluorocarbon-based photosensitizer/O2 nanocarriers reported in the literature, we developed a new type of silica nanocapsule containing curcumin dissolved in three hydrophobic ionic liquids (ILs) with high oxygen dissolving capacities. The nanocapsules (CUR-IL@ncSi), prepared by an original oil-in-water microemulsion/sol-gel method, had a high IL content and exhibited clear capacities to dissolve and release significant amounts of oxygen, as demonstrated by deoxygenation/oxygenation studies. The ability of CUR-IL solutions and of CUR-IL@ncSi to generate singlet oxygen (1O2) upon irradiation was confirmed by the detection of 1O2 phosphorescence at 1275 nm. Furthermore, the enhanced capacities of oxygenated CUR-IL@ncSi suspensions to generate 1O2 upon irradiation with blue light were confirmed by an indirect spectrophotometric method. Finally, preliminary microbiological tests using CUR-IL@ncSi incorporated into gelatin films showed the occurrence of antimicrobial effects due to photodynamic inactivation, with their relative efficiencies depending on the specific IL in which curcumin was dissolved. Considering these results, CUR-IL@ncSi has the potential to be used in the future to develop biomedical products with enhanced oxygenation and aPDT capacities.

18.
Molecules ; 28(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37049710

RESUMO

Efficient inactivation of microbial α-amylases (EC 3.2.1.1) can be a challenge in starch systems as the presence of starch has been shown to enhance the stability of the enzymes. In this study, commonly used inactivation methods, including multistep washing and pH adjustment, were assessed for their efficiency in inactivating different α-amylases in presence of raw potato starch. Furthermore, an effective approach for irreversible α-amylase inactivation using sodium hypochlorite (NaOCl) is demonstrated. Regarding inactivation by extreme pH, the activity of five different α-amylases was either eliminated or significantly reduced at pH 1.5 and 12. However, treatment at extreme pH for 5 min, followed by incubation at pH 6.5, resulted in hydrolysis yields of 42-816% relative to controls that had not been subjected to extreme pH. "Inactivation" by multistep washing with water, ethanol, and acetone followed by gelatinization as preparation for analysis gave significant starch hydrolysis compared to samples inactivated with NaOCl before the wash. This indicates that the further starch degradation observed in samples subjected to washing only took place during the subsequent gelatinization. The current study demonstrates the importance of inactivation methodology in α-amylase-mediated raw starch depolymerization and provides a method for efficient α-amylase inactivation in starch systems.


Assuntos
Solanum tuberosum , alfa-Amilases , alfa-Amilases/metabolismo , Solanum tuberosum/metabolismo , Hidrólise , Etanol , Amido/metabolismo
19.
Saudi Pharm J ; 31(3): 444-452, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37026048

RESUMO

Herb-drug interactions (HDI) has become important due to the increasing popularity of natural health product consumption worldwide. HDI is difficult to predict as botanical drugs usually contain complex phytochemical-mixtures, which interact with drug metabolism. Currently, there is no specific pharmacological tool to predict HDI since almost all in vitro-in vivo-extrapolation (IVIVE) Drug-Drug Interaction (DDI) models deal with one inhibitor-drug and one victim-drug. The objectives were to modify-two IVIVE models for the prediction of in vivo interaction between caffeine and furanocoumarin-containing herbs, and to confirm model predictions by comparing the DDI predictive results with actual human data. The models were modified to predict in vivo herb-caffeine interaction using the same set of inhibition constants but different integrated dose/concentration of furanocoumarin mixtures in the liver. Different hepatic inlet inhibitor concentration ([I]H) surrogates were used for each furanocoumarin. In the first (hybrid) model, the [I]H was predicted using the concentration-addition model for chemical-mixtures. In the second model, the [I]H was calculated by adding individual furanocoumarins together. Once [I]H values were determined, the models predicted an area-under-curve-ratio (AUCR) value of each interaction. The results indicate that both models were able to predict the experimental AUCR of herbal products reasonably well. The DDI model approaches described in this study may be applicable to health supplements and functional foods also.

20.
Sci Total Environ ; 870: 161887, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36731550

RESUMO

The endophytic Basidiomycete Sporobolomyces ruberrimus protects its host Arabidopsis arenosa against metal toxicity. Plants inoculated with the fungus yielded more biomass and exhibited significantly fewer stress symptoms in medium mimicking mine dump conditions (medium supplemented with excess of Fe, Zn and Cd). Aside from fine-tuning plant metal homeostasis, the fungus was capable of precipitating Fe in the medium, most likely limiting host exposure to metal toxicity. The precipitated residue was identified by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-Ray Diffraction (XRD) and electron microscopy (SEM/TEM) with energy dispersive X-Ray analysis (EDX/SAED) techniques. The performed analyses revealed that the fungus transforms iron into amorphous (oxy)hydroxides and phosphates and immobilizes them in the form of a precipitate changing Fe behaviour in the MSR medium. Moreover, the complexation of free Fe ions by fungi could be obtained by biomolecules such as lipids, proteins, or biosynthesized redox-active molecules.


Assuntos
Arabidopsis , Basidiomycota , Ferro/toxicidade , Ferro/química , Metais , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA