RESUMO
Head and neck squamous cell carcinoma present a high mortality rate. Melatonin has been shown to have oncostatic effects in different types of cancers. However, inconsistent results have been reported for in vivo applications. Consequently, an alternative administration route is needed to improve bioavailability and establish the optimal dosage of melatonin for cancer treatment. On the other hand, the use of patient-derived tumor models has transformed the field of drug research because they reflect the heterogeneity of patient tumor tissues. In the present study, we explore mechanisms for increasing melatonin bioavailability in tumors and investigate its potential as an adjuvant to improve the therapeutic efficacy of cisplatin in the setting of both xenotransplanted cell lines and primary human HNSCC. We analyzed the effect of two different formulations of melatonin administered subcutaneously or intratumorally in Cal-27 and SCC-9 xenografts and in patient-derived xenografts. Melatonin effects on tumor mitochondrial metabolism was also evaluated as well as melatonin actions on tumor cell migration. In contrast to the results obtained with the subcutaneous melatonin, intratumoral injection of melatonin drastically inhibited tumor progression in HNSCC-derived xenografts, as well as in patient-derived xenografts. Interestingly, intratumoral injection of melatonin potentiated CDDP effects, decreasing Cal-27 tumor growth. We demonstrated that melatonin increases ROS production and apoptosis in tumors, targeting mitochondria. Melatonin also reduces migration capacities and metastasis markers. These results illustrate the great clinical potential of intratumoral melatonin treatment and encourage a future clinical trial in cancer patients to establish a proper clinical melatonin treatment.
Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Melatonina , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Melatonina/farmacologia , Melatonina/uso terapêutico , Carcinoma de Células Escamosas/patologia , Xenoenxertos , Injeções Intralesionais , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Linhagem Celular Tumoral , Estresse OxidativoRESUMO
Glioblastoma multiforme (GBM) is a devastating tumor of the central nervous system, currently missing an effective treatment. The therapeutic gold standard consists of surgical resection followed by chemotherapy (usually with temozolomide, TMZ) and/or radiotherapy. TMZ does not, however, provide significant survival benefit after completion of treatment because of development of chemoresistance and of heavy side effects of systemic administration. Improvement of conventional treatments and complementary therapies are urgently needed to increase patient survival and quality of life. Stimuli-responsive lipid-based drug delivery systems offer promising prospects to overcome the limitations of the current treatments. In this work, multifunctional lipid-based magnetic nanovectors functionalized with the peptide angiopep-2 and loaded with TMZ (Ang-TMZ-LMNVs) were tested to enhance specific GBM therapy on an in vivo model. Exposure to alternating magnetic fields (AMFs) enabled magnetic hyperthermia to be performed, that works in synergy with the chemotherapeutic agent. Studies on orthotopic human U-87 MG-Luc2 tumors in nude mice have shown that Ang-TMZ-LMNVs can accumulate and remain in the tumor after local administration without crossing over into healthy tissue, effectively suppressing tumor invasion and proliferation and significantly prolonging the median survival time when combined with the AMF stimulation. This powerful synergistic approach has proven to be a robust and versatile nanoplatform for an effective GBM treatment.
Assuntos
Glioblastoma , Hipertermia Induzida , Nanopartículas de Magnetita , Animais , Camundongos , Humanos , Glioblastoma/tratamento farmacológico , Nanopartículas de Magnetita/uso terapêutico , Camundongos Nus , Qualidade de Vida , Temozolomida/farmacologia , LipídeosRESUMO
Chemotherapy has been widely used to treat cancer; however, the non-specific systemic toxicity of chemotherapeutic agents has always been an issue. Local injection treatment is a strategy used to reduce the undesired adverse effects of chemotherapeutic drugs. In addition, chemotherapeutic agents combined with thermotherapy are effective in further enhancing therapeutic potency. In the present study, we prepared an injectable hydrogel, namely, doxorubicin (DOX)-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticle (DPN) and magnetite nanoparticle (MNP) embedded in alginate hydrogel (DPN/MNP-HG), where DPN and MNP were the chemotherapeutic and heating agents, respectively, for intratumoral thermo-chemotherapy. Injectable DPN/MNP-HG, which possesses solid-like elastic properties, was conveniently prepared via ionic cross-linking at room-temperature. When exposed to an alternating magnetic field (AMF), DPN/MNP-HG exhibited controllable heat generation with a reversible temperature-rise profile. Regarding the kinetics of DOX release, both with and without AMF, DPN/MNP-HG exhibited a slow initial burst and sustained release profile. In cytotoxicity studies and subcutaneous mouse cancer models, successful thermo-chemotherapy with DPN/MNP-HG resulted in significantly lower cell viability and increased tumor-growth suppression; mice also exhibited good tolerance to injected DPN/MNP-HG both with(+) and without AMF application. In conclusion, the proposed thermo-chemotherapeutic DPN/MNP-HG for local intratumoral injection is a promising formulation for cancer treatment.
RESUMO
The widespread push to invest in local cancer therapies comes from the need to overcome the limitations of systemic treatment options. In contrast to intravenous administration, local treatments using intratumoral or peritumoral injections are independent of tumor vasculature and allow high concentrations of therapeutic agents to reach the tumor site with minimal systemic toxicity. Injectable biodegradable hydrogels offer a clear advantage over other delivery systems because the former requires no surgical procedures and promotes drug retention at the tumor site. More precisely, in situ gelling systems based on poloxamers have garnered considerable attention due to their thermoresponsive behavior, biocompatibility, ease of preparation, and possible incorporation of different anticancer agents. Therefore, this review focuses on the use of injectable thermoresponsive hydrogels based on poloxamers and their physicochemical and biological characterization. It also includes a summary of these hydrogel applications in local cancer therapies using chemotherapy, phototherapy, immunotherapy, and gene therapy.
RESUMO
Advanced bladder cancer is still an area of high unmet need even with the use of immune checkpoint inhibitors and antibody drug conjugates. Therefore, transformatively novel therapeutic approaches are needed. Xenogeneic cells are capable of inducing potent innate and adaptive immune rejection responses, which properties could turn xenogeneic cells into an immunotherapeutic agent. Here, we investigated the anti-tumor effects of intratumoral xenogeneic urothelial cell (XUC) immunotherapy alone and in combination with chemotherapy in two murine syngeneic models of bladder cancer. In both bladder tumor models, intratumoral XUC treatment suppressed tumor growth, and the efficacy was enhanced with chemotherapy. The experiments on mode of action for intratumoral XUC treatment found that the remarkable local and systemic anti-tumor effects were achieved with significant intratumoral immune cell infiltration and systemic activation of immune cell cytotoxic activity, cytokine IFNγ production and proliferation ability. The intratumoral XUC alone and combined treatment increased T cell natural killer cell infiltration into tumors. In the bilateral tumor model with intratumoral XUC monotherapy or combined therapy, the uninjected tumors at the other side also simultaneously demonstrated significant tumor growth delay. Consequently, intratumoral XUC treatment alone and the combination resulted in elevated chemokine CXCL9/10/11 levels. These data suggest that intratumoral XUC therapy may be useful in the treatment of advanced bladder cancer as a local therapy that injects xenogeneic cells into either primary or distant tumors. By exerting both local and systemic anti-tumor effects, this new treatment would complete the comprehensive cancer management along with systemic approaches.
RESUMO
Rationale: Effective photothermal therapy (PTT) remains a great challenge due to the difficulties of delivering photothermal agents with both deep penetration and prolonged retention at tumor lesion spatiotemporally. Methods: Here, we report an intratumoral self-assembled nanostructured aggregate named FerH, composed of a natural polyphenol and a commercial iron supplement. FerH assemblies possess size-increasing dynamic kinetics as a pseudo-stepwise polymerization from discrete nanocomplexes to microscale aggregates. Results: The nanocomplex can penetrate deeply into solid tumors, followed by prolonged retention (> 6 days) due to the in vivo growth into nanoaggregates in the tumor microenvironment. FerH performs a targeting ablation of tumors with a high photothermal conversion efficiency (60.2%). Importantly, an enhanced immunotherapeutic effect on the distant tumor can be triggered when co-administrated with checkpoint-blockade PD-L1 antibody. Conclusions: Such a therapeutic approach by intratumoral synthesis of metal-phenolic nanoaggregates can be instructive to address the challenges associated with malignant tumors.
Assuntos
Antígeno B7-H1 , Neoplasias , Linhagem Celular Tumoral , Humanos , Fatores Imunológicos , Imunoterapia , Ferro , Neoplasias/terapia , Fototerapia , Polifenóis , Microambiente TumoralRESUMO
Hypoxia and high-density extracellular matrix within the tumor microenvironment (TME) strengthens tumor resistance to the oxygen-dependent cancer therapy. Herein, an on-demand oxygen released nanoplatform (MONs/IR780/PFC-O2@BSA, BMIPO) that was triggered by near-infrared (NIR) light combined with TME has been designed for achieving synergistic photothermal/photodynamic therapy with deep intratumoral penetration and oxygen self-sufficiency. Notably, the zeta potential and transmission electron microscope (TEM) results indicated that such "smart" BMIPO nanoplatform possessed good colloidal stability and on-demand TME-specific degradability. This characteristic of the BMIPO nanoplatform allows it to simultaneously achieve high tumor accumulation and deep intratumoral penetration. The results of the O2 loading and release measurements showed that the as- prepared BMIPO possessed excellent O2 reversibly bind/release performance. Furthermore, the photothermal effect of NIR dye (IR780) accelerated the dissociation of TME-responsive BMIPO, as a result, it achieved an on-demand, continuous and complete O2 release to relieve tumor hypoxia during phototherapy. In vitro and in vivo results demonstrated that the as-prepared all-in-one nanoplatform have successfully realized NIR-triggered on-demand O2 release, nanocarrier-mediated glutathione (GSH) reducing, hyperthermia-promoted deep intratumoral penetration and dual-model imaging-guided precise cancer therapy. This work would provide inspiration for the design of nanoplatforms with on-demand release and deep intratumoral penetration for achieving high-efficiency synergistic photothermal/photodynamic therapy in hypoxic tumors.
Assuntos
Hipertermia Induzida , Nanopartículas , Fotoquimioterapia , Linhagem Celular Tumoral , Oxigênio , FototerapiaRESUMO
Rationale: Increasing the bioavailable drug level in a tumor is the key to enhance efficacy of chemotherapy. Thermosensitive smart drug delivery systems (SDDS) in combination with local hyperthermia facilitate high local drug levels, thus improving uptake in the tumor. However, inability to rapidly and efficiently absorb the locally released drug results in reduced efficacy, as well as undesired redistribution of the drug away from the tumor to the system. Methods: Based on this paradigm we propose a novel approach in which we replaced doxorubicin (DXR), one of the classic drugs for nanocarrier-based delivery, with idarubicin (IDA), a hydrophobic anthracycline used solely in the free form for treatment hematologic cancers. We established a series of in vitro and in vivo experiments to in depth study the kinetics of SDDS-based delivery, drug release, intratumor biodistribution and subsequent cell uptake. Results: We demonstrate that IDA is taken up over 10 times more rapidly by cancer cells than DXR in vitro. Similar trend is observed in in vivo online imaging and less drug redistribution is shown for IDA, together resulting in 4-times higher whole tumor drug uptake for IDA vs. DXR. Together his yielded an improved intratumoral drug distribution for IDA-SDDS, translating into superior tumor response compared to DXR-SDDS treatment at the same dose. Thus, IDA - a drug that is not used for treatment of solid cancers - shows superior therapeutic index and better outcome when administered in externally triggered SDDS. Conclusions: We show that a shift in selection of chemotherapeutics is urgently needed, away from the classic drugs towards selection based on properties of a chemotherapeutic in context of the nanoparticle and delivery mode, to maximize the therapeutic efficacy.
Assuntos
Idarubicina/farmacologia , Idarubicina/farmacocinética , Neoplasias/tratamento farmacológico , Animais , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacologia , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Hipertermia Induzida/métodos , Cinética , Camundongos , Nanopartículas/química , Neoplasias/metabolismo , Distribuição Tecidual/efeitos dos fármacosRESUMO
Tumor-targeted drug delivery by nanomaterials is important to improve tumor therapy efficacy and reduce toxic side effects, but its efficiency is quite limited. In this work, a new type of MBene, zirconium boride nanosheet (ZBN), as a versatile nanoplatform to realize near-infrared (NIR)-controlled intratumoral retention and drug release is developed. ZBN exhibits high NIR-photothermal conversion efficiency (76.8%), surface modification with hyaluronic acid (HA) by polyol-borate esterfication endows ZBN-HA with good dispersion, and the photopyrolysis of borate ester causes HA detachment and ZBN aggregation, enabling NIR-controlled intratumoral retention to achieve high intratumoral accumulation. By virtue of surface borate esterfication, polyol chemotherapeutic drug (doxorubicin, DOX), and NO prodrug (ß-galactosyl-diazeniumdiolate, Gal-NO) can be efficiently and stably conjugated on the surface of ZBN-HA (1.21 g DOX or 0.57 g Gal-NO per gram ZBN) without visible drug leakage, and the photopyrolysis of borate ester enables NIR-controlled drug release with high responsiveness and controllability. Combined chemothermal/gasothermal therapies based on ZBN-HA/DOX and ZBN-HA/NO nanomedicines eradicate primary tumors and interdict tumor metastasis by changing the tumor microenvironment and killing cancer cells in primary tumors. The developed NIR-photothermal MBene is confirmed as a versatile nanoplatform capable of high-efficacy tumor-targeted drug delivery and controlled drug release.
Assuntos
Doxorrubicina , Liberação Controlada de Fármacos , Hipertermia Induzida , Fototerapia , Nanomedicina Teranóstica , Ácido Hialurônico , Raios Infravermelhos , Nanopartículas , Medicina de PrecisãoRESUMO
Development of an efficient nanoradiosensitization system that enhances the radiation doses in cancer cells to sensitize radiotherapy (RT) while sparing normal tissues is highly desirable. Here, we construct a tumor microenvironment (TME)-responsive disassembled small-on-large molybdenum disulfide/hafnium dioxide (MoS2/HfO2) dextran (M/H-D) nanoradiosensitizer. The M/H-D can degrade and release the HfO2 nanoparticles (NPs) in TME to enhance tumor penetration of the HfO2 NPs upon near-infrared (NIR) exposure, which can solve the bottleneck of insufficient internalization of the HfO2 NPs. Simultaneously, the NIR photothermal therapy increased peroxidase-like catalytic efficiency of the M/H-D nanoradiosensitizer in TME, which selectively catalyzed intratumorally overexpressed H2O2 into highly oxidized hydroxyl radicals (·OH). The heat induced by PTT also relieved the intratumoral hypoxia to sensitize RT. Consequently, this TME-responsive precise nanoradiosensitization achieved improved irradiation effectiveness, potent oxygenation in tumor, and efficient suppression to tumor, which can be real-time monitored by computed tomography and photoacoustic imaging.
Assuntos
Nanopartículas , Neoplasias , Háfnio , Humanos , Peróxido de Hidrogênio , Neoplasias/terapia , Fototerapia , Microambiente TumoralRESUMO
Photodynamic therapy (PDT) can destroy local tumor cells and induce effective antitumor immune responses, and has been applied in the treatment of patients with superficial solid tumors. Numerous systemic side effects of PDT, such as pain and skin photosensitivity, however, limit this therapeutic option. In addition, the immunosuppressive tumor microenvironment has been found to be another critical barrier for the antitumor immunity induced by PDT. Therefore, effectively enhancing the cytotoxicity to tumor cells of low-dose PDT and inhibiting the tumor immunosuppressive tumor microenvironment may be a feasible strategy to overcome these drawbacks of PDT. Here, a sorafenib and chlorin e6 co-loaded reactive oxygen species (ROS)-responsive nanoparticle (NP-sfb/ce6) is developed to improve antitumor responses by intratumoral release of sorafenib at the time of PDT. Under 660-nm laser irradiation, ROS produced by chlorin e6 (ce6) destruct the nanoparticles, resulting in boosted sorafenib cascade release. The rapidly released sorafenib acts synergistically with the low-dose PDT to inhibit tumor growth by inducing strong T cell-dependent local and systemic antitumor immune responses, reprograming the tumor immune microenvironment, and limiting the interaction between cytotoxic CD8+ T cells and immunosuppressive cells. This study provides new avenues for cascade-amplifying antitumor effects of photodynamic therapy.
Assuntos
Nanopartículas , Fotoquimioterapia , Porfirinas , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Humanos , Imunoterapia , Fármacos Fotossensibilizantes/uso terapêutico , SorafenibeRESUMO
BACKGROUND: Spinal angiolipomas (SALs) are benign tumors that usually present a slow progressive spinal cord or radicular compression. Acute myelopathy or acute aggravated radicular syndrome are exceedingly rare. CASE DESCRIPTION: The authors report an original case with sudden aggravated radicular pain caused by hemorrhagic SALs. A 54-year-old woman presented with a 2-month history of mild back pain, and the pain was significantly aggravated after a therapeutic back massage. Neurologic examination showed pain and hyperalgesia between T4 and T7 dermatome, from back to front, just like a band. Spinal magnetic resonance imaging (MRI) showed a dorsally located epidural lesion (T4-T6) and a small intratumoral hemorrhage at the lower part of the tumor. A bilateral T4-T6 laminectomy was performed to achieve total excision of the tumors. Histologic examination showed that the tumors were composed of mature adipose tissue and vascular tissue as angiolipomas. The postoperative course was uneventful with complete neurologic recovery 4 days after the surgery. MRI at 1-year follow-up indicated no recurrence. CONCLUSIONS: SALs are unusual benign tumors that are composed of mature fatty tissue and abnormal blood vessels; sudden aggravated spinal cord or radicular compression syndrome is rare. MRI is the best choice in the diagnosis of SALs. Surgery may be performed in different ways depending on the type of SALs, and the prognosis is generally good.
Assuntos
Angiolipoma/patologia , Neoplasias Epidurais/patologia , Massagem/efeitos adversos , Radiculopatia/etiologia , Angiolipoma/complicações , Feminino , Hemorragia/etiologia , Humanos , Pessoa de Meia-Idade , Dor/etiologia , Compressão da Medula Espinal/etiologia , Vértebras TorácicasRESUMO
Tumor growth and metastasis are the major causes of high mortality in breast cancer. In this study, a water-responsive phospholipid-calcium-carbonate hybrid nanoparticle (PL/ACC-DOX&ICG) surface modified with a phospholipid shell is designed and covered with a shielding polymer polyethylene glycol; this development is loaded with the photosensitizer indocyanine green (ICG) and the chemotherapeutic drug doxorubicin (DOX) for near-infrared (NIR) imaging and chemophotothermal combination therapy against breast cancer. PL/ACC-DOX&ICG exhibits satisfactory stability against various aqueous environments with minimal drug leakage and can readily decompose to facilitate quick drug release into cancer cells. In vivo biodistribution studies, PL/ACC-DOX&ICG demonstrated strong tumor-homing properties. Interestingly, the in vitro cellular uptake and intratumoral penetration depth of PL/ACC-DOX&ICG are significantly enhanced under NIR laser irradiation, owing to ICG-induced hyperthermia, which not only enhances cell permeability and fluidity but also disrupts the dense tumor extracellular matrix. Compared to chemotherapy or photothermal therapy alone, chemophotothermal combination therapy synergistically induces apoptosis and death in 4T1 cells. Moreover, compared with the phosphate buffer saline group, the combined treatment suppress primary tumor growth at a rate of approximately 94.88% and decrease the number of metastatic nodules by about 93.6%. Therefore, PL/ACC-DOX&ICG may be a promising nanoplatform for breast cancer treatment.
Assuntos
Neoplasias da Mama/metabolismo , Doxorrubicina/farmacocinética , Hipertermia Induzida/métodos , Verde de Indocianina/farmacocinética , Nanopartículas/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Feminino , Verde de Indocianina/química , Camundongos , Camundongos Endogâmicos BALB C , Nanomedicina/métodos , Nanopartículas/metabolismo , Distribuição Tecidual , Água/químicaRESUMO
BACKGROUND: Intratumoral injection is a palliative treatment that aims at further improvement in the survival and quality of life of patients with advanced or recurrent carcinomas, or cancer patients with severe comorbidities or those with a poor performance status. METHODS: In this study, a solvent-injection method was used to prepare paclitaxel-cholesterol complex-loaded lecithin-chitosan nanoparticles (PTX-CH-loaded LCS_NPs) for intratumoral injection therapy, and the physicochemical properties of NPs were well characterized. RESULTS: The particle size and zeta potential of PTX-CH-loaded LCS_NPs were 142.83±0.25 nm and 13.50±0.20 mV, respectively. Release behavior of PTX from PTX-CH-loaded LCS_NPs showed a pH-sensitive pattern. The result of cell uptake assay showed that PTX-CH-loaded LCS_NPs could effectively enter cells via the energy-dependent caveolae-mediated endocytosis and macropinocytosis in company with the Golgi apparatus. Meanwhile, PTX-CH-loaded LCS_NPs had a better ability to induce cell apoptosis than PTX solution. The in vivo antitumor results suggested that PTX-CH-loaded LCS_NPs effectively inhibited mouse mammary cancer growth and metastasis to distant organs and significantly improved the survival rate of tumor-bearing mice by intratumoral administration. CONCLUSION: In general, our study demonstrated that PTX-CH-loaded LCS_NPs used for palliative treatment by intratumoral injection showed improved safety and antitumor efficacy, which provided an alternative approach in the field of palliative chemotherapy.
Assuntos
Antineoplásicos/uso terapêutico , Quitosana/química , Colesterol/química , Injeções Intralesionais , Lecitinas/química , Nanopartículas/química , Paclitaxel/uso terapêutico , Cuidados Paliativos , Animais , Apoptose/efeitos dos fármacos , Varredura Diferencial de Calorimetria , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Fígado/patologia , Pulmão/patologia , Camundongos Endogâmicos BALB C , Recidiva Local de Neoplasia , Paclitaxel/química , Paclitaxel/farmacologia , Tamanho da Partícula , Polissorbatos/química , Análise de Sobrevida , Resultado do TratamentoRESUMO
Attaining a precise necrosis of tumor sparing normal tissue during carcinomas thermo-therapy via nominally invasive scheme like irradiation of laser is a recent challenge. In this study, a combined diffusion and convective energy equations were solved using COMSOL Multiphysics to predict the tissue thermal profile during laser assisted thermo-therapy with different tissue vascular networks. A comparative analysis between intratumoral and intravenous loading scheme of silica-gold nanoshells (AuNs) was also performed. AuNs cluster position and alignment was altered to achieve precise ablation of a large tumor with minimum damage to healthy tissue and improvement in necrosis in the vicinity of large blood vessels (LBV). A modified Beer-Lambert law and Arrhenius equation was applied to model laser heat propagation and to compute thermal damage respectively. Simulation results suggests the dominance of targeted nanostructure injection in cluster form over intravenous scheme in terms of precise control over spreading of necrotic zone due to selective laser dose delivery into the tumor. An effective tumor ablation, sparing normal tissue is best revealed for Type-A intratumoral scheme comparing Type-B and C as the reallocation of cluster position can help to achieve an irregular shaped necrotic zone. In addition a comparative analysis between dual-phase-lag (DPL) and classical Fourier approach within a tumor-blood inhomogeneous inner structure was made to access the effect of relaxation time onto biological thermal response. Numerical results show a difference in temperature profile between these two approaches during non-equilibrium condition i.e at the prior phases of laser heating and cooling whereas the results overlaps at higher instants. Since the DPL based bioheat conduction model can predict the inherent wave nature of the thermal front which is propagating at a finite speed. This study may improve the real clinical invasive schemes applied to ablate malignant tumor during hyperthermia treatment.
Assuntos
Vasos Sanguíneos/patologia , Hipertermia Induzida/métodos , Nanopartículas Metálicas/uso terapêutico , Modelos Teóricos , Neoplasias/terapia , Fototerapia/métodos , Ouro/química , Humanos , Nanopartículas Metálicas/química , Necrose , Dióxido de Silício/químicaRESUMO
Cancer is a devastating disease and a large socio-economic burden. Novel therapeutic solutions are on the rise, although a cure remains elusive. Application of microorganisms represents an ancient therapeutic strategy, lately revoked and refined via simultaneous attenuation and amelioration of pathogenic properties. Salmonella Typhimurium has prevailed in preclinical development. Yet, using virulent strains for systemic treatment might cause severe side effects. In the present study, we highlight a modified strain based on Salmonella Typhimurium UK-1 expressing hexa-acylated Lipid A. We corroborate improved anti-tumor properties of this strain and investigate to which extent an intra-tumoral (i.t.) route of infection could help improve safety and retain advantages of systemic intravenous (i.v.) application. Our results show that i.t. infection exhibits therapeutic efficacy against CT26 and F1.A11 tumors similar to a systemic route of inoculation. Moreover, i.t. application allows extensive dose titration without compromising tumor colonization. Adverse colonization of healthy organs was generally reduced via i.t. infection and accompanied by less body weight loss of the murine host. Despite local application, adjuvanticity remained, and a CT26-specific CD8+ T cell response was effectively stimulated. Most interestingly, also secondary tumors could be targeted with this strategy, thereby extending the unique tumor targeting ability of Salmonella. The i.t. route of inoculation may reap the benefits of systemic infection and aid in safety assurance while directing potency of an oncolytic vector to where it is most needed, namely the primary tumor.
Assuntos
Terapia Biológica/métodos , Neoplasias/terapia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/fisiologia , Imunidade Adaptativa , Administração Intravenosa , Animais , Terapia Biológica/efeitos adversos , Modelos Animais de Doenças , Humanos , Imunidade Inata , Imunomodulação , Injeções Intralesionais , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Intratumoral (IT) drug injections reduce systemic toxicity, but delivered volumes and distribution can be inconsistent. To improve IT delivery paradigms, porphyrin-phospholipid (PoP) liposomes are passively loaded with three hydrophilic cargos: sulforhodamine B, a fluorophore; gadolinium-gadopentetic acid, a magnetic resonance (MR) agent; and oxaliplatin, a colorectal cancer chemotherapeutic. Liposome composition is optimized so that cargo is retained in serum and storage, but is released in less than 1 min with exposure to near infrared light. Light-triggered release occurs with PoP-induced photooxidation of unsaturated lipids and all cargos release concurrently. In subcutaneous murine colorectal tumors, drainage of released cargo is delayed when laser treatment occurs 24 h after IT injection, at doses orders of magnitude lower than systemic ones. Delayed light-triggering results in substantial tumor shrinkage relative to controls a week following treatment, although regrowth occurs subsequently. MR imaging reveals that over this time frame, pools of liposomes within the tumor migrate to adjacent regions, possibly leading to altered spatial distribution during triggered drug release. Although further characterization of cargo loading and release is required, this proof-of-principle study suggests that multimodal theranostic IT delivery approaches hold potential to both guide injections and interpret outcomes, in particular when combined with chemo-phototherapy.
Assuntos
Antineoplásicos , Meios de Contraste , Corantes Fluorescentes , Lipossomos , Fotoquimioterapia/métodos , Nanomedicina Teranóstica/métodos , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/química , Meios de Contraste/farmacocinética , Feminino , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacocinética , Lipossomos/química , Lipossomos/farmacocinética , Lipossomos/farmacologia , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacocinética , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Fosfolipídeos/química , Porfirinas/químicaRESUMO
BACKGROUND: Intratumoral heterogeneity presents a major obstacle to the widespread implementation of precision medicine. The authors assessed the origin of intratumoral heterogeneity in nonseminomatous germ cell tumor of the testis (NSGCT) and identified distinct tumor subtypes and a potentially lethal phenotype. METHODS: In this retrospective study, all consecutive patients who had been diagnosed with an NSGCT between January 2000 and December 2010 were evaluated. The histologic makeup of primary tumors and the clinical course of disease were determined for each patient. A Fine and Gray proportional hazards regression analysis was used to determine the prognostic risk factors, and the Gray test was used to detect differences in the cumulative incidence of cancer death. In a separate prospective study, next-generation sequencing was performed on tumor samples from 9 patients to identify any actionable mutations. RESULTS: Six hundred fifteen patients were included in this study. Multivariate analysis revealed that the presence of yolk sac tumor in the primary tumor (P = .0003) was associated with an unfavorable prognosis. NSGCT could be divided into 5 subgroups. Patients in the yolk sac-seminoma subgroup had the poorest clinical outcome (P = .0015). These tumors tended to undergo somatic transformation (P < .0001). Among the 9 NSGCTs that had a yolk sac tumor phenotype, no consistent gene mutation was detected. CONCLUSIONS: The current data suggest that intratumoral heterogeneity is caused in part by differentiation of pluripotent progenitor cells. Integrated or multimodal therapy may be effective at addressing intratumoral heterogeneity and treating distinct subtypes as well as a potentially lethal phenotype of NSGCT. Cancer 2016;122:1836-43. © 2016 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Assuntos
Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/patologia , Neoplasias Testiculares/genética , Neoplasias Testiculares/patologia , Adolescente , Adulto , Idoso , Diferenciação Celular/fisiologia , Criança , Heterogeneidade Genética , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Células-Tronco Neoplásicas/patologia , Fenótipo , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Adulto JovemRESUMO
Monitoring of drug release from a heat-activated liposome carrier provides an opportunity for real-time control of drug delivery and allows prediction of the therapeutic effect. We have developed short-chain elastin-like polypeptide-incorporating thermosensitive liposomes (STLs). Here, we report the development of STL encapsulating gadobenate dimeglumine (Gd-BOPTA), a MRI contrast agent, and doxorubicin (Dox) (Gd-Dox-STL). The Dox release profile from Gd-Dox-STL was comparable to Gd-Dox-LTSL; however, the serum stability of Gd-Dox-STL was much higher than Gd-Dox-LTSL. MRI studies showed that the difference in T1 relaxation time between 37 and 42 °C for Gd-Dox-STL was larger than the difference for Gd-Dox-LTSL. Although relaxivity for both liposomes at 42 °C was similar, the relaxivity of Gd-Dox-STL at 37 °C was 2.5-fold lower than that of Gd-Dox-LTSL. This was likely due to Gd-BOPTA leakage from the LTSL because of low stability at 37 °C. Pharmacokinetic studies showed plasma half-lives of 4.85 and 1.95 h for Gd-Dox-STL and Gd-Dox-LTSL, respectively, consistent with in vitro stability data. In vivo MRI experiments demonstrated corelease of Dox and Gd-BOPTA from STL under mild hyperthermia induced by high-intensity focused ultrasound (HIFU), which suggests STL is a promising tumor selective formulation when coupled with MR-guided HIFU.
Assuntos
Antineoplásicos/administração & dosagem , Lipossomos/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Meios de Contraste/administração & dosagem , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/fisiologia , Elastina/administração & dosagem , Meia-Vida , Temperatura Alta , Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Meglumina/administração & dosagem , Meglumina/análogos & derivados , Meglumina/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/farmacocinética , Peptídeos/administração & dosagem , Temperatura , Ultrassonografia/métodosRESUMO
PURPOSE: Heterogeneous magnetic nanoparticle (MNP) distributions within tumors can cause regions of temperature under dosage and reduce the therapeutic efficiency. Here, micro-computed tomography (CT) imaging was used as a tool to determine the MNP distribution in vivo. The therapeutic success was evaluated based on tumor volume and temperature distribution. PROCEDURES: Tumor-bearing mice were intratumorally injected with iron oxide particles. MNP distribution was assessed by micro-CT with a low radiation dose protocol. RESULTS: MNPs were clearly visible, and the exact distribution to nontumor structures was detected by micro-CT. Knowledge of the intratumoral MNP distribution allowed the generation of higher temperatures within the tumor and led to higher temperature values after exposure to an alternating magnetic field (AMF). Consequently, the tumor size after 28 days was reduced to 14 and 73 % of the initial tumor volume for the MNP/AMF/CT and MNP/AMF groups, respectively. CONCLUSIONS: The MNP distribution pattern mainly governed the generated temperature spots in the tumor. Knowing the MNP distribution enabled individualized hyperthermia treatment and improved the overall therapeutic efficiency.