Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Pharm Biol ; 62(1): 296-313, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38555860

RESUMO

CONTEXT: Hyperpigmentation, a common skin condition marked by excessive melanin production, currently has limited effective treatment options. OBJECTIVE: This study explores the effects of Tao-Hong-Si-Wu decoction (THSWD) on hyperpigmentation and to elucidate the underlying mechanisms. MATERIALS AND METHODS: We employed network pharmacology, Mendelian randomization, and molecular docking to identify THSWD's hub targets and mechanisms against hyperpigmentation. The Cell Counting Kit-8 (CCK-8) assay determined suitable THSWD treatment concentrations for PIG1 cells. These cells were exposed to graded concentrations of THSWD-containing serum (2.5%, 5%, 10%, 15%, 20%, 30%, 40%, and 50%) and treated with α-MSH (100 nM) to induce an in vitro hyperpigmentation model. Assessments included melanin content, tyrosinase activity, and Western blotting. RESULTS: ALB, IL6, and MAPK3 emerged as primary targets, while quercetin, apigenin, and luteolin were the core active ingredients. The CCK-8 assay indicated that concentrations between 2.5% and 20% were suitable for PIG1 cells, with a 50% cytotoxicity concentration (CC50) of 32.14%. THSWD treatment significantly reduced melanin content and tyrosinase activity in α-MSH-induced PIG1 cells, along with downregulating MC1R and MITF expression. THSWD increased ALB and p-MAPK3/MAPK3 levels and decreased IL6 expression in the model cells. DISCUSSION AND CONCLUSION: THSWD mitigates hyperpigmentation by targeting ALB, IL6, and MAPK3. This study paves the way for clinical applications of THSWD as a novel treatment for hyperpigmentation and offers new targeted therapeutic strategies.


Assuntos
Medicamentos de Ervas Chinesas , Hiperpigmentação , Humanos , Análise da Randomização Mendeliana , Melaninas , Monofenol Mono-Oxigenase , Simulação de Acoplamento Molecular , alfa-MSH , Farmacologia em Rede , Interleucina-6 , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Hiperpigmentação/tratamento farmacológico
2.
J Microbiol Biotechnol ; 34(4): 949-957, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38480002

RESUMO

There has been a growing interest in skin beauty and antimelanogenic products. Melanogenesis is the process of melanin synthesis whereby melanocytes are activated by UV light or hormone stimulation to produce melanin. Melanogenesis is mediated by several enzymes, such as tyrosinase (TYR), microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (TRP-1), and TRP-2. In this study, we investigated the effect of Tuber himalayense extract on melanin synthesis in α-melanocyte-stimulating hormone (α-MSH)-treated B16F10 melanoma cells. We confirmed that T. himalayense extract was not toxic to α-MSH-treated B16F10 melanoma cells and exhibited a significant inhibitory effect on melanin synthesis at concentrations of 25, 50, and 100 µg/ml. Additionally, the T. himalayense extract inhibited melanin, TRP-1, TRP-2, tyrosinase, and MITF, which are enzymes involved in melanin synthesis, in a concentration-dependent manner. Furthermore, T. himalayense extract inhibited the mitogen-activated protein kinase (MAPK) pathways, such as extracellular signal-regulated kinase-1/2 (ERK), c-Jun N-terminal kinase (JNK), and p38. Therefore, we hypothesized that various components of T. himalayense extract affect multiple factors involved in melanogenesis in B16F10 cells. Our results indicate that T. himalayense extract could potentially be used as a new material for preparing whitening cosmetics.


Assuntos
Melaninas , Fator de Transcrição Associado à Microftalmia , Monofenol Mono-Oxigenase , Extratos Vegetais , Melaninas/biossíntese , Melaninas/metabolismo , Animais , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Linhagem Celular Tumoral , República da Coreia , Fator de Transcrição Associado à Microftalmia/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Oxirredutases Intramoleculares/metabolismo , alfa-MSH/farmacologia , alfa-MSH/metabolismo , Melanoma Experimental/metabolismo , Oxirredutases/metabolismo , Tubérculos/química , Glicoproteínas de Membrana/metabolismo , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos
3.
Phytochemistry ; 220: 114019, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346546

RESUMO

Seven undescribed sesquiterpenes, including three dimeric guaianolide sesquiterpenes artemongolides G-I (1-3) and four sesquiterpene lactones artemanomalide D-G (16-19), along with seventeen known compounds isoabsinthin (4), absinthin (5), 11-eptabsinthin (6), 11, 11'-bis-epiabsinthin (7), 10', 11'- epiabsinthin (8), anabsinthin (9), isoanabsinthin (10), absinthin D (11), anabsin (12), caruifolin D (13), gnapholide (14), caruifolin C (15), 1ß(R),10ß(S)-dihydroxy-3-oxo-11ß (S)H-4,11(13)-guaien-6α(S),12-olide (20), 1α,6α,8α-trihydroxy-5α,7ßH-guaia-3,10(14),11(13)-trien-12-oic acid (21), 1α,6α,8α-trihydroxy-5α,7ßH-guaia-3,9,11(13)-trien-12-oic acid (22), argyinolide J (23), artabsinolide A (24) were isolated from the plant Artemisia mongolica. The structures were determined by interpreting NMR, HRESIMS and ECD data. The X-ray crystal structure of 4, 7 and 8 were reported for the first time. In the anti-vitiligo activity test, compounds 2, 7, 12, 23 and 24 demonstrated activity in promoting melanogenesis at a concentration of 50 µM in B16 cells, with 8-methoxypsoralan (8-MOP) as a positive control. Further research on the mechanism revealed that artemongolides H (2) enhance the expression of MITF and TRPs by upregulating p-Akt and p-GSK-3ß, leading to an increase in ß-catenin content in the cell cytoplasm. Subsequently, ß-catenin translocates into the nucleus, resulting in melanogenesis. The results supported the regulation of melanogenesis by artemongolide H (2) through the Akt/GSK3ß/ß-catenin signaling pathway. The anti-inflammatory results demonstrated that compounds 4, 5, 6, 9 and 14 can inhibit the upregulation of IL-6 mRNA and CCL2 mRNA expression. Compound 12 specifically inhibited the upregulation of IL-6 mRNA expression. These compounds exhibited significant anti-inflammatory activities. The activity results revealed that these sesquiterpene compounds have the potential to become lead compounds for the treatment of vitiligo and inflammatory diseases.


Assuntos
Artemisia , Asteraceae , Sesquiterpenos , Artemisia/química , beta Catenina , Glicogênio Sintase Quinase 3 beta , Interleucina-6 , Proteínas Proto-Oncogênicas c-akt , Trientina , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Sesquiterpenos de Guaiano/farmacologia , Sesquiterpenos de Guaiano/química , Anti-Inflamatórios , RNA Mensageiro , Lactonas/farmacologia , Lactonas/química , Asteraceae/química , Estrutura Molecular
4.
J Ethnopharmacol ; 326: 117933, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38382653

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The roots and rhizomes of Bergenia purpurascens (Hook. f. et Thomson) Engl., was used as a sunscreen to protect against ultraviolet rays in Tibet of China historically, but its skin whitening constituents and pharmacological effects of this plant remained unknown. AIM OF THE STUDY: To investigate the anti-melanogenesis effect of B. purpurascens in vitro and in vivo, and then explore the preliminary mechanism. MATERIALS AND METHODS: An ultraviolet B (UVB)-induced skin injury model of mice was used to verify the ameliorative effect of B. purpurascens extract (BPE) on ultraviolet damage. Then, alpha-melanocyte stimulating hormone (α-MSH)-induced murine melanoma cell line (B16F10) melanin generation model was further adopted to approval the effects of BPE and its bioactive compound, cuscutin, in vitro. Moreover, α-MSH stimulated melanogenesis model in zebrafish was employed to confirm the anti-pigmentation effect of cuscutin. Then, proteins expressions associated with melanin production were observed using western blotting assay to explore preliminary mechanism. RESULTS: BPE inhibited UVB-induced mice injury and restored skin barrier function observably in vivo. BPE and cuscutin suppressed the overproduction of melanin in α-MSH induced B16F10 significantly, in which cuscutin exhibited better effect than well-known whitening agent α-arbutin at same 10 µg/mL concentration. Moreover, the pigmentation of zebrafish embryo was decreased by cuscutin. Finally, cuscutin showed significant downregulation of expressions of tyrosinase (TYR) and tyrosinase related protein-1 (TRP-1), TRP-2 and microphthalmia-associated transcription factor (MITF) in the melanogenic signaling pathway. CONCLUSION: B. purpurascens extract and its major bioactive constituent, cuscutin, showed potent anti-melanogenesis and skin-whitening effect by targeting TYR and TRP-2 proteins for the first time, which supported its traditional use.


Assuntos
Melanoma Experimental , Monofenol Mono-Oxigenase , Animais , Camundongos , Melaninas/metabolismo , Peixe-Zebra , alfa-MSH/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fator de Transcrição Associado à Microftalmia/metabolismo , Linhagem Celular Tumoral , Melanoma Experimental/tratamento farmacológico
5.
Phytomedicine ; 126: 155442, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394730

RESUMO

BACKGROUND: The pursuit for safe and efficacious skin-whitening agents has prompted a dedicated exploration of plant-derived compounds. Notably, Tagetes erecta L. flowers have been used as a medicinal extract and possessed in vitro mushroom tyrosinase activity. However, whether polyphenol-enriched fraction extracted from T. erecta L. flowers (TE) regulates melanogenesis within cellular and animal models has not yet been investigated. PURPOSE: This study aimed to investigate the effect of TE as a prospective inhibitor of melanogenesis. METHODS: Through advanced UPLC-QTof/MS analysis, the components of TE were analyzed. Anti-melanogenic effects of TE were evaluated in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16F10 melanoma cells by measuring cell viability assay, extracellular and intracellular melanin biosynthesis, cyclic adenosine monophosphate (cAMP) production, and melanogenesis-related gene and protein expression. Zebrafish larvae were employed for in vivo studies, assessing both heart rate and melanogenesis. Furthermore, molecular docking analyses were employed to predict the interaction between TE components and the melanocortin 1 receptor (MC1R). Direct binding activity of TE components to MC1R was compared with [Nle4, d-Phe7]-MSH (NDP-MSH). RESULTS: TE was found to contain significant phenolic compounds such as patulitrin, quercetagetin, kaempferol, patuletin, and isorhamnetin. This study revealed that TE effectively inhibits melanin biosynthesis in both in vitro and in vivo models. This inhibition was attributed to interference of TE with the cAMP-cAMP response element-binding protein (CREB)-microphthalmia-associated transcription factor (MITF)-tyrosinase pathway, which plays a pivotal role in regulating melanogenesis. Importantly, TE exhibited the remarkable ability to curtail α-MSH-induced melanogenesis in zebrafish larvae without impacting heart rates. Molecular docking analyses predicted that the components of TE possibly interact with the melanocortin 1 receptor, suggesting their role as potential inhibitors of melanin biosynthesis. However, through the direct binding activity compared with NDP-MSH, any TE components did not directly bind to MC1R, suggesting that TE inhibits α-MSH-induced melanogenesis by inhibiting the cAMP-mediated intracellular signaling pathway. The assessment of anti-melanogenic activity, conducted both in vitro and in vivo, revealed that patulitrin and patuletin exhibited significant inhibitory effects on melanin formation, highlighting their potency as major contributors. DISCUSSION: This investigation demonstrated the considerable potential of TE as a natural remedy endowed with remarkable anti-melanogenic properties. The demonstrated capacity of TE to attenuate melanin production by modulating the cAMP-CREB-MITF-tyrosinase pathway underscores its central role in management of disorders associated with excessive pigmentation. Importantly, the implications of these findings extend to the cosmetics industry, where TE emerges as a prospective and valuable ingredient for the formulation of skin-whitening products. The elucidated interactions between TE components and MC1R not only provide insight into a potential mechanism of action but also elevate the significance of this study. In summary, this study not only contributes to our comprehension of pigmentation-related conditions but also firmly establishes TE as a secure and natural strategy for the regulation of melanin production. The innovative aspects of TE propel it into the forefront of potential interventions, marking a noteworthy advancement in the pursuit of effective and safe solutions for pigmentation disorders.


Assuntos
Melanoma Experimental , Tagetes , Animais , Melaninas , Monofenol Mono-Oxigenase/metabolismo , alfa-MSH/farmacologia , alfa-MSH/metabolismo , Peixe-Zebra/metabolismo , Tagetes/metabolismo , Melanogênese , Polifenóis/farmacologia , Receptor Tipo 1 de Melanocortina/metabolismo , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Fator de Transcrição Associado à Microftalmia/metabolismo , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo
6.
Food Res Int ; 180: 114097, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395549

RESUMO

The defatted seeds of evening primrose (DE), a by-product of evening primrose oil extraction, are currently underutilized. This study aimed to valorize DE by examining its effects on melanogenesis and tyrosinase activity in zebrafish embryos and in vitro, and an innovative affinity-labeled molecular networking workflow was proposed for the rapid identification of tyrosinase inhibitors in DE. Our results indicated DE significantly reduced melanin content (53.3 % at 100 µg/mL) and tyrosinse activity (80.05 % for monophenolase and 70.40 % for diphenolase at 100 µg/mL). Furthermore, through the affinity-labeled molecular networking approach, 20 compounds were identified as potential tyrosinase inhibitors within DE, predominantly flavonoids and tannins characterized by catechin and galloyl substructures. Seven of these compounds were isolated and their inhibitory effects on tyrosinase were validated using functional assays. This study not only underscores the potential of DE as a rich source of natural tyrosinase inhibitors but also establishes the effectiveness of affinity-labeled molecular networking in pinpointing bioactive compounds in complex biological matrices.


Assuntos
Oenothera biennis , Animais , Oenothera biennis/química , Monofenol Mono-Oxigenase , Peixe-Zebra , Extratos Vegetais/farmacologia , Flavonoides/farmacologia
7.
J Ethnopharmacol ; 324: 117617, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38142876

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Erzhi pills (EZP), a traditional Chinese medicine formula prescribed for the treatment of vitiligo, has shown promising efficacy. However, the oral bioactive components and mechanisms underlying the promotion of melanogenesis by EZP remain unclear. AIM OF THE STUDY: This study aimed to investigate the pharmacological basis and mechanism of EZP in promoting melanogenesis. MATERIALS AND METHODS: UHPLC-TOF-MS analysis was used to identify absorbed phytochemicals in serum after oral administration of EZP. Network pharmacology methods were used to predict potential targets and pathways involved in the melanogenic activity of EZP, resulting in the construction of a "compound-target-pathway" network. Zebrafish and B16F10 cells were used to evaluate the effects of EZP on tyrosinase activity and melanin content. Western blot and ELISA analyses were used to validate the effects of EZP on melanogenesis-related proteins, including MITF, TYR, CREB, p-CREB, and cAMP. RESULTS: UHPLC-TOF-MS analysis identified 36 compounds derived from EZP in serum samples. Network pharmacology predictions revealed 89 target proteins associated with the identified compounds and closely related to vitiligo. GO and KEGG analyses indicated the involvement of the cAMP/PKA signaling pathway in the promotion of melanogenesis by EZP. Experimental results showed that EZP increased tyrosinase activity and melanin content in zebrafish and B16F10 cells without inducing toxicity. Western blot and ELISA results suggested that the melanogenic effect of EZP may be related to the activation of the cAMP/PKA signaling pathway. These results confirm the feasibility of combining serum pharmacological and network pharmacological approaches. CONCLUSIONS: EZP have the potential to increase tyrosinase activity and melanin content in zebrafish and cells possibly through activation of the cAMP/PKA pathway.


Assuntos
Medicamentos de Ervas Chinesas , Melanoma Experimental , Vitiligo , Animais , Melaninas/metabolismo , Peixe-Zebra , Melanogênese , Monofenol Mono-Oxigenase/metabolismo , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Linhagem Celular Tumoral , Fator de Transcrição Associado à Microftalmia/metabolismo
8.
J Ethnopharmacol ; 323: 117673, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38158096

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tribuloside, a natural flavonoid extracted from Chinese medicine Tribulus terrestris L., has shown potent efficacy in treating various diseases. In China, the fruits of Tribulus terrestris L. have long been utilized for relieving headache, dizziness, itchiness, and vitiligo. Water-based extract derived from Tribulus terrestris L. can enhance melanogenesis in mouse hair follicle melanocytes by elevating the expression of α-melanocyte stimulating hormone (α-MSH) and melanocortin-1 recepter (MC-1R). Nevertheless, there is a lack of information regarding the impact of tribuloside on pigmentation in both laboratory settings and living organisms. AIM OF THE STUDY: The present research aimed to examine the impact of tribuloside on pigmentation, and delve into the underlying mechanism. MATERIALS AND METHODS: Following the administration of tribuloside in human epidermal melanocytes (HEMCs), we utilized microplate reader, Masson-Fontana ammoniacal silver stain, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to measure melanin contents, dendrite lengths, melanosome counts; L-DOPA oxidation assay to indicate tyrosinase activity, Western blotting to evaluate the expression of melanogenic and associated phosphodiesterase (PDE)/cyclic adenosine monophosphate (cAMP)/cyclic-AMP dependent protein kinase A (PKA) pathway proteins. A PDE-Glo assay to verify the inhibitory effect of tribuloside on PDE was also conducted. Additionally, we examined the impact of tribuloside on the pigmentation in both zebrafish model and human skin samples. RESULTS: Tribuloside had a notable impact on the production of melanin in melanocytes, zebrafish, and human skin samples. These functions might be attributed to the inhibitory effect of tribuloside on PDE, which could increase the intracellular level of cAMP to stimulate the phosphorylation of cAMP-response element binding (CREB). Once activated, it induced microphthalmia-associated transcription factor (MITF) expression and increased the expression of tyrosinase, Rab27a and cell division cycle protein 42 (Cdc42), ultimately facilitating melanogenesis, melanocyte dendricity, and melanin transport. CONCLUSION: Tribuloside acts on the PDE/cAMP/PKA pathway to enhance melanogenesis, melanocyte dendricity, and melanosome transport; meanwhile, tribuloside does not have any toxic effects on cells and may be introduced into clinical prescriptions to promote pigmentation.


Assuntos
Melaninas , Melanossomas , Animais , Camundongos , Humanos , Melaninas/metabolismo , Melanossomas/metabolismo , Peixe-Zebra , Monofenol Mono-Oxigenase/metabolismo , Melanogênese , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Melanócitos , AMP Cíclico/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Linhagem Celular Tumoral
9.
Biochim Biophys Acta Rev Cancer ; 1878(6): 188968, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37657683

RESUMO

The skin containing melanin pigment acts as a protective barrier and counteracts the UVR and other environmental stressors to maintain or restore disrupted cutaneous homeostasis. The production of melanin pigment is dependent on tyrosine levels. L-tyrosine and L-dihydroxyphenylalanine (L-DOPA) can serve both as a substrates and intermediates of melanin synthetic pathway and as inducers and positive regulators of melanogenesis. The biosynthesis of melanin is stimulated upon exposure to UVR, which can also stimulate local production of hormonal factors, which can stimulate melanoma development by altering the chemical properties of eu- and pheomelanin. The process of melanogenesis can be altered by several pathways. One involves activation of POMC, with the production of POMC peptides including MSH and ACTH, which increase intracellular cAMP levels, which activates the MITF, and helps to stimulate tyrosinase (TYR) expression and activity. Defects in OCA1 to 4 affects melanogenic activity via posttranslational modifications resulting in proteasomal degradation and reducing pigmentation. Further, altering, the MITF factor, helps to regulate the expression of MRGE in melanoma, and helps to increase the TYR glycosylation in ER. CRH stimulates POMC peptides that regulate melanogenesis and also by itself can stimulate melanogenesis. The POMC, P53, ACTH, MSH, MC1R, MITF, and 6-BH4 are found to be important regulators for pigmentation. Melanogenesis can affect melanoma behaviour and inhibit immune responses. Therefore, we reviewed natural products that would alter melanin production. Our special focus was on targeting melanin synthesis and TYR enzyme activity to inhibit melanogenesis as an adjuvant therapy of melanotic melanoma. Furthermore, this review also outlines the current updated pharmacological studies targeting the TYR enzyme from natural sources and its consequential effects on melanin production.


Assuntos
Melaninas , Melanoma , Humanos , Melaninas/metabolismo , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Pró-Opiomelanocortina , Linhagem Celular Tumoral , Tirosina , Inibidores Enzimáticos , Hormônio Adrenocorticotrópico
10.
Antioxidants (Basel) ; 12(8)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37627575

RESUMO

Vitiligo, an acquired depigmentation disorder, is characterized by the loss of functional melanocytes and epidermal melanin. In recent years, research has focused on promoting melanin biosynthesis and protecting melanocytes to reduce stress-related damage for the purpose of applying it to vitiligo treatment. Ruta graveolens L. has been utilized as a medicinal herb in diverse traditional medicine systems to address conditions like vitiligo. In this investigation, we isolated and purified 16 unique alkaloid compounds from the chloroform extracts of R. graveolens, encompassing a new quinoline alkaloid and several recognized compounds. Bioactivity analysis showed that compound 13, an alkaloid derived from R. graveolens, promotes melanin production while protecting PIG3V melanocytes against 4-tert-butylphenol (4-TBP)-induced oxidative damage by downregulating endoplasmic reticulum (ER) stress and pro-inflammatory cytokines through interleukin-6 (IL-6) regulation. Additionally, the compound suppressed the expression of Bip, IRE1, p-IRE1, and XBP-1 proteins, suggesting a potential antioxidant function. These findings suggest that compound 13 isolated from R. graveolens can augment melanogenesis in melanocytes, reduce endoplasmic reticulum (ER) stress, and ameliorate vitiligo exacerbation. The melanogenic activity observed in the chloroform fraction emphasizes R. graveolens's potential as a novel therapeutic target for vitiligo treatment, warranting further exploration in future studies.

11.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511600

RESUMO

Melanin production is an important process that prevents the host skin from harmful ultraviolet radiation; however, an overproduction of melanin results in skin diseases. In the present study, we determined the antioxidative and anti-melanogenic activities of polyphenol- and flavonoid-enriched rice seed extracts in melan-a cells. The polyphenol and flavonoid content of Hopum (HP) and Sebok (SB) rice seed extracts was measured. The antioxidant capacity was determined using the ABTS radical scavenging method. SB contained high amounts of polyphenols and flavonoids, which significantly increased antioxidative activity compared with HP. Various concentrations of these extracts were evaluated in a cytotoxicity using melan-a cells. At 100 µg/mL, there was no significant difference for all treatments compared with untreated cells. Therefore, 100 µg/mL was selected as a concentration for the further experiments. SB significantly suppressed the phosphorylation/activation of p-38 MAPK, increased the expression of phosphorylated ERK 1/2 and Akt, and downregulated the microphthalmia-associated transcription factor (MITF). This resulted in decreased levels of tyrosinase and tyrosinase-related protein-1 and -2. These results indicate the potential of polyphenol- and flavonoid-enriched rice seed as a treatment for hyperpigmentation.


Assuntos
Melaninas , Oryza , Melaninas/metabolismo , Flavonoides/farmacologia , Polifenóis/farmacologia , Regulação para Baixo , Oryza/metabolismo , Transdução de Sinais , Fator de Transcrição Associado à Microftalmia/metabolismo , Antígeno MART-1/metabolismo , Antígeno MART-1/farmacologia , Raios Ultravioleta , Monofenol Mono-Oxigenase/metabolismo , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral
12.
Phytomedicine ; 116: 154879, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37229889

RESUMO

BACKGROUND: The flavonoids and polysaccharides in Portulaca oleracea L. (PO) have significant antibacterial and antioxidant effects, which can inhibit common bacteria and remove free radicals in the body. However, there was little research on the use of PO to alleviate hyperpigmentation and photoaging damage. PURPOSE: This study was to investigate the anti-photoaging and whitening activity mechanism of polysaccharide of PO (POP) in vitro and in vivo. METHOD: In this study, 16 fractions obtained by four enzyme-assisted extraction from PO and their scavenging capabilities against 2,2-diphenyl-1-picrylhydrazyl and hydroxyl radicals were evaluated. Among these fractions, a polysaccharide fraction (VPOP3) showed the strongest biological activity. VPOP3 was characterized by Fourier-transform infrared spectroscopy, molecular weight (MW), and monosaccharide composition analysis, and the protective effect of VPOP3 on photoaging and hyperpigmentation was researched. RESULTS: VPOP3 is a low-MW acidic heteropolysaccharide with MW mainly distributed around 0.71KDa, arabinose as its main monosaccharide component. VPOP3 reliably reduced the reactive oxygen species levels in cells and zebrafish and the level of lipid peroxidation in zebrafish. In addition, VPOP3 inhibited UVB-induced apoptotic body formation and apoptosis by downregulating caspase-3 and Bax and upregulating Bcl-2 in mitochondrion-mediated signaling pathways. On the other hand, VPOP3 at high concentrations significantly downregulated the expression of microphthalmia-associated transcription factor, tyrosinase (TYR), and TYR-related protein-1 and TYR-related protein-2 in the melanogenic signaling pathway to achieve a whitening effect. CONCLUSION: The above results showed that VPOP3 has superior activities of anti-photoaging and anti-melanogenesis and can be utilized as a safe resource in the manufacture of cosmetics.


Assuntos
Hiperpigmentação , Portulaca , Animais , Portulaca/química , Peixe-Zebra , Polissacarídeos/farmacologia , Polissacarídeos/química , Transdução de Sinais
13.
Front Pharmacol ; 14: 1169812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197407

RESUMO

There is no first-line treatment for vitiligo, a skin disease characterized by a lack of melanin produced by the melanocytes, resulting in an urgent demand for new therapeutic drugs capable of stimulating melanocyte functions, including melanogenesis. In this study, traditional medicinal plant extracts were tested for cultured human melanocyte proliferation, migration, and melanogenesis using MTT, scratch wound-healing assays, transmission electron microscopy, immunofluorescence staining, and Western blot technology. Of the methanolic extracts, Lycium shawii L. (L. shawii) extract increased melanocyte proliferation at low concentrations and modulated melanocyte migration. At the lowest tested concentration (i.e., 7.8 µg/mL), the L. shawii methanolic extract promoted melanosome formation, maturation, and enhanced melanin production, which was associated with the upregulation of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein (TRP)-1 and TRP-2 melanogenesis-related proteins, and melanogenesis-related proteins. After the chemical analysis and L. shawii extract-derived metabolite identification, the in silico studies revealed the molecular interactions between Metabolite 5, identified as apigenin (4,5,6-trihydroxyflavone), and the copper active site of tyrosinase, predicting enhanced tyrosinase activity and subsequent melanin formation. In conclusion, L. shawii methanolic extract stimulates melanocyte functions, including melanin production, and its derivative Metabolite 5 enhances tyrosinase activity, suggesting further investigation of the L. shawii extract-derived Metabolite 5 as a potential natural drug for vitiligo treatment.

14.
Biotechnol Genet Eng Rev ; : 1-22, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37066895

RESUMO

Leonurus japonicus Houtt is an important anti-skin pigmentation herb used in traditional Chinese medicine. However, the molecular basis for this activity is complex and not fully understood. In this study, water and ethanol extracts and polysaccharide extract from L. japonicus (LJPs) were analyzed by LC-MS/MS and HPLC-DAD separately. Cytotoxicity was analyzed by using CCK-8, antioxidant activity using flow cytometer, anti-MMPs, anti-tyrosinase and signalling pathway analysis using Western blotting to investigate their anti-melanogenesis function. The results showed that the water and ethanol extracts contained alkaloids, flavonoids, and phenolic acids. The LJPs mainly contain glucose, fucose, glucuronic acid, mannose, threonine and arginine, and structure characterization by FITR analyses indicated that LJPs have ß- or α-D-glycosidic bonds and contain pyranose rings. The L. japonicus extracts displayed high cell viability at their maximum concentration. The water extract and polysaccharides significantly reduced lipopolysaccharide (LPS)-induced intracellular reactive oxygen species (ROS) content and exhibited a cytoprotective role. Also, these extracts displayed higher matrix metalloproteinase-2 (anti-MMP-2), anti-MMP-9 and anti-tyrosinase activities. Furthermore, the polysaccharides displayed significantly greater inhibitory effect on intracellular ROS and tyrosinase protein expression than α-arbutin and ursolic acid used for the clinical treatment of skin pigmentation. This study also investigated the polysaccharide inhibition of melanin synthesis by repressing the expression of melanocytic lineage-specific transcription factor (MITF) and melanogenic enzymes via modulation of the phosphoinositide 3-kinase (PI3K-Akt-mTOR) and ß-catenin pathways. The overall results indicate that L. japonicus is a promising candidate for anti-pigmentation treatment.

15.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1606-1619, 2023 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-37005849

RESUMO

This study aimed to evaluate the biological effect and mechanism of Vernonia anthelmintica Injection(VAI) on melanin accumulation. The in vivo depigmentation model was induced by propylthiouracil(PTU) in zebrafish, and the effect of VAI on melanin accumulation was evaluated based on the in vitro B16F10 cell model. The chemical composition of VAI was identified according to the high-performance liquid chromatography quadrupole-time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS). Network pharmaco-logy was applied to predict potential targets and pathways of VAI. A "VAI component-target-pathway" network was established, and the pharmacodynamic molecules were screened out based on the topological characteristics of the network. The binding of active molecules to key targets was verified by molecular docking. The results showed that VAI promoted tyrosinase activity and melanin production in B16F10 cells in a dose-and time-dependent manner and could restore the melanin in the body of the zebrafish model. Fifty-six compounds were identified from VAI, including flavonoids(15/56), terpenoids(10/56), phenolic acids(9/56), fatty acids(9/56), steroids(6/56), and others(7/56). Network pharmacological analysis screened four potential quality markers, including apigenin, chrysoeriol, syringaresinol, and butein, involving 61 targets and 65 pathways, and molecular docking verified their binding to TYR, NFE2L2, CASP3, MAPK1, MAPK8, and MAPK14. It was found that the mRNA expression of MITF, TYR, TYRP1, and DCT in B16F10 cells was promoted. By UPLC-Q-TOF-MS and network pharmacology, this study determined the material basis of VAI against vitiligo, screened apigenin, chrysoeriol, syringaresinol, and butein as the quality markers of VAI, and verified the efficacy and internal mechanism of melanogenesis, providing a basis for quality control and further clinical research.


Assuntos
Medicamentos de Ervas Chinesas , Vernonia , Animais , Vernonia/química , Melaninas/genética , Melaninas/metabolismo , Peixe-Zebra/metabolismo , Farmacologia em Rede , Simulação de Acoplamento Molecular , Apigenina/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Cromatografia Líquida de Alta Pressão
16.
Plants (Basel) ; 12(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36904043

RESUMO

Kaempferia parviflora Wall. ex Baker (Zingiberaceae), commonly known as Thai ginseng or black ginger, is a tropical medicinal plant in many regions. It has been traditionally used to treat various ailments, including ulcers, dysentery, gout, allergies, abscesses, and osteoarthritis. As part of our ongoing phytochemical study aimed at discovering bioactive natural products, we investigated potential bioactive methoxyflavones from K. parviflora rhizomes. Phytochemical analysis aided by liquid chromatography-mass spectrometry (LC-MS) led to the isolation of six methoxyflavones (1-6) from the n-hexane fraction of the methanolic extract of K. parviflora rhizomes. The isolated compounds were structurally determined to be 3,7-dimethoxy-5-hydroxyflavone (1), 5-hydroxy-7-methoxyflavone (2), 7,4'-dimethylapigenin (3), 3,5,7-trimethoxyflavone (4), 3,7,4'-trimethylkaempferol (5), and 5-hydroxy-3,7,3',4'-tetramethoxyflavone (6), based on NMR data and LC-MS analysis. All of the isolated compounds were evaluated for their anti-melanogenic activities. In the activity assay, 7,4'-dimethylapigenin (3) and 3,5,7-trimethoxyflavone (4) significantly inhibited tyrosinase activity and melanin content in IBMX-stimulated B16F10 cells. In addition, structure-activity relationship analysis revealed that the methoxy group at C-5 in methoxyflavones is key to their anti-melanogenic activity. This study experimentally demonstrated that K. parviflora rhizomes are rich in methoxyflavones and can be a valuable natural resource for anti-melanogenic compounds.

17.
Mol Med Rep ; 27(3)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36734267

RESUMO

Pueraria Lobata Radix (P. Lobata Radix) is an edible traditional Chinese medicine that contains various active compounds. Proteins from P. Lobata Radix have become the subject of increased interest in recent years. In evaluating the whitening effect on the skin, the present study found that the P. Lobata Radix water­soluble total protein extract (PLP) had the strongest inhibitory effect on tyrosinase activity. In the present study, the anti­melanogenic effect of PLP and the inhibitory effect on B16 melanoma cells were investigated. PLP significantly reduced the tyrosinase activity and melanin content in B16 melanoma cells. Mechanistically, PLP inhibited melanogenesis by decreasing the expression of tyrosinase, tyrosinase­related protein (TRP)­1 and TRP­2 through downregulation of the microphthalmia­associated transcription factor (MITF) gene, which was mediated by inhibition of p38 mitogen­activated protein kinase signaling. In addition, PLP inhibited cell viability and triggered apoptosis of B16 cells in a dose­dependent manner. Exposure to PLP reduced the mitochondrial membrane potential (MMP) and decreased ATP generation, leading to mitochondria­related apoptosis of B16 melanoma cells. The expression levels of succinate dehydrogenase (SDH) and its two related subunits (SDHA and SDHB) were downregulated significantly by PLP, which may be associated with the regulation of mitochondrial energy metabolism by PLP. These results may explain why MMP collapse and reduced ATP generation were observed in B16 melanoma cells treated with PLP. Finally, the present study demonstrated that the inhibition of melanin synthesis by PLP was correlated with the regulation of antioxidant enzymes to reduce reactive oxygen species levels. These results suggested that PLP inhibits melanogenesis by downregulating the expression of MITF­related melanogenic enzymes and triggering apoptosis through mitochondria­related pathways.


Assuntos
Melanoma Experimental , Pueraria , Animais , Trifosfato de Adenosina , Apoptose , Linhagem Celular Tumoral , Melaninas , Melanoma Experimental/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Mitocôndrias/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Camundongos
18.
Plants (Basel) ; 12(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36840317

RESUMO

Oryza sativa L. cv. Pieisu 1 CMU (PES1CMU) has a high anthocyanin content in the colored bran and high phenolic content in the husk. Biologically active compounds in plants are available as dietary supplements and cosmetics. To expand the utilization of natural resources, PES1CMU will be a natural remedy for skin hyperpigmentation and aging. Cell-free tyrosinase inhibition and scavenging assays were used to screen all extracts, including PES1CMU-rice bran oil (RBO), PES1CMU-defatted rice bran (DFRB), and PES1CMU-husk (H). PES1CMU extracts were first examined in IBMX-stimulated B16 cells and H2O2-induced fibroblasts. The results exhibited that PES1CMU-DFRB was the most effective inhibitor of mushroom tyrosinase, intracellular melanin production (fold change of 1.11 ± 0.01), and tyrosinase activity (fold change of 1.22 ± 0.10) in IBMX-stimulated B16 cells. Particularly, PES1CMU-DFRB showed a comparable whitening effect to the standard arbutin with no significant difference (p > 0.05). Moreover, PES1CMU-DFRB and PES1CMU-H demonstrated strong scavenging activities. After accelerated cell aging caused by H2O2 exposure in fibroblasts, the levels of malondialdehyde production in all PES1CMU-treated fibroblasts were comparable with those of standard l-ascorbic acid (p > 0.05). Besides, PES1CMU-DFRB and PES1CMU-H treatment significantly inhibited collagen degradation against MMP-2 compared to l-ascorbic acid-treated cells (p > 0.05). PES1CMU rice-processing wastes (DFRB and H) could become potential natural sources for dermatocosmetic constituents in skin anti-aging and whitening products.

19.
J Ethnopharmacol ; 301: 115848, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36272492

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Morus alba L. has long been used for beauty in many Asian countries and regions, including anti-aging and hyperpigmentation. AIM OF THE STUDY: This study aimed at the inhibitory effect of Morus alba L. root on melanogenesis in B16F10 melanoma cells and the mechanism involved. MATERIALS AND METHODS: This study evaluated the anti-melanogenic effect of Morus alba L. root extract (MAR) on B16F10 melanoma cells by assessing cell viability, melanin accumulation, cellular tyrosinase activity, intra/inter-cellular S1P levels, cellular S1P-related metabolic enzyme activity, and western blot analysis. In addition, the potential S1P lyase (S1PL) inhibitory constituents in MAR were identified by LC-MS/MS. RESULTS: Without affecting the viability of B16F10 melanoma cells, MAR inhibited intracellular tyrosinase activity in a dose-dependent manner, thereby reducing the accumulation of melanin. MAR also downregulated the expression level of MITF via activating the ERK signaling pathway. Furthermore, MAR increased the intra/inter-cellular S1P by inhibiting S1PL. Several compounds with inhibitory S1PL activity have been identified in MAR, such as mulberroside A and oxyresveratrol. CONCLUSIONS: The anti-melanogenic effects of MAR mainly involve promoting MITF degradation mediated via S1P-S1PR3-ERK signaling through increasing cellular S1P levels by inhibiting S1PL activity.


Assuntos
Melanoma Experimental , Melanoma , Morus , Animais , Melaninas/metabolismo , Monofenol Mono-Oxigenase , Cromatografia Líquida , Espectrometria de Massas em Tandem , Transdução de Sinais , Linhagem Celular Tumoral , Melanoma Experimental/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo
20.
J Ethnopharmacol ; 302(Pt A): 115884, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36341815

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Artiri La Li Honey Pill (ALLHP) is a traditional medicinal formula that is widely used in Xinjiang, China, for the treatment of vitiligo. Since the cause of vitiligo has not been determined, no satisfactory treatment is available. Clinical interventions include pharmacological treatment with psoralen, usually in conjunction with ultraviolet A (UVA) radiation, but toxic side effects limit this application. Studies on the activity and mechanisms of ALLHP are scarce. AIM OF THE STUDY: To verify the therapeutic effect of ALLHP on vitiligo and determine its effectiveness as a theoretical and experimental basis for the development of innovative drugs with independent intellectual property rights and the effective use of local resources. MATERIALS AND METHODS: The experimental animal model of vitiligo was established by chemical decoloring. Rats were treated with gradient doses of ALLHP. The therapeutic effect was judged by gross observation. The contents of TYR, MAO, AchE and MDA in serum and skin tissue, the number of hair follicles containing melanin in skin tissue, the distribution of epidermal melanin, and the weight index of immune organs were detected, and the therapeutic effect of ALLHP on vitiligo was evaluated. In addition, certain monomer components in ALLHP were used to intervene in the zebrafish juvenile melanin suppression model, and the melanin-activating activities of some monomer components in ALLHP were screened by counting the melanin area ratio. RESULTS: ALLHP increased the number of melanin-containing hair follicles and the epidermal melanin content in the skin of experimental vitiligo animals, repaired the skin cell morphology to a certain extent, increased the content of TYR in serum and skin, and reduced the content of MDA, AchE and MAO. Carvone, Luteolin, Psoralen and Psoraleae phenol and Bakuchiol could increase the melanin area of experimental melanin inhibition in zebrafish. CONCLUSION: According to the results of this study, ALLHP can increase the number of melanin-containing hair follicles and the epidermal melanin content in the skin of vitiligo animals and restore skin cell morphology to a certain extent by reducing oxidative stress in epidermal tissue. A wide range of active ingredients may promote melanogenesis with ALLHP.


Assuntos
Furocumarinas , Vitiligo , Ratos , Animais , Vitiligo/tratamento farmacológico , Melaninas , Peixe-Zebra , Modelos Teóricos , Furocumarinas/uso terapêutico , Monoaminoxidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA