Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(5): e0026824, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38619268

RESUMO

A new variant of Methanothermobacter wolfeii was isolated from an anaerobic digester using enrichment cultivation in anaerobic conditions. The new isolate was taxonomically identified via 16S rRNA gene sequencing and tagged as M. wolfeii BSEL. The whole genome of the new variant was sequenced and de novo assembled. Genomic variations between the BSEL strain and the type strain were discovered, suggesting evolutionary adaptations of the BSEL strain that conferred advantages while growing under a low concentration of nutrients. M. wolfeii BSEL displayed the highest specific growth rate ever reported for the wolfeii species (0.27 ± 0.03 h-1) using carbon dioxide (CO2) as unique carbon source and hydrogen (H2) as electron donor. M. wolfeii BSEL grew at this rate in an environment with ammonium (NH4+) as sole nitrogen source. The minerals content required to cultivate the BSEL strain was relatively low and resembled the ionic background of tap water without mineral supplements. Optimum growth rate for the new isolate was observed at 64°C and pH 8.3. In this work, it was shown that wastewater from a wastewater treatment facility can be used as a low-cost alternative medium to cultivate M. wolfeii BSEL. Continuous gas fermentation fed with a synthetic biogas mimic along with H2 in a bubble column bioreactor using M. wolfeii BSEL as biocatalyst resulted in a CO2 conversion efficiency of 97% and a final methane (CH4) titer of 98.5%v, demonstrating the ability of the new strain for upgrading biogas to renewable natural gas.IMPORTANCEAs a methanogenic archaeon, Methanothermobacter wolfeii uses CO2 as electron acceptor, producing CH4 as final product. The metabolism of M. wolfeii can be harnessed to capture CO2 from industrial emissions, besides producing a drop-in renewable biofuel to substitute fossil natural gas. If used as biocatalyst in new-generation CO2 sequestration processes, M. wolfeii has the potential to accelerate the decarbonization of the energy generation sector, which is the biggest contributor of CO2 emissions worldwide. Nonetheless, the development of CO2 sequestration archaeal-based biotechnology is still limited by an uncertainty in the requirements to cultivate methanogenic archaea and the unknown longevity of archaeal cultures. In this study, we report the adaptation, isolation, and phenotypic characterization of a novel variant of M. wolfeii, which is capable of maximum growth with minimal nutrients input. Our findings demonstrate the potential of this variant for the production of renewable natural gas, paving the way for the development of more efficient and sustainable CO2 sequestration processes.


Assuntos
Dióxido de Carbono , Methanobacteriaceae , Methanobacteriaceae/genética , Methanobacteriaceae/metabolismo , Methanobacteriaceae/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , RNA Ribossômico 16S/genética , Genoma Arqueal , Filogenia , Fenótipo , Águas Residuárias/microbiologia , Metano/metabolismo , Nutrientes/metabolismo
2.
mBio ; 13(6): e0244322, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36409126

RESUMO

Some marine thermophilic methanogens are able to perform energy-consuming nitrogen fixation despite deriving only little energy from hydrogenotrophic methanogenesis. We studied this process in Methanothermococcus thermolithotrophicus DSM 2095, a methanogenic archaeon of the order Methanococcales that contributes to the nitrogen pool in some marine environments. We successfully grew this archaeon under diazotrophic conditions in both batch and fermenter cultures, reaching the highest cell density reported so far. Diazotrophic growth depended strictly on molybdenum and, in contrast to other diazotrophs, was not inhibited by tungstate or vanadium. This suggests an elaborate control of metal uptake and a specific metal recognition system for the insertion into the nitrogenase cofactor. Differential transcriptomics of M. thermolithotrophicus grown under diazotrophic conditions with ammonium-fed cultures as controls revealed upregulation of the nitrogenase machinery, including chaperones, regulators, and molybdate importers, as well as simultaneous upregulation of an ammonium transporter and a putative pathway for nitrate and nitrite utilization. The organism thus employs multiple synergistic strategies for uptake of nitrogen nutrients during the early exponential growth phase without altering transcription levels for genes involved in methanogenesis. As a counterpart, genes coding for transcription and translation processes were downregulated, highlighting the maintenance of an intricate metabolic balance to deal with energy constraints and nutrient limitations imposed by diazotrophy. This switch in the metabolic balance included unexpected processes, such as upregulation of the CRISPR-Cas system, probably caused by drastic changes in transcription levels of putative mobile and virus-like elements. IMPORTANCE The thermophilic anaerobic archaeon M. thermolithotrophicus is a particularly suitable model organism to study the coupling of methanogenesis to diazotrophy. Likewise, its capability of simultaneously reducing N2 and CO2 into NH3 and CH4 with H2 makes it a viable target for biofuel production. We optimized M. thermolithotrophicus cultivation, resulting in considerably higher cell yields and enabling the successful establishment of N2-fixing bioreactors. Improved understanding of the N2 fixation process would provide novel insights into metabolic adaptations that allow this energy-limited extremophile to thrive under diazotrophy, for instance, by investigating its physiology and uncharacterized nitrogenase. We demonstrated that diazotrophic growth of M. thermolithotrophicus is exclusively dependent on molybdenum, and complementary transcriptomics corroborated the expression of the molybdenum nitrogenase system. Further analyses of differentially expressed genes during diazotrophy across three cultivation time points revealed insights into the response to nitrogen limitation and the coordination of core metabolic processes.


Assuntos
Compostos de Amônio , Euryarchaeota , Fixação de Nitrogênio/genética , Molibdênio , Transcriptoma , Nitrogenase/metabolismo , Euryarchaeota/genética , Nitrogênio/metabolismo , Methanococcaceae/genética , Methanococcaceae/metabolismo
3.
Microbes Environ ; 34(2): 121-128, 2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-30905894

RESUMO

Despite efforts to address the composition of the microbial community during the anaerobic treatment of palm oil mill effluent (POME), its composition in relation to biodegradation in the full-scale treatment system has not yet been extensively examined. Therefore, a thorough analysis of bacterial and archaeal communities was performed in the present study using MiSeq sequencing at the different stages of the POME treatment, which comprised anaerobic as well as facultative anaerobic and aerobic processes, including the mixed raw effluent (MRE), mixing pond, holding tank, and final discharge phases. Based on the results obtained, the following biodegradation processes were suggested to occur at the different treatment stages: (1) Lactobacillaceae (35.9%) dominated the first stage, which contributed to high lactic acid production; (2) the higher population of Clostridiaceae in the mixing pond (47.7%) and Prevotellaceae in the holding tank (49.7%) promoted acetic acid production; (3) the aceticlastic methanogen Methanosaetaceae (0.6-0.8%) played a role in acetic acid degradation in the open digester and closed reactor for methane generation; (4) Syntrophomonas (21.5-29.2%) appeared to be involved in the degradation of fatty acids and acetic acid by syntrophic cooperation with the hydrogenotrophic methanogen, Methanobacteriaceae (0.6-1.3%); and (5) the phenols and alcohols detected in the early phases, but not in the final discharge phase, indicated the successful degradation of lignocellulosic materials. The present results contribute to a better understanding of the biodegradation mechanisms involved in the different stages of the full-scale treatment of POME.


Assuntos
Biodegradação Ambiental , Consórcios Microbianos , Óleo de Palmeira/metabolismo , Esgotos/microbiologia , Eliminação de Resíduos Líquidos , Aerobiose , Anaerobiose , Archaea/classificação , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodiversidade , Reatores Biológicos/microbiologia , Lignina/metabolismo , Metano/biossíntese
4.
Bioresour Technol ; 268: 158-168, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30077172

RESUMO

The effect of the organic loading rate (OLR) on the performance and microbial composition of a two-stage UASB system treating coffee processing wastewater was assessed. The system was operated with OLR up to 18.2 g COD (L d)-1 and effluent recirculation. Methane production and effluent characteristics were monitored. The microbial composition was examined through next-generation sequencing and qPCR from the anaerobic sludge of the first reactor (R1) operated at low and high OLR. The system showed operational stability, obtaining a maximum methane production of 2.2 L CH4 (L d)-1, with a removal efficiency of COD and phenolic compounds of 84 and 73%, respectively. The performance of R1 at high OLR in steady conditions was associated with an appropriate proportion of nutrients (particularly Fe) and a marked increase of the syntrophic bacteria Syntrophus and Candidatus Cloacimonas, and acetoclastic and hydrogenotrophic methanogens, mainly Methanosaeta, Methanoculleus, Methanobacterium and Methanomassiliicoccus.


Assuntos
Methanomicrobiaceae , Esgotos , Águas Residuárias , Anaerobiose , Bactérias , Reatores Biológicos , Café , Metano , Eliminação de Resíduos Líquidos
5.
Anaerobe ; 44: 78-86, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28188879

RESUMO

This study aimed to investigate the effects of dietary supplementation of different dosages of active dried yeast (ADY) on the fecal methanogenic archaea community of dairy cattle. Twelve multiparous, healthy, mid-lactating Holstein dairy cows (body weight: 584 ± 23.2 kg, milk produced: 26.3 ± 1.22 kg/d) were randomly assigned to one of three treatments (control, ADY2, and ADY4) according to body weight with four replicates per treatment. Cows in the control group were fed conventional rations without ADY supplementation, while cows in the ADY2 and ADY4 group were fed rations supplemented with ADY at 2 or 4 g/d/head. Real-time PCR analysis showed the populations of total methanogens in the feces were significantly decreased (P < 0.05) in the ADY4 group compared with control. High-throughput sequencing technology was applied to examine the differences in methanogenic archaea diversity in the feces of the three treatment groups. A total of 155,609 sequences were recovered (a mean of 12,967 sequences per sample) from the twelve fecal samples, which consisted of a number of operational taxonomic units (OTUs) ranging from 1451 to 1,733, were assigned to two phyla, four classes, five orders, five families and six genera. Bioinformatic analyses illustrated that the natural fecal archaeal community of the control group was predominated by Methanobrevibacter (86.9% of the total sequence reads) and Methanocorpusculum (10.4%), while the relative abundance of the remaining four genera were below 1% with Methanosphaera comprising 0.8%, Thermoplasma composing 0.4%, and the relative abundance of Candidatus Nitrososphaera and Halalkalicoccus being close to zero. At the genus level, the relative abundances of Methanocorpusculum and Thermoplasma were increased (P < 0.05) with increasing dosage of ADY. Conversely, the predominant methanogen genus Methanobrevibacter was decreased with ADY dosage (P < 0.05). Dietary supplementation of ADY had no significant effect (P > 0.05) on the abundances of genera unclassified, Candidatus Nitrososphaera, and Halalkalicoccus. In conclusion, supplementation of ADY to the rations of dairy cattle could alter the population sizes and composition of fecal methanogenic archaea in the feces of dairy cattle. The decrease in Methanobrevibacter happened with a commensurate increase in the genera Methanocorpusculum and Thermoplasma.


Assuntos
Archaea/isolamento & purificação , Biodiversidade , Dieta/métodos , Suplementos Nutricionais , Fezes/microbiologia , Metano/metabolismo , Fermento Seco/administração & dosagem , Animais , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bovinos , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase em Tempo Real
6.
Microb Ecol ; 73(3): 590-601, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27924402

RESUMO

Mineral salt bricks are often used in cow raising as compensation for mineral losses to improve milk yield, growth, and metabolic activity. Generally, effects of minerals are partially thought to result from improvement of microbial metabolism, but their influence on the rumen microbiota has rarely been documented to date. In this study, we investigated the response of microbiota to mineral salt in heifer and adult cows and evaluated ruminal fermentation and enteric methane emissions of cows fed mineral salts. Twelve lactating Holstein cows and twelve heifers fed a total mixed ration (TMR) diet were randomly allocated into two groups, respectively: a treatment group comprising half of the adults and heifers that were fed mineral salt and a control group containing the other half fed a diet with no mineral salt supplement. Enteric methane emissions were reduced by 9.6% (P < 0.05) in adults ingesting a mineral salt diet, while concentrations of ruminal ammonia, butyrate, and propionate were increased to a significant extent (P < 0.05). Enteric methane emissions were also reduced in heifers ingesting a mineral salt diet, but not to a significant extent (P > 0.05). Moreover, the concentrations of ammonia and volatile fatty acids (VFAs) were not significantly altered in heifers (P > 0.05). Based on these results, we performed high-throughput sequencing to explore the bacterial and archaeal communities of the rumen samples. Succiniclasticum and Prevotella, two propionate-producing bacteria, were predominant in samples of both adults and heifers. At the phylotype level, mineral salt intake led to a significant shift from Succiniclasticum to Prevotella and Prevotellaceae populations in adults. In contrast, reduced abundance of Succiniclasticum and Prevotella phylotypes was observed, with no marked shift in propionate-producing bacteria in heifers. Methanogenic archaea were not significantly abundant between groups, either in adult cows or heifers. The shift of Succiniclasticum to Prevotella and Prevotellaceae in adults suggests a response of microbiota to mineral salt that contributes to higher propionate production, which competes for hydrogen utilized by methanogens. Our data collectively indicate that a mineral salt diet can alter interactions of bacterial taxa that result in enteric methane reduction, and this effect is also influenced in an age-dependent manner.


Assuntos
Metano/metabolismo , Microbiota/efeitos dos fármacos , Minerais/farmacologia , Rúmen/microbiologia , Sais/farmacologia , Oligoelementos/farmacologia , Amônia/metabolismo , Animais , Bacteroides/isolamento & purificação , Bacteroides/metabolismo , Butiratos/metabolismo , Bovinos , Suplementos Nutricionais , Feminino , Fermentação/efeitos dos fármacos , Firmicutes/isolamento & purificação , Firmicutes/metabolismo , Prevotella/isolamento & purificação , Prevotella/metabolismo , Propionatos/metabolismo
7.
J Microbiol Methods ; 121: 11-23, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26656002

RESUMO

In clinical trials investigating human health and in the analysis of microbial communities in cultures and natural environments, it is a substantial challenge to differentiate between living, potentially active communities and dead cells. The DNA-intercalating dye propidium monoazide (PMA) enables the selective masking of DNA from dead, membrane-compromised cells immediately before DNA extraction. In the present study, we evaluated for the first time a PMA treatment for methanogenic archaea in cultures and particle-rich environmental samples. Using microscopic analyses, we confirmed the applicability of the LIVE/DEAD(®) BacLight™ kit to methanogenic archaea and demonstrated the maintenance of intact cell membranes of methanogens in the presence of PMA. Although strain-specific differences in the efficiency of PMA treatment to methanogenic archaea were observed, we developed an optimal procedure using 130 µM PMA and 5min of photo-activation with blue LED light. The results showed that the effectiveness of the PMA treatment strongly depends on the texture of the sediment/soil: silt and clay-rich sediments represent a challenge at all concentrations, whereas successful suppression of DNA from dead cells with compromised membranes was possible for low particle loads of sandy soil (total suspended solids (TSS)≤200 mg mL(-1)). Conclusively, we present two strategies to overcome the problem of insufficient light activation of PMA caused by the turbidity effect (shielding) in particle-rich environmental samples by (i) dilution of the particle-rich sample and (ii) detachment of the cells and the free DNA from the sediment prior to a PMA treatment. Both strategies promise to be usable options for distinguishing living cells and free DNA in complex environmental samples.


Assuntos
Azidas/farmacologia , Euryarchaeota/classificação , Euryarchaeota/efeitos dos fármacos , Propídio/análogos & derivados , Azidas/química , Técnicas Bacteriológicas/métodos , DNA Bacteriano/análise , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , Microbiologia Ambiental , Euryarchaeota/genética , Substâncias Húmicas/análise , Substâncias Intercalantes/química , Viabilidade Microbiana , Microscopia de Fluorescência/métodos , Reação em Cadeia da Polimerase/métodos , Propídio/química , Propídio/farmacologia , Solo/química , Microbiologia do Solo
8.
FEMS Microbiol Ecol ; 89(3): 637-45, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24920412

RESUMO

Three thermophilic methanogens (Methanothermobacter thermautotrophicus, Methanosaeta thermophila, and Methanosarcina thermophila) were investigated for their ability to reduce poorly crystalline Fe(III) oxides (ferrihydrite) and the inhibitory effects of ferrihydrite on their methanogenesis. This study demonstrated that Fe(II) generation from ferrihydrite occurs in the cultures of the three thermophilic methanogens only when H2 was supplied as the source of reducing equivalents, even in the cultures of Mst. thermophila that do not grow on and produce CH4 from H2/CO2. While supplementation of ferrihydrite resulted in complete inhibition or suppression of methanogenesis by the thermophilic methanogens, ferrihydrite reduction by the methanogens at least partially alleviates the inhibitory effects. Microscopic and crystallographic analyses on the ferrihydrite-reducing Msr. thermophila cultures exhibited generation of magnetite on its cell surfaces through partial reduction of ferrihydrite. These findings suggest that at least certain thermophilic methanogens have the ability to extracellularly transfer electrons to insoluble Fe(III) compounds, affecting their methanogenic activities, which would in turn have significant impacts on materials and energy cycles in thermophilic anoxic environments.


Assuntos
Compostos Férricos/metabolismo , Methanobacteriaceae/metabolismo , Methanosarcina/metabolismo , Methanosarcinaceae/metabolismo , Óxido Ferroso-Férrico/metabolismo , Metano/metabolismo , Oxirredução , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA