Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Oncol Pharm Pract ; : 10781552231212204, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936404

RESUMO

BACKGROUND: Acute myeloid (AML) and promyelocytic (APL) leukemia patients are at high risk for infection and mortality. While guidance for infection prevention is provided by the National Comprehensive Cancer Network (NCCN) and the American Society of Clinical Oncology (ASCO), each institution may vary in antimicrobial prophylaxis prescribing practices. The discrepancy may be explained by medication intolerance, cost, and low incidence of mold infections in leukemia patients. A recent meta-analysis demonstrated mortality benefits with the use of posaconazole, which was adopted by the NCCN. Despite known risks, it is unclear whether universal mold-active coverage is indicated for all AML and APL patients. OBJECTIVE: To assess the incidence of breakthrough infections in AML and APL patients. METHODS: This was a single-center, retrospective chart review of AML and APL patients receiving induction therapy at Baylor St Luke's Medical Center (BSLMC) between January 2019 and October 2021. The primary outcome assessed the incidence of breakthrough infections. Descriptive statistics were used to summarize the data. RESULTS: A total of 55 patients were included and 54 (98%) had prolonged neutropenia with a median duration of 30 days. Five patients (9.3%) experienced breakthrough infections during induction while 21 individuals (38.9%) during the follow-up period. Aspergillus infections occurred in three patients receiving nonmold coverage compared to none on mold-active agents (p = 1.0) with no statistical difference in mortality. CONCLUSION: Despite the majority of patients not receiving mold-active prophylaxis, nonmold-active prophylaxis may be sufficient with consideration of low aspergillosis incidence.

2.
Adv Exp Med Biol ; 1426: 25-41, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37464115

RESUMO

Human activity and increased use of fossil fuels have led to climate change. These changes are adversely affecting human health, including increasing the risk of developing asthma. Global temperatures are predicted to increase in the future. In 2019, asthma affected an estimated 262 million people and caused 455,000 deaths. These rates are expected to increase. Climate change by intensifying climate events such as drought, flooding, wildfires, sand storms, and thunderstorms has led to increases in air pollution, pollen season length, pollen and mold concentration, and allergenicity of pollen. These effects bear implications for the onset, exacerbation, and management of childhood asthma and are increasing health inequities. Global efforts to mitigate the effects of climate change are urgently needed with the goal of limiting global warming to between 1.5 and 2.0 °C of preindustrial times as per the 2015 Paris Agreement. Clinicians need to take an active role in these efforts in order to prevent further increases in asthma prevalence. There is a role for clinician advocacy in both the clinical setting as well as in local, regional, and national settings to install measures to control and curb the escalating disease burden of childhood asthma in the setting of climate change.


Assuntos
Poluição do Ar , Asma , Humanos , Mudança Climática , Asma/epidemiologia , Alérgenos/efeitos adversos , Poluição do Ar/efeitos adversos , Pólen/efeitos adversos
3.
Plant Dis ; 107(11): 3362-3369, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37202217

RESUMO

Botrytis cinerea is a ubiquitous pathogen that can infect at least 200 dicotyledonous plant species including many agriculturally and economically important crops. In Ginseng, the fungus may cause ginseng gray mold disease, causing great economic losses in the ginseng industry. Therefore, the early detection of B. cinerea in the process of ginseng production is necessary for the disease prevention and control of the pathogen's spread. In this study, a polymerase chain reaction-nucleic acid sensor (PCR-NAS) rapid detection technique was established, and it can be used for field detection of B. cinerea through antipollution design and portable integration. The present study showed that the sensitivity of PCR-NAS technology is 10 times higher than that of traditional PCR-electrophoresis, and there is no need for expensive detection equipment or professional technicians. The detection results of nucleic acid sensors can be read by the naked eye in under 3 min. Meanwhile, the technique has high specificity for the detection of B. cinerea. The testing of 50 field samples showed that the detection results of PCR-NAS were consistent with those of the real-time quantitative PCR (qPCR) method. The PCR-NAS technique established in this study can be used as a novel nucleic acid field detection technique, and it has a potential application in the field detection of B. cinerea to achieve early warning of the pathogen infection.


Assuntos
Panax , Técnicas de Amplificação de Ácido Nucleico/métodos , Botrytis/genética , Reação em Cadeia da Polimerase em Tempo Real
4.
Food Res Int ; 167: 112709, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37087271

RESUMO

Fresh walnuts have a high water content and are susceptible to decay, and controlling fungal contamination during storage is vital to walnut marketing. In this research, the dominant pathogenic fungus of fresh walnuts was first identified as Penicillium crustosum by morphological and molecular methods. The antifungal effect of herbal smoke fumigation was tested in vitro and in vivo, including Myristica fragrans Houtt., Aucklandia lappa Decne., Eugenia caryophyllata Thunb., Atractylodes lancea (Thunb.) DC., Shiraia bambusicola Henn., Artemisia argyi Lévl. et Vant. The results demonstrated that smoke from all six herbs successfully inhibited P. crustosum growth, and A. argyi smoke produced the best antifungal effect, which contained higher contents of phenol (17.1%), eugenol (13.7%), hexacosane, tetracontane, heneicosane, linolenic acid and other antimicrobial components by gas chromatography-mass spectrometry. Interestingly, optical transmittance data were found to correlate with antifungal capacity, revealing that a formed physical barrier combined with the above antimicrobial compositions, to participate in mold controlling together. Finally, fumigation with A. argyi smoke was tested in a real storage situation at proper dose, which not only dramatically controlled fungal contamination (>70%), but also maintained better odor and taste without oxidative rancidity or other adverse effects. This is the first report in which herbal smoke fumigation was adopted to preserve fresh walnut, providing a new way to reduce mold contamination and maintain quality of fresh walnuts in a natural and safe manner. More research on the application of herbal smoke fumigation to agricultural products in post-harvest storage is needed to explore the conditions and products for which it can be used successfully.


Assuntos
Anti-Infecciosos , Juglans , Antifúngicos/farmacologia , Fumigação , Fumaça
5.
Zhongguo Zhong Yao Za Zhi ; 48(3): 636-641, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36872226

RESUMO

This study aimed to establish the baseline sensitivity of Botrytis cinerea from Panax ginseng to prochloraz, and ensure the fitness of prochloraz-resistant mutants and the cross-resistance of B. cinerea to prochloraz and commonly used fungicides for the prevention and control of gray mold including boscalid, pyraclostrobin, iprodione, and pyrimethanil. The sensitivity of B. cinerea from P. ginseng to fungicides was determined by the mycelial growth rate method. The prochloraz-resistant mutants were screened out through fungicide domestication and ultraviolet(UV) induction. The fitness of resistant mutants was determined through the stability of subculture, mycelial growth rate, and pathogenicity test. The cross-resistance between prochloraz and the four fungicides was determined by Person correlation analysis. The results showed that all B. cinerea strains tested were sensitive to prochloraz, and the EC_(50) value ranged from 0.004 8 to 0.062 9 µg·mL~(-1), with an average of 0.022 µg·mL~(-1). The sensitivity frequency distribution diagram showed that 89 B. cinerea strains were located within the main peak with a continuous single peak curve, and the average EC_(50) value of 0.018 µg·mL~(-1) was taken as the baseline sensitivity of B. cinerea to prochloraz. The fungicide domestication and UV induction obtained 6 resistant mutants, among which 2 strains were unstable and the other 2 strains showed decreased resistance after multiple generations of culture. Furthermore, the mycelial growth rate and spore yield of all resistant mutants were lower than those of their parents, and the pathogenicity of most mutants was lower than that of their parents. In addition, prochloraz had no obvious cross-resistance with boscalid, pyraclostrobin, iprodione, and pyrimethanil. In conclusion, prochloraz has great potential for controlling gray mold in P. ginseng, and the resistance risk of B. cinerea to prochloraz is low.


Assuntos
Fungicidas Industriais , Panax , Humanos
6.
J Agric Food Chem ; 71(11): 4488-4497, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36912343

RESUMO

Grapevine co-products, as canes, represent a source of compounds of interest to control vineyard diseases with a sustainable approach. We chose to study an extract that we produced from grapevine trunk and roots. This extract, enriched in complex stilbenes, strongly reduced mycelial growth and spore germination of Botrytis cinerea, the fungal agent causing gray mold. The most active stilbenes were resveratrol, r-viniferin, and ε-viniferin. This grapevine extract also inhibited the production of Botrytis laccases. Conversely, Botrytis secretome metabolized resveratrol into δ-viniferin and pallidol (2 dimers); and ε-viniferin, a dimer, into hopeaphenol, r-viniferin, and r2-viniferin (3 tetramers). r-Viniferin and hopeaphenol (2 tetramers) were not metabolized. The biotransformed extract maintained an effective antimycelial activity. This study provides evidence that a grapevine extract enriched in oligomerized stilbenes exerts different anti-Botrytis activities, notwithstanding the ability of the fungus to metabolize some stilbenes.


Assuntos
Estilbenos , Vitis , Resveratrol/farmacologia , Antifúngicos , Vitis/metabolismo , Estilbenos/farmacologia , Estilbenos/metabolismo , Extratos Vegetais/farmacologia
7.
Toxins (Basel) ; 15(2)2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36828468

RESUMO

Angelica sinensis, a Chinese herbal medicine, is susceptible to molds during storage, reducing its quality, and even generating mycotoxins with toxic effects on human health. Fresh A. sinensis was harvested from Min County of Gansu Province in China and kept at room temperature. Naturally occurring symptoms were observed during different storage stages. Molds were isolated and identified from the diseased A. sinensis using morphological and molecular biology methods. The impact of ozone treatment on postharvest disease development and mycotoxin production was investigated. The results indicated that A. sinensis decay began on day 7 of storage and progressed thereafter. Nine mold species were isolated and characterized: day 7, two Mucormycetes; day 14, Clonostachys rosea; day 21, two Penicillium species and Aspergillus versicolor; day 28, Alternaria alternata and Trichoderma atroviride; and day 49, Fusarium solani. Ozone treatment markedly inhibited the development of postharvest disease and the mycotoxin production (such as, patulin, 15-acetyl-deoxynivalenol, and sterigmatocystin) in the rotten tissue of A. sinensis inoculated with the nine isolates.


Assuntos
Angelica sinensis , Micotoxinas , Ozônio , Patulina , Penicillium , Humanos , Esterigmatocistina
8.
J Sci Food Agric ; 103(6): 2960-2969, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36534037

RESUMO

BACKGROUND: Mold-ripened cheeses have low levels of unsaturated fatty acids (UFAs). Geotrichum candidum is an adjunct culture for the development of Geotrichum-ripened cheese but has a low ability to produce high levels of UFAs. Δ12 fatty acid desaturase (FADS12) is a pivotal enzyme that converts oleic acid (OA) to linoleic acid (LA) and plays a vital role in UFA biosynthesis. By investigating FADS12 catalytic activity from various species with OA substrates, we found that FADS12 from Mucor circinelloides (McFADS12) had the highest catalytic activity for OA. RESULTS: In the current study, a plasmid harboring McFADS12 was constructed and overexpressed in G. candidum. Our results showed that LA production increased to 31.1 ± 1.4% in engineered G. candidum - three times higher than that in wild-type G. candidum. To enhance LA production, an exogenous substrate (OA) was supplemented, and the yield of LA was increased to 154 ± 6 mg L-1 in engineered G. candidum. Engineered G. candidum was used as an adjunct culture for Geotrichum-ripened cheese production. The LA level reached 74.3 ± 5.4 g kg-1 cheese, whereas the level of saturated fatty acids (SFAs) decreased by 9.9 ± 0.5%. In addition, the soybean byproduct (okara) was introduced into the engineered G. candidum growth and the level of LA increased to 126 ± 4 g kg-1 cheese and the percentage of UFAs:SFAs increased from 0.8:1 to 1.3:1. CONCLUSION: This study offers a suitable technology for converting SFAs to UFAs in Geotrichum-ripened cheeses and provides a novel trend for converting soybean waste into a value-added product. © 2022 Society of Chemical Industry.


Assuntos
Queijo , Ácidos Graxos Dessaturases , Geotrichum , Farinha , Ácido Linoleico
9.
Artigo em Chinês | WPRIM | ID: wpr-970532

RESUMO

This study aimed to establish the baseline sensitivity of Botrytis cinerea from Panax ginseng to prochloraz, and ensure the fitness of prochloraz-resistant mutants and the cross-resistance of B. cinerea to prochloraz and commonly used fungicides for the prevention and control of gray mold including boscalid, pyraclostrobin, iprodione, and pyrimethanil. The sensitivity of B. cinerea from P. ginseng to fungicides was determined by the mycelial growth rate method. The prochloraz-resistant mutants were screened out through fungicide domestication and ultraviolet(UV) induction. The fitness of resistant mutants was determined through the stability of subculture, mycelial growth rate, and pathogenicity test. The cross-resistance between prochloraz and the four fungicides was determined by Person correlation analysis. The results showed that all B. cinerea strains tested were sensitive to prochloraz, and the EC_(50) value ranged from 0.004 8 to 0.062 9 μg·mL~(-1), with an average of 0.022 μg·mL~(-1). The sensitivity frequency distribution diagram showed that 89 B. cinerea strains were located within the main peak with a continuous single peak curve, and the average EC_(50) value of 0.018 μg·mL~(-1) was taken as the baseline sensitivity of B. cinerea to prochloraz. The fungicide domestication and UV induction obtained 6 resistant mutants, among which 2 strains were unstable and the other 2 strains showed decreased resistance after multiple generations of culture. Furthermore, the mycelial growth rate and spore yield of all resistant mutants were lower than those of their parents, and the pathogenicity of most mutants was lower than that of their parents. In addition, prochloraz had no obvious cross-resistance with boscalid, pyraclostrobin, iprodione, and pyrimethanil. In conclusion, prochloraz has great potential for controlling gray mold in P. ginseng, and the resistance risk of B. cinerea to prochloraz is low.


Assuntos
Humanos , Panax , Fungicidas Industriais
10.
Antibiotics (Basel) ; 13(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38247587

RESUMO

Essential oils (EOs) extracted from aromatic or medicinal plants are biodegradable, safe, and regarded as alternatives to chemical pesticides to reduce fungal species attacking different crops. In this study, thirty EOs at 0.5 mg/mL were evaluated for in vitro growth inhibition of the main postharvest fungi, which are Alternaria alternata, Botrytis cinerea, and Penicillium italicum. Cinnamomum verrum EO completely inhibited the mycelial growth of A. alternata and B. cinerea, and Syzygium aromaticum EO completely inhibited the mycelia of A. alternata. B. cinerea mycelial growth was completely inhibited by Gautheria fragrantissima, Cymbopogon nardus, Pelargonium asperum, and Cupressus sempervirens EOs. G. fragrantissima EO inhibited the mycelia growth of P. italicum by 98%. Overall, B. cinerea displayed the highest sensitivity to EOs than P. italicum and A. alternata. G. fragrantissima, C. sempervirens, C. nardus, P. asperum, Mentha piperita, Foeniculum vulgare, C. verrum, and S. aromaticum EOs showed the highest inhibition for these three pathogens. Minimum inhibitory concentrations were lower for C. verrum and S. aromaticum EOs, ranging between 0.31 and 0.45 mg/mL and 0.37 to 0.57 mg/mL, respectively, against the three pathogens. The tested EOs inhibited the in vitro growth of three of the main postharvest fungal pathogens. Further studies are needed to confirm these activities in vivo.

11.
Plant Dis ; 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36346364

RESUMO

Pseudostellaria heterophylla is one of the Chinese herbal medicines with high medicinal and economic values. From 2019 to 2021, postharvest green mold disease was observed with an incidence of 2~5% on the tuberous roots of the harvested P. heterophylla at eight locations in Zherong county, Fujian Province, China. The symptoms were as follows: white mycelial growth on the tuberous roots surface initially, then green mold layers forming, and the tuberous roots decaying finally. To identify the causal agent, a total of 20 symptomatic tuberous roots were collected. Small pieces (5 mm×5 mm) were treated by surface disinfestion with 75% ethanol and 1% NaOCl, then rinsed 3 times with sterile distilled water. These treated pieces were transferred onto potato dextrose agar (PDA) and incubated at 25°C in the dark for 7 days. Twenty pure cultures were obtained by single-spore isolation method. Colonies on PDA medium initially appeared as white mycelium that developed grayish-green conidia with white margins. Mycelium was septate and colorless. Conidiophores were predominantly monoverticillate, occasionally biverticillate. Stipes was long and slender. Phialides were ampulliform to almost cylindrical with collula, 11.25 (7.80-23.50) µm long (n=50). Conidia were smooth walled and pale green, with globose to ellipsoidal shape, 2.75 (2.37-3.27)× 2.47 (2.18-3.13) µm (n=50). Based on these morphological characteristics, the isolates matched the description of the genus Penicillium. Genomic DNAs from two representative isolates (FJAT-32578 and FJAT-32579) were extracted with a fungal genomic DNA extraction kit. The rDNA ITS region and partial ß-tubulin gene (BenA) were amplified using the primers ITS1/ITS4 (White et al. 1990) and Bt2a/Bt2b (Glass and Donaldson 1995), respectively. The sequences of isolate FJAT-32578 and FJAT-32579 were deposited in GenBank (ITS, OM920986 and OM920987; BenA, OM953825 and OM953826). All sequences showed above 99% similarity to P. ochrochloron type strain CBS357.48 (ITS, NR111509; BenA, GU981672). In multilocus phylogenetic analysis (ITS + BenA), the two isolates from this study clustered together with other strains of P. ochrochloron with 100% bootstrap support. The two isolates were thus identified as P. ochrochloron based on both morphological and molecular characteristics. Pathogenicity tests were conducted in triplicate by inoculating the aseptic wounds with 10 µl of conidial suspension (1×106 conidia/ml) of the two isolates in the each healthy tuberous root (cv. Zheshen No.1). The experiment was conducted twice. All the inoculated tuberous roots were placed in sterilized Petri dishes with moistened filter paper, and incubated at 25 ± 2 °C. Fifteen days after inoculation, all inoculated tuberous roots demonstrated the same symptoms as those observed in the field conditions. The re-isolated fungi from the artificially infected tuberous roots were confirmed as P. ochrochloron using the method described above, while the control tuberous roots treated with sterile water did not develop symptoms, fulfilling Koch's postulates. To our knowledge, this is the first report of P. ochrochloron causing green mold disease on P. heterophylla in China, which would be a potentially new threat to the medicinal plant.

12.
Polymers (Basel) ; 14(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36235988

RESUMO

Consumers are now more concerned about food safety and hygiene following the COVID-19 pandemic. Antimicrobial packaging has attracted increased interest by reducing contamination of food surfaces to deliver quality and safe food while maintaining shelf life. Active packaging materials to reduce contamination or inhibit viral activity in packaged foods and on packaging surfaces are mostly prepared using solvent casting, but very few materials demonstrate antiviral activity on foods of animal origin, which are important in the human diet. Incorporation of silver nanoparticles, essential oils and natural plant extracts as antimicrobial agents in/on polymeric matrices provides improved antifungal, antibacterial and antiviral properties. This paper reviews recent developments in antifungal, antibacterial and antiviral packaging incorporating natural or synthetic compounds using preparation methods including extrusion, solvent casting and surface modification treatment for surface coating and their applications in several foods (i.e., bakery products, fruits and vegetables, meat and meat products, fish and seafood and milk and dairy foods). Findings showed that antimicrobial material as films, coated films, coating and pouches exhibited efficient antimicrobial activity in vitro but lower activity in real food systems. Antimicrobial activity depends on (i) polar or non-polar food components, (ii) interactions between antimicrobial compounds and the polymer materials and (iii) interactions between environmental conditions and active films (i.e., relative humidity, oxygen and water vapor permeability and temperature) that impact the migration or diffusion of active compounds in foods. Knowledge gained from the plethora of existing studies on antimicrobial polymers can be effectively utilized to develop multifunctional antimicrobial materials that can protect food products and packaging surfaces from SARS-CoV-2 contamination.

13.
Indoor Air ; 32(9): e13113, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36168229

RESUMO

The presence of dampness and visible molds leads to concerns of poor indoor air quality which has been consistently linked with increased exacerbation and development of allergy and respiratory diseases. Due to the limitations of epidemiological surveys, the actual fungal exposure characteristics in residences has not been sufficiently understood. This study aimed to characterize household fungal diversity and its annual temporal and spatial variations. We developed combined cross-sectional survey, repeated air sampling around a year, and DNA sequencing methods. The questionnaire survey was conducted in 2019, and 4943 valid cases were received from parents; a follow-up case-control study (11 cases and 12 controls) was designed, and onsite measurements of indoor environments were repeated in typical summer, transient season, and winter; dust from floor and beddings in children's room were collected and ITS based DNA sequencing of totally 68 samples was conducted. Results from 3361 children without changes to their residences since birth verified the significant associations of indoor dampness/mold indicators and prevalence of children-reported diseases, with increased adjusted odd ratios (aORs) >1 for studied asthma, wheeze, allergic rhinitis, and eczema. The airborne fungal concentrations from air sampling were higher than 1000 CFU/m3 in summer, regardless of indoors and outdoors, indicating an intermediate pollution level. The DNA sequencing for dust showed the Aspergillus was the predominant at genus level and the Aspergillus_penicillioides was the most common at species level; while the fungal community and composition varied significantly in different homes and seasons, according to α and ß diversity analyses. The comprehensive research methods contribute to a holistic understanding of indoor fungal exposure, including the concentrations, seasonal variations, community, and diversity, and verifies the relations with children's adverse health outcomes. The study further elucidates the role of microbiome in human health, which helps setting health-protective thresholds and managing mold treatments in buildings, to promote indoor air quality and human well-beings.


Assuntos
Poluição do Ar em Ambientes Fechados , Rinite Alérgica , Poluição do Ar em Ambientes Fechados/análise , Estudos de Casos e Controles , Criança , Estudos Transversais , Poeira , Fungos , Visita Domiciliar , Humanos , Rinite Alérgica/epidemiologia , Inquéritos e Questionários
14.
Toxins (Basel) ; 14(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36136545

RESUMO

Purple coneflower (Echinacea purpurea (L.) Moench) is a plant in the family Asteraceae, mainly grown in North America. Echinacea purpurea has been used in conventional medicine. The plant has immuno-stimulating and antibacterial properties, but neither mold contamination nor a mycotoxin presence have been evaluated. Our goal is to determine the degree to which molds and mycotoxins contaminate dietary supplements based on purple coneflower distributed on the Polish market. We analyzed 21 samples divided into four groups: sachets (n = 5), dry raw material (n = 3), capsules (n = 9), and tablets (n = 4). The mycological analysis of dietary supplements shows that the average number of molds is 1012 cfu/g, and the most common molds are Aspergillus spp., Phoma spp. and Eurotium spp. The mycotoxins most common in the samples are ZEN (18/21), DON (5/21) and T-2 toxin (3/21).


Assuntos
Produtos Biológicos , Echinacea , Toxina T-2 , Adjuvantes Imunológicos , Antibacterianos , Suplementos Nutricionais , Fungos , Extratos Vegetais
15.
Front Microbiol ; 13: 950913, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910609

RESUMO

Fermented foods have been an important component of the human diet from the time immemorial. It contains a high amount of probiotics that have been associated to a wide range of health benefits, including improved digestion and immunity. This review focuses on the indigenously prepared prebiotic- and probiotic-containing functional fermented rice (named Xaj-pani) by the Ahom Community from Assam, in Northeast India, including all the beneficial and potential effects on human health. Literature was searched from scientific databases such as PubMed, ScienceDirect and Google Scholar. Glutinous rice (commonly known as bora rice of sali variety) is primarily employed to prepare beverages that are recovered through the filtration process. The beer is normally consumed during religious rites, festivals and ritual practices, as well as being used as a refreshing healthy drink. Traditionally, it is prepared by incorporating a variety of medicinal herbs into their starter culture (Xaj-pitha) inoculum which is rich in yeasts, molds and lactic acid bacteria (LAB) and then incorporated in alcoholic beverage fermentation. The Ahom communities routinely consume this traditionally prepared alcoholic drink with no understanding of its quality and shelf life. Additionally, a finally produced dried cake, known as vekur pitha act as a source of Saccharomyces cerevisiae and can be stored for future use. Despite the rampant use in this community, the relationship between Xaj-pani's consumption, immunological response, infectious and inflammatory processes remains unknown in the presence of factors unrelated or indirectly connected to immune function. Overall, this review provides the guidelines to promote the development of prebiotic- and probiotic-containing functional fermented rice that could significantly have an impact on the health of the consumers.

16.
Genes (Basel) ; 13(3)2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35328095

RESUMO

Gray mold disease caused by Botrytis in onions (Allium cepa L.) during growth and storage negatively affects their yield and quality. Exploring the genes related to gray mold resistance in onion and their application to the breeding of resistant onion lines will support effective and ecological control methods of the disease. Here, the genetic relationship of 54 onion lines based on random amplified polymorphic DNA (RAPD) and in vitro-cultured onion lines infected with gray mold were used for screening resistance and susceptibility traits. Two genetically related onion lines were selected, one with a resistant and one with a susceptible phenotype. In vitro gray mold infection was repeated with these two lines, and leaf samples were collected for gene expression studies in time series. Transcript sequences obtained by RNA sequencing were subjected to DEG analysis, variant analysis, and KEGG mapping. Among the KEGG pathways, 'α-linoleic acid metabolism' was selected because the comparison of the time series expression pattern of Jasmonate resistant 1 (JAR1), Coronatine-insensitive protein 1 (COI 1), and transcription factor MYC2 (MYC2) genes between the resistant and susceptible lines revealed its significant relationship with gray-mold-resistant phenotypes. Expression pattern and SNP of the selected genes were verified by quantitative real-time PCR and high-resolution melting (HRM) analysis, respectively. The results of this study will be useful for the development of molecular marker and finally breeding of gray-mold-resistant onions.


Assuntos
Cebolas , Melhoramento Vegetal , Perfilação da Expressão Gênica , Cebolas/genética , Folhas de Planta/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico
17.
Artigo em Inglês | MEDLINE | ID: mdl-35162876

RESUMO

In response to an Australian governmental inquiry into biotoxin-related illness, the purpose of this integrative review is to bring together the current state of evidence on the prevalence, risk factors and impacts related to mould-affected housing in an Australian context, in order to inform building, housing and health research, practice and policy. The robust integrative review methodology simultaneously sought quantitative and qualitative studies and grey literature from multiple disciplines, identifying only 45 studies directly relating to Australian housing and indoor mould. Twenty-one studies highlight negative health impacts relating to indoor residential mould, with asthma, respiratory, allergy conditions and emerging health concerns for chronic multiple-symptom presentation. The majority of studies reported risk factors for indoor mould including poor housing conditions, poor-quality rental accommodation, socioeconomic circumstance, age-related housing issues and concerns for surface/interstitial condensation and building defects in newer housing. Risks for indoor mould in both older and newer housing raise concerns for the extent of the problem of indoor mould in Australia. Understanding the national prevalence of housing risks and "root cause" associated with indoor mould is not conclusive from the limited existing evidence. Synthesis of this evidence reveals a lack of coverage on: (1) national and geographical representation, (2) climatical coverage, (3) housing typologies, (4) housing defects, (5) maintenance, (6) impact from urbanisation, and (7) occupant's behaviour. This integrative review was key in identifying emerging housing and health concerns, highlighting gaps in data and implications to be addressed by researchers, practice and policy and acts as a comprehensive holistic review process that can be applied to other countries.


Assuntos
Poluição do Ar em Ambientes Fechados , Habitação , Poluição do Ar em Ambientes Fechados/efeitos adversos , Austrália/epidemiologia , Fungos , Prevalência , Fatores de Risco
18.
Foods ; 11(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35159469

RESUMO

Bread is a food that is commonly recognized as a very convenient type of food, but it is also easily prone to microbial attack. As a result of bread spoilage, a significant economic loss occurs to both consumers and producers. For years, the bakery industry has sought to identify treatments that make bread safe and with an extended shelf-life to address this economic and safety concern, including replacing harmful chemical preservatives. New frontiers, on the other hand, have recently been explored. Alternative methods of bread preservation, such as microbial fermentation, utilization of plant and animal derivatives, nanofibers, and other innovative technologies, have yielded promising results. This review summarizes numerous research findings regarding the bio-preservation of bread and suggests potential applications of these techniques. Among these techniques, microbial fermentation using lactic acid bacteria strains and yeast has drawn significant interest nowadays because of their outstanding antifungal activity and shelf-life extending capacity. For example, bread slices with Lactobacillus plantarum LB1 and Lactobacillus rossiae LB5 inhibited fungal development for up to 21 days with the lowest contamination score. Moreover, various essential oils and plant extracts, such as lemongrass oil and garlic extracts, demonstrated promising results in reducing fungal growth on bread and other bakery products. In addition, different emerging bio-preservation strategies such as the utilization of whey, nanofibers, active packaging, and modified atmospheric packaging have gained considerable interest in recent days.

19.
Fungal Biol ; 126(1): 1-10, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34930554

RESUMO

Penicillium expansum is the causal agent of blue mold in harvested fruits and vegetables during storage and distribution, causing serious economic loss. In this study we seek the action modes of bifonazole against this pathogen. Bifonazole exhibited strong antifungal activity against P. expansum by inhibiting ergosterol synthesis. The ergosterol depletion caused damage to the cell structure and especially cell membrane integrity as observed by SEM and TEM. With increased unsaturated fatty acids contents, the cell membrane viscosity decreases and can no longer effectively maintain the cytoplasm, which ultimately decreases extracellular conductivity, changes intracellular pH and ion homeostasis. Exposure of hyphal cells to bifonazole shows that mitochondrial respiration is inhibited and reactive oxygen species (ROS) levels-including H2O2 and malondialdehyde (MDA) - are significantly increased. The functional impairment of mitochondria and cell membrane eventually cause cell death through intrinsic apoptosis and necroptosis.


Assuntos
Ergosterol , Penicillium , Apoptose , Membrana Celular , Frutas , Peróxido de Hidrogênio , Imidazóis , Mitocôndrias , Espécies Reativas de Oxigênio
20.
Rep Pract Oncol Radiother ; 27(6): 1010-1018, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36632290

RESUMO

Background: This study was conducted to evaluate the effect of brachytherapy (BT) customized mold [Condensation silicone elastomer (ProtesilTM)] and its thickness on the dose distribution pattern of deep nonmelanoma skin cancers (NMSC). Materials and methods: Four blocks of mold material were constructed in 5, 10, 15, and 20 mm thickness and 100 × 100 mm2 area by a plastic cast. The high dose rate (HDR) plus treatment planning system (TPS) (Version 3, Eckert & Ziegler BEBIG Gmbh, Berlin, Germany) with a 60Co source (model: Co0.A86, EZAG BEBIG, Berlin, Germany) as an high dose rate brachytherapy (HDR-BT) source was used. Solid phantom and MOSFETTM and GAFCHROMICTM EBT3 film dosimeters were used for experimental dosimetry of the different thicknesses (up to 20 mm) of BT customized mold. Skin dose and dose to different depths were evaluated. Result: The TPS overestimated the calculated dose to the surface. Skin dose can be reduced from 250% to 150% of the prescription dose by increasing mold thickness from 5 mm to 20 mm. There was a 7.7% difference in the calculated dose by TPS and the measured dose by MOSFET. There was a good agreement between film dosimetry, MOSFET detector, and TPS' results in depths less than 5 mm. Conclusion: Each BT department should validate any individualized material chosen to construct the customized surface BT mold. Increasing the mold thickness can treat lesions without overexposing the skin surface. Superficial BT can be recommended as an appropriate treatment option for some deep NMSC lesions (up to 20 mm) with pre-planning considerations employing thicker molds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA