Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 128: 155521, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489891

RESUMO

BACKGROUND: The ancient Chinese herb Salvia miltiorrhiza Bunge (Danshen), plays the important role in cardiovascular and cerebrovascular disease. Furthermore, Danshen could also be used for curing carcinogenesis. Up to now, the anti-tumor effects of the main active constituents of Danshen have made great progress. However, the bioavailability of the active constituents of Danshen were restricted by their unique physical characteristics, like low oral bioavailability, rapid degradation in vivo and so on. PURPOSE: With the leap development of nano-delivery systems, the shortcomings of the active constituents of Danshen have been greatly ameliorated. This review tried to summarize the recent progress of the active constituents of Danshen based delivery systems used for anti-tumor therapeutics. METHODS: A systematic literature search was conducted using 5 databases (Embase, Google scholar, PubMed, Scopus and Web of Science databases) for the identification of relevant data published before September 2023. The words "Danshen", "Salvia miltiorrhiza", "Tanshinone", "Salvianolic acid", "Rosmarinic acid", "tumor", "delivery", "nanomedicine" and other active ingredients contained in Danshen were searched in the above databases to gather information about pharmaceutical decoration for the active constituents of Danshen used for anti-tumor therapeutics. RESULTS: The main extracts of Danshen could inhibit the proliferation of tumor cells effectively and a great deal of studies were conducted to design drug delivery systems to ameliorate the anti-tumor effect of the active contents of Danshen through different ways, like improving bioavailability, increasing tumor targeting ability, enhancing biological barrier permeability and co-delivering with other active agents. CONCLUSION: This review systematically represented recent progress of pharmaceutical decorations for the active constituents of Danshen used for anti-tumor therapeutics, revealing the diversity of nano-decoration skills and trying to inspire more designs of Danshen based nanodelivery systems, with the hope that bringing the nanomedicine of the active constituents of Danshen for anti-tumor therapeutics from bench to bedside in the near future.


Assuntos
Antineoplásicos Fitogênicos , Medicamentos de Ervas Chinesas , Salvia miltiorrhiza , Salvia miltiorrhiza/química , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Humanos , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Sistemas de Liberação de Medicamentos , Animais , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Fármacos por Nanopartículas/química , Nanopartículas/química
2.
Int J Nanomedicine ; 19: 2507-2528, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495752

RESUMO

Background: Cancer continues to be a prominent issue in the field of medicine, as demonstrated by recent studies emphasizing the significant role of autophagy in the development of cancer. Traditional Chinese Medicine (TCM) provides a variety of anti-tumor agents capable of regulating autophagy. However, the clinical application of autophagy-modulating compounds derived from TCM is impeded by their restricted water solubility and bioavailability. To overcome this challenge, the utilization of nanotechnology has been suggested as a potential solution. Nonetheless, the current body of literature on nanoparticles delivering TCM-derived autophagy-modulating anti-tumor compounds for cancer treatment is limited, lacking comprehensive summaries and detailed descriptions. Methods: Up to November 2023, a comprehensive research study was conducted to gather relevant data using a variety of databases, including PubMed, ScienceDirect, Springer Link, Web of Science, and CNKI. The keywords utilized in this investigation included "autophagy", "nanoparticles", "traditional Chinese medicine" and "anticancer". Results: This review provides a comprehensive analysis of the potential of nanotechnology in overcoming delivery challenges and enhancing the anti-cancer properties of autophagy-modulating compounds in TCM. The evaluation is based on a synthesis of different classes of autophagy-modulating compounds in TCM, their mechanisms of action in cancer treatment, and their potential benefits as reported in various scholarly sources. The findings indicate that nanotechnology shows potential in enhancing the availability of autophagy-modulating agents in TCM, thereby opening up a plethora of potential therapeutic avenues. Conclusion: Nanotechnology has the potential to enhance the anti-tumor efficacy of autophagy-modulating compounds in traditional TCM, through regulation of autophagy.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias , Humanos , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Nanotecnologia , Autofagia
3.
Phytother Res ; 38(1): 331-348, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37882581

RESUMO

The isothiocyanates (ITCs) derived from the precursor glucosinolate molecules present in Brassica vegetables are bioactive organo-sulfur compounds with numerous pharmacologically important properties such as antioxidant, antiinflammatory, antimicrobial, and anticancer. Over the years, ITCs have been the focus of several research investigations associated with cancer treatment. Due to their potent chemo-preventive action, ITCs have been considered to be promising therapeutics for cancer therapy in place of the already existing conventional anticancer drugs. However, their wide spread use at the clinical stage is greatly restricted due to several factors such as low solubility in an aqueous medium, low bioavailability, low stability, and hormetic effect. To overcome these hindrances, nanotechnology can be exploited to develop nano-scale delivery systems that have the potential to enhance stability, and bioavailability and minimize the hermetic effect of ITCs.


Assuntos
Anticarcinógenos , Antineoplásicos , Brassica , Isotiocianatos/farmacologia , Verduras , Anticarcinógenos/farmacologia , Anticarcinógenos/uso terapêutico , Antineoplásicos/farmacologia
4.
Nutrients ; 15(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37836436

RESUMO

Anthocyanins (ACNs) have attracted considerable attention for their potential to modulate the immune system. Research has revealed their antioxidant and anti-inflammatory properties, which play a crucial role in immune regulation by influencing key immune cells, such as lymphocytes, macrophages, and dendritic cells. Moreover, ACNs contribute towards maintaining a balance between proinflammatory and anti-inflammatory cytokines, thus promoting immune health. Beyond their direct effects on immune cells, ACNs significantly impact gut health and the microbiota, essential factors in immune regulation. Emerging evidence suggests that they positively influence the composition of the gut microbiome, enhancing their immunomodulatory effects. Furthermore, these compounds synergize with other bioactive substances, such as vitamins and minerals, further enhancing their potential as immune-supporting dietary supplements. However, detailed clinical studies must fully validate these findings and determine safe dosages across varied populations. Incorporating these natural compounds into functional foods or supplements could revolutionize the management of immune-related conditions. Personalized nutrition and healthcare strategies may be developed to enhance overall well-being and immune resilience by fully understanding the mechanisms underlying the actions of their components. Recent advancements in delivery methods have focused on improving the bioavailability and effectiveness of ACNs, providing promising avenues for future applications.


Assuntos
Antocianinas , Suplementos Nutricionais , Antocianinas/farmacologia , Antocianinas/metabolismo , Disponibilidade Biológica , Antioxidantes/farmacologia , Anti-Inflamatórios
5.
Molecules ; 28(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37630208

RESUMO

As a therapeutic tool inherited for thousands of years, traditional Chinese medicine (TCM) exhibits superiority in tumor therapy. The antitumor active components of TCM not only have multi-target treatment modes but can also synergistically interfere with tumor growth compared to traditional chemotherapeutics. However, most antitumor active components of TCM have the characteristics of poor solubility, high toxicity, and side effects, which are often limited in clinical application. In recent years, delivering the antitumor active components of TCM by nanosystems has been a promising field. The advantages of nano-delivery systems include improved water solubility, targeting efficiency, enhanced stability in vivo, and controlled release drugs, which can achieve higher drug-delivery efficiency and bioavailability. According to the method of drug loading on nanocarriers, nano-delivery systems can be categorized into two types, including physically encapsulated nanoplatforms and chemically coupled drug-delivery platforms. In this review, two nano-delivery approaches are considered, namely physical encapsulation and chemical coupling, both commonly used to deliver antitumor active components of TCM, and we summarized the advantages and limitations of different types of nano-delivery systems. Meanwhile, the clinical applications and potential toxicity of nano-delivery systems and the future development and challenges of these nano-delivery systems are also discussed, aiming to lay the foundation for the development and practical application of nano-delivery systems of TCM in clinical settings.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Medicina Tradicional Chinesa , Humanos , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Sistemas de Liberação de Fármacos por Nanopartículas
6.
Adv Neurobiol ; 32: 385-416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37480467

RESUMO

Curcumin is a well-known antioxidant used as traditional medicine in China and India since ages to treat variety of inflammatory ailments as a food supplement. Curcumin has antitumor properties with neuroprotective effects in Alzheimer's disease. Curcumin elevates brain-derived neurotrophic factor (BDNF) and dopamine (DA) levels in the brain indicating its role in substance abuse. Methamphetamine (METH) is one of the most abused substances in the world that induces profound neurotoxicity by inducing breakdown of the blood-brain barrier (BBB), vasogenic edema and cellular injuries. However, influence of curcumin on METH-induced neurotoxicity is still not well investigated. In this investigation, METH neurotoxicity and neuroprotective effects of curcumin nanodelivery were examined in a rat model. METH (20 mg/kg, i.p.) neurotoxicity is evident 4 h after its administration exhibiting breakdown of BBB to Evans blue albumin in the cerebral cortex, hippocampus, cerebellum, thalamus and hypothalamus associated with vasogenic brain edema as seen measured using water content in all these regions. Nissl attaining exhibited profound neuronal injuries in the regions of BBB damage. Normal curcumin (50 mg/kg, i.v.) 30 min after METH administration was able to reduce BBB breakdown and brain edema partially in some of the above brain regions. However, TiO2 nanowired delivery of curcumin (25 mg/kg, i.v.) significantly attenuated brain edema, neuronal injuries and the BBB leakage in all the brain areas. BDNF level showed a significant higher level in METH-treated rats as compared to saline-treated METH group. Significantly enhanced DA levels in METH-treated rats were also observed with nanowired delivery of curcumin. Normal curcumin was able to slightly elevate DA and BDNF levels in the selected brain regions. Taken together, our observations are the first to show that nanodelivery of curcumin induces superior neuroprotection in METH neurotoxicity probable by enhancing BDNF and DA levels in the brain, not reported earlier.


Assuntos
Edema Encefálico , Curcumina , Metanfetamina , Fármacos Neuroprotetores , Animais , Ratos , Fator Neurotrófico Derivado do Encéfalo , Dopamina , Metanfetamina/toxicidade , Fármacos Neuroprotetores/farmacologia , Nanofios/química , Sistemas de Liberação de Fármacos por Nanopartículas/química , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia
7.
Int J Biol Macromol ; 247: 125826, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37455006

RESUMO

Polydopamine (PDA) has fascinating properties such as inherent biocompatibility, simple preparation, strong near-infrared absorption, high photothermal conversion efficiency, and strong metal ion chelation, which have catalyzed extensive research in PDA-containing multifunctional nano-systems particularly for biomedical applications. Thus, it is imperative to overview synthetic strategies of various PDA-containing nanoparticles (NPs) for state-of-the-art cancer multi-mode diagnoses and therapies applications, and offer a timely and comprehensive summary. In this review, we will focus on the synthetic approaches of PDA NPs, and summarize the construction strategies of PDA-containing NPs with different structure forms. Additionally, the application of PDA-containing NPs in bioimaging such as photoacoustic imaging, fluorescence imaging, magnetic resonance imaging and other imaging modalities will be reviewed. We will especially offer an overview of their therapeutic applications in tumor chemotherapy, photothermal therapy, photodynamic therapy, photocatalytic therapy, sonodynamic therapy, radionuclide therapy, gene therapy, immunotherapy and combination therapy. At the end, the current trends, limitations and future prospects of PDA-containing nano-systems will be discussed. This review aims to provide guidelines for new scientists in the field of how to design PDA-containing NPs and what has been achieved in this area, while offering comprehensive insights into the potential of PDA-containing nano-systems used in cancer diagnosis and treatment.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Indóis/uso terapêutico , Indóis/química , Fototerapia , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Nanopartículas/uso terapêutico , Nanopartículas/química
8.
Int J Biol Macromol ; 240: 124488, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37072062

RESUMO

The high expression of reduced glutathione (GSH) and low pH in tumor sites have encouraged new ideas for targeted drug release. The tumor microenvironment is a crucial target for studying the anti-tumor efficiency of photothermal therapy because the microenvironment plays a key role in cancer progression, local resistance, immune escaping, and metastasis. Herein, active mesoporous polydopamine nanoparticles loaded with doxorubicin and functionalized with N,N'-bis(acryloyl)cystamine (BAC) and cross-linked carboxymethyl chitosan (CMC) were used to induce simultaneous redox- and pH-sensitive activity to achieve photothermal enhanced synergistic chemotherapy. The inherent disulfide bonds of BAC were able to deplete glutathione, thus increasing the oxidative stress in tumor cells and enhancing the release of doxorubicin. Additionally, the imine bonds between CMC and BAC were stimulated and decomposed in the acidic tumor microenvironment, improving the efficiency of light conversion through exposure to polydopamine. Moreover, in vitro and in vivo investigations demonstrated that this nanocomposite exhibited improved selective doxorubicin release in conditions mimicking the tumor microenvironment and low toxicity towards non-cancerous tissues, suggesting there is high potential for the clinical translation of this synergistic chemo-photothermal therapeutic agent.


Assuntos
Quitosana , Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Quitosana/uso terapêutico , Fototerapia , Doxorrubicina/química , Neoplasias/tratamento farmacológico , Nanopartículas/química , Oxirredução , Concentração de Íons de Hidrogênio , Microambiente Tumoral
9.
Front Pharmacol ; 14: 1129817, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007037

RESUMO

Background: Respiratory diseases are common and frequent diseases. Due to the high pathogenicity and side effects of respiratory diseases, the discovery of new strategies for drug treatment is a hot area of research. Scutellaria baicalensis Georgi (SBG) has been used as a medicinal herb in China for over 2000 years. Baicalin (BA) is a flavonoid active ingredient extracted from SBG that BA has been found to exert various pharmacological effects against respiratory diseases. However, there is no comprehensive review of the mechanism of the effects of BA in treating respiratory diseases. This review aims to summarize the current pharmacokinetics of BA, baicalin-loaded nano-delivery system, and its molecular mechanisms and therapeutical effects for treating respiratory diseases. Method: This review reviewed databases such as PubMed, NCBI, and Web of Science from their inception to 13 December 2022, in which literature was related to "baicalin", "Scutellaria baicalensis Georgi", "COVID-19", "acute lung injury", "pulmonary arterial hypertension", "asthma", "chronic obstructive pulmonary disease", "pulmonary fibrosis", "lung cancer", "pharmacokinetics", "liposomes", "nano-emulsions", "micelles", "phospholipid complexes", "solid dispersions", "inclusion complexes", and other terms. Result: The pharmacokinetics of BA involves mainly gastrointestinal hydrolysis, the enteroglycoside cycle, multiple metabolic pathways, and excretion in bile and urine. Due to the poor bioavailability and solubility of BA, liposomes, nano-emulsions, micelles, phospholipid complexes, solid dispersions, and inclusion complexes of BA have been developed to improve its bioavailability, lung targeting, and solubility. BA exerts potent effects mainly by mediating upstream oxidative stress, inflammation, apoptosis, and immune response pathways. It regulates are the NF-κB, PI3K/AKT, TGF-ß/Smad, Nrf2/HO-1, and ERK/GSK3ß pathways. Conclusion: This review presents comprehensive information on BA about pharmacokinetics, baicalin-loaded nano-delivery system, and its therapeutic effects and potential pharmacological mechanisms in respiratory diseases. The available studies suggest that BA has excellent possible treatment of respiratory diseases and is worthy of further investigation and development.

10.
Pharmaceutics ; 15(3)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36986711

RESUMO

Nanodelivery systems combining photothermal therapy (PTT) and chemotherapy (CT), have been widely used to improve the efficacy and biosafety of chemotherapeutic agents in cancer. In this work, we constructed a self-assembled nanodelivery system, formed by the assembling of photosensitizer (IR820), rapamycin (RAPA), and curcumin (CUR) into IR820-RAPA/CUR NPs, to realize photothermal therapy and chemotherapy for breast cancer. The IR820-RAPA/CUR NPs displayed a regular sphere, with a narrow particle size distribution, a high drug loading capacity, and good stability and pH response. Compared with free RAPA or free CUR, the nanoparticles showed a superior inhibitory effect on 4T1 cells in vitro. The IR820-RAPA/CUR NP treatment displayed an enhanced inhibitory effect on tumor growth in 4T1 tumor-bearing mice, compared to free drugs in vivo. In addition, PTT could provide mild hyperthermia (46.0 °C) for 4T1 tumor-bearing mice, and basically achieve tumor ablation, which is beneficial to improving the efficacy of chemotherapeutic drugs and avoiding damage to the surrounding normal tissue. The self-assembled nanodelivery system provides a promising strategy for coordinating photothermal therapy and chemotherapy to treat breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA