Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38566386

RESUMO

Wound healing is crucial for maintaining skin integrity and preventing complications from external threats. Various plants, such as Achillea millefolium, Aloe vera, Curcuma longa, Calendula officinalis, Camellia sinensis, Azadirachta indica, and Plantago, have demonstrated wound healing capabilities and have been used in herbal medicine for wound care. NLCs are second-generation lipid nanoparticles, blending solid and liquid lipids to improve medication loading and limit leakage. NLCs have been used in various applications, including cosmeceuticals, chemotherapy, gene therapy, and brain targeting. Wound healing is divided into four stages: hemostasis, inflammatory response, proliferation, and remodeling. Factors such as age, gender, chronic disorders, and local agents like infections can affect recovery. These plants' antiinflammatory, antioxidant, and antibacterial activities have demonstrated potential in wound healing. Combining herbal medicinal plants and nanostructured lipid carriers (NLCs) can revolutionise wound treatment and improve overall healthcare outcomes.

2.
Phytomedicine ; 116: 154848, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37163901

RESUMO

BACKGROUND: Hepatitis B virus (HBV) infection remains a major global health burden, due to the increasing risk of complications, such as cirrhosis and hepatocellular carcinoma. Novel anti-HBV agents are critical required. Our previous study suggested that Artemisia argyi essential oil (AAEO) significantly inhibited the replication of HBV DNA and especially the secretion of hepatitis B antigen in vitro. PURPOSE: The aim of this study was to prepare AAEO loaded nanostructured lipid carriers (AAEO-NLCs) for the delivery of AAEO to the liver, investigated the therapeutic benefits of AAEO-NLCs against HBV in a duck HBV (DHBV) model and explored its potential mechanism. STUDY DESIGN AND METHODS: AAEO-NLCs were prepared by hot homogenization and ultrasonication method. The DHBV-infected ducks were treated with AAEO (4 mg/kg), AAEO-NLCs (0.8, 4, and 20 mg/kg of AAEO), and lamivudine (20 mg/kg) for 15 days. The DHBV DNA levels in the serum and liver were measured by quantitative Real-Time PCR. Pharmacokinetics and liver distribution were performed in rats after oral administration of AAEO-NLCs and AAEO suspension. The potential antiviral mechanism and active compounds of AAEO were investigated by network pharmacology and molecular docking. RESULTS: AAEO-NLCs markedly inhibited the replication of DHBV DNA in a dose-dependent manner and displayed a low virologic rebound following withdrawal the treatment in DHBV-infected ducks. Moreover, AAEO-NLCs led to a more pronounced reduction in viral DNA levels than AAEO suspension. Further investigations of pharmacokinetics and liver distribution in rats confirmed that NLCs improved the oral bioavailability and increased the liver exposure of AAEO. The potential mechanisms of AAEO against HBV explored by network pharmacology were associated with signaling pathways related to immune response, such as tumor necrosis factor, nuclear factor kappa B, and sphingolipid signaling pathways. Furthermore, a total of 16 potential targets were obtained, including prostaglandin-endoperoxide synthase-2 (PTGS2), caspase-3, progesterone receptor, etc. Compound-target docking results confirmed that four active compounds of AAEO had strong binding interactions with the active sites of PTGS2. CONCLUSIONS: AAEO-NLCs displayed potent anti-HBV activity with improved oral bioavailability and liver exposure of AAEO. Thus, it may be a potential therapeutic strategy for the treatment of HBV infection.


Assuntos
Artemisia , Vírus da Hepatite B do Pato , Neoplasias Hepáticas , Óleos Voláteis , Ratos , Animais , Simulação de Acoplamento Molecular , Óleos Voláteis/farmacologia , Farmacologia em Rede , Ciclo-Oxigenase 2 , Antivirais/farmacologia , Vírus da Hepatite B/genética , Vírus da Hepatite B do Pato/genética
3.
Pharm Res ; 40(1): 197-213, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36376605

RESUMO

PURPOSE: Asiatic acid (AA) is reported for its neuroprotective potential in Alzheimer's disease (AD). This present work aimed to develop AA loaded nanostructured lipid carriers (AAN) for targeting the delivery of AA into the brain and ameliorating the cognitive deficits in AD rats. METHODS: AAN was optimized using the Box-Behnken design, considering 3 factors (soya lecithin, tween 80, and high pressure homogenizer (HPH) pressure) as independent variables while particle size (PS), zeta potential (ZP) and entrapment efficiency (EE) were dependent variables. Cytotoxicity assay and internalization studies of AAN were evaluated in SH-SY5Y cells and further neuroprotective efficiency on intracellular amyloid beta (Aß) aggregation was evaluated in Aß 1-42 treated cells with thioflavin T (ThT). The behavioral acquisition effects were evaluated in Aß 1-42 (5 µg/ 5 µL, intracerebroventricular (ICV), unilateral) induced AD model followed by the histology and quantification of neurotransmitters levels. RESULTS: The optimized AAN revealed desired PS (44.1 ± 12.4 nm), ZP (- 47.1 ± 0.017 mv) and EE (73.41 ± 2.53%) for brain targeting delivery of AA. In-vitro, AAN exhibited better neuroprotective potential than AA suspension (AAS). AA content was 1.28 folds and 2.99 folds heightened in plasma and brain respectively after the i.p. administration of AAN as compared to AAS. The results of pharmacodynamic studies manifested the AAN treatment significantly (p < 0.05) ameliorated the cognitive deficits. CONCLUSIONS: Hence, developed AAN has neuroprotective potential and should be further considered as an unconventional platform in preclinical model for the management of AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Neuroblastoma , Fármacos Neuroprotetores , Humanos , Ratos , Animais , Peptídeos beta-Amiloides/metabolismo , Neuroblastoma/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/patologia , Estresse Oxidativo , Colinesterases , Fármacos Neuroprotetores/farmacologia
4.
Food Chem ; 403: 134465, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36358082

RESUMO

This study investigated the impacts of individual emulsifiers on the physicochemical stability, antioxidant ability, and in vitro digestion behavior of lutein-loaded nanostructured lipid carriers (NLCs). NLCs particles stabilized by ethyl lauroyl arginate, rhamnolipid, or tea saponin were fabricated by high-pressure microfluidization method. Differential scanning calorimetry and X-ray diffraction results confirmed the regulatory effect of emulsifiers on the crystallization behavior of NLCs. NLCs stabilized by rhamnolipid presented higher encapsulation efficiency (94.73%) for lutein than those stabilized by tea saponin (90.39%) or ethyl lauroyl arginate (88.86%). Meanwhile, the stability of embedded lutein during storage or photothermal treatments was greatly enhanced. Individual emulsifiers, together with lutein, endowed NLCs with excellent antioxidant capacity. During in vitro digestion, rhamnolipid-stabilized NLCs showed the slowest release of free fatty acids (50.87%) and provided an optimal sustained release for lutein with relatively high bioaccessibility (23.01%).


Assuntos
Nanoestruturas , Saponinas , Antioxidantes , Portadores de Fármacos/química , Luteína , Lipídeos/química , Tamanho da Partícula , Nanoestruturas/química , Emulsificantes/química , Chá
5.
Molecules ; 27(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36557969

RESUMO

Breast cancer is the neoplasia of highest incidence in women worldwide. Docetaxel (DTX), a taxoid used to treat breast cancer, is a BCS-class-IV compound (low oral bioavailability, solubility and intestinal permeability). Nanotechnological strategies can improve chemotherapy effectiveness by promoting sustained release and reducing systemic toxicity. Nanostructured lipid carriers (NLC) encapsulate hydrophobic drugs in their blend-of-lipids matrix, and imperfections prevent drug expulsion during storage. This work describes the preparation, by design of experiments (23 factorial design) of a novel NLC formulation containing copaiba oil (CO) as a functional excipient. The optimized formulation (NLCDTX) showed approximately 100% DTX encapsulation efficiency and was characterized by different techniques (DLS, NTA, TEM/FE-SEM, DSC and XRD) and was stable for 12 months of storage, at 25 °C. Incorporation into the NLC prolonged drug release for 54 h, compared to commercial DTX (10 h). In vitro cytotoxicity tests revealed the antiproliferative effect of CO and NLCDTX, by reducing the cell viability of breast cancer (4T1/MCF-7) and healthy (NIH-3T3) cells more than commercial DTX. NLCDTX thus emerges as a promising drug delivery system of remarkable anticancer effect, (strengthened by CO) and sustained release that, in clinics, may decrease systemic toxicity at lower DTX doses.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Nanoestruturas , Óleos Voláteis , Feminino , Humanos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/química , Preparações de Ação Retardada/uso terapêutico , Portadores de Fármacos/química , Nanoestruturas/química , Óleos Voláteis/uso terapêutico , Tamanho da Partícula , Nanopartículas/química
6.
Pharmaceutics ; 14(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36559176

RESUMO

The use of natural compounds is becoming increasingly popular among patients, and there is a renewed interest among scientists in nature-based bioactive agents. Traditionally, herbal drugs can be taken directly in the form of teas/decoctions/infusions or as standardized extracts. However, the disadvantages of natural compounds, especially essential oils, are their instability, limited bioavailability, volatility, and often irritant/allergenic potential. However, these active substances can be stabilized by encapsulation and administered in the form of nanoparticles. This brief overview summarizes the latest results of the application of nanoemulsions, liposomes, solid lipid nanoparticles, and nanostructured lipid carriers used as drug delivery systems of herbal essential oils or used directly for their individual secondary metabolites applicable in cancer therapy. Although the discussed bioactive agents are not typical compounds used as anticancer agents, after inclusion into the aforesaid formulations improving their stability and bioavailability and/or therapeutic profile, they indicated anti-tumor activity and became interesting agents with cancer treatment potential. In addition, co-encapsulation of essential oils with synthetic anticancer drugs into nanoformulations with the aim to achieve synergistic effect in chemotherapy is discussed.

7.
J Pharm Sci ; 111(12): 3384-3396, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36189477

RESUMO

Taking into consideration the latest reported beneficial anticolvusant effects of cannabidiol (CBD) and cannabiodiolic acid (CBDA) for clinical applications and the advantages of lipid nano-systems as carriers for targeted brain delivery, the aim of this study was set in direction of in vitro physico-chemical and biopharmaceutical characterization and in vivo evaluation of nanoliposomes and nanostructured lipid carriers loaded with Cannabis sativa extract intended for safe and efficient transport via blood-brain barrier and treatment of epilepsy. These nanoliposomes and nanostructured lipid formulations were characterized with z-average diameter <200 nm, following unimodal particle size distribution, negative values for Z-potential, high drug encapsulation efficiency and prolonged release during 24h (38.84-60.91 %). Prepared formulations showed statistically significant higher antioxidant capacity compared to the extract. The results from in vivo studies of the anticonvulsant activity demonstrated that all formulations significantly elevated the latencies for myoclonic, clonic and tonic seizures and, therefore, could be used in preventing different types of seizures. A distinction in the potential of the nano-systems was noted, which was probably anticipated by the type and the characteristics of the prepared formulations.


Assuntos
Cannabis , Epilepsia , Tamanho da Partícula , Epilepsia/tratamento farmacológico , Convulsões/tratamento farmacológico , Lipídeos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
8.
AAPS PharmSciTech ; 23(7): 230, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978154

RESUMO

The present investigation aims to develop and explore mannosylated lipid-based carriers to deliver an anti-HIV drug, Etravirine (TMC) and Selenium nanoparticles (SeNPs), to the HIV reservoirs via the mannose receptor. The successful mannosylation was evaluated by the change in zeta potential and lectin binding assay using fluorescence microscopy. Electron microscopy and scattering studies were employed to study the structure and surface of the nanocarrier system. The presence of selenium at the core-shell of the nanocarrier system was confirmed by X-ray photoelectron spectroscopy and energy dispersive X-ray analysis. Further, the in vitro anti-HIV1 efficacy was assessed using HIV1 infected TZM-bl cells followed by in vivo biodistribution studies to evaluate distribution to various reservoirs of HIV. The results exhibited higher effectiveness and a significant increase in the therapeutic index as against the plain drug. The confocal microscopy and flow cytometry studies exhibited the efficient uptake of the coumarin-6 tagged respective formulations. The protective effect of nano selenium toward oxidative stress was evaluated in rats, demonstrating the potential of the lipidic nanoparticle-containing selenium in mitigating oxidative stress in all the major organs. The in vivo biodistribution assessment in rats showed a 12.44, 8.05 and 9.83-fold improvement in the brain, ovary, and lymph node biodistribution, respectively as compared with plain TMC. Delivery of such a combination via mannosylated nanostructured lipid carriers could be an efficient approach for delivering drugs to reservoirs of HIV while simultaneously reducing the oxidative stress induced by such long-term therapies by co-loading Nano-Selenium.


Assuntos
Nanopartículas , Selênio , Animais , Portadores de Fármacos/química , Feminino , Lipídeos/química , Manose/química , Nanopartículas/química , Nitrilas , Tamanho da Partícula , Pirimidinas , Ratos , Selênio/química , Distribuição Tecidual
9.
Eur J Pharm Biopharm ; 176: 32-42, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35584719

RESUMO

The digestion behaviour of lipid-based nanocarriers (LNC) has a great impact on their oral drug delivery properties. In this study, various excipients including surfactants, glycerides and waxes, as well as various drug-delivery systems, namely self-emulsifying drug delivery systems (SEDDS), solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) were examined via the pH-stat lipolysis model. Lipolysis experiments with lipase and pancreatin revealed the highest release of fatty acids for medium chain glycerides, followed by long chain glycerides and surfactants. Waxes appeared to be poor substrates with a maximum digestion of up to 10% within 60 min. Within the group of surfactants, the enzymatic cleavage decreased in the following order: glycerol monostearate > polyoxyethylene (20) sorbitan monostearate > PEG-35 castor oil > sorbitan monostearate. After digestion experiments of the excipients, SEDDS, SLN and NLC with sizes between 30 and 300 nm were prepared. The size of almost all formulations was increasing during lipolysis and levelled off after approximately 15 min except for the SLN and NLC consisting of cetyl palmitate. SEDDS exceeded 6000 nm after some minutes and were almost completely hydrolysed by pancreatin. No significant difference was observed between comparable SLN and NLC but surfactant choice and selection of the lipid component had an impact on digestion. SLN and NLC with cetyl palmitate were only digested by 5% whereas particles with glyceryl distearate were decomposed by 40-80% within 60 min. Additionally, the digestion of the same SLN or NLC, only differing in the surfactant, was higher for SLN/NLC containing polyoxyethylene (20) sorbitan monostearate than PEG-35 castor oil. This observation might be explained by the higher PEG content of PEG-35 castor oil causing a more pronounced steric hindrance for the access of lipase. Generally, digestion experiments performed with pancreatin resulted in a higher digestion compared to lipase. According to these results, the digestion behaviour of LNC depends on both, the type of nanocarrier and on the excipients used for them.


Assuntos
Excipientes , Nanopartículas , Óleo de Rícino , Digestão , Portadores de Fármacos/química , Excipientes/química , Glicerídeos/química , Lipase/química , Lipídeos/química , Lipossomos , Nanopartículas/química , Pancreatina/química , Tamanho da Partícula , Polietilenoglicóis , Tensoativos/química , Ceras
10.
Carbohydr Polym ; 288: 119401, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35450653

RESUMO

Chitosan (Ch)-coated nanostructured lipid carriers (NLCs) have great potential for transdermal delivery with high localization of chemotherapeutics in breast cancer. This study used tetrahydrocurcumin (THC), a primary metabolite of curcumin with enhanced antioxidant and anticancer properties, as a model compound to prepare NLCs. Response surface methodology was employed to optimize THC-loaded Ch-coated NLCs (THC-Ch-NLCs) fabricated by high-shear homogenization. The optimized THC-Ch-NLCs had particle size of 244 ± 18 nm, zeta potential of -17.5 ± 0.5 mV, entrapment efficiency of 76.6 ± 0.2% and drug loading of 0.28 ± 0.01%. In vitro release study of THC-Ch-NLCs showed sustained release following the Korsmeyer-Peppas model with Fickian and non-Fickian diffusion at pH 7.4 and 5.5, respectively. THC-Ch-NLCs demonstrated significantly enhanced in vitro skin permeation, cell uptake, and remarkable cytotoxicity toward MD-MBA-231 breast cancer cells compared to the unencapsulated THC, suggesting Ch-NLCs as potential transdermal nanocarriers of THC for triple-negative breast cancer treatment.


Assuntos
Neoplasias da Mama , Quitosana , Curcumina , Nanoestruturas , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Quitosana/química , Curcumina/análogos & derivados , Curcumina/farmacologia , Portadores de Fármacos/química , Lipídeos/química , Nanoestruturas/química , Tamanho da Partícula
11.
Int J Pharm ; 619: 121712, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35367582

RESUMO

Piperine (PIP) is a herbal drug with well-known anticancer activity against different types of cancer including hepatocellular carcinoma. However, low aqueous solubility and extensive first-pass metabolism limit its clinical use. In this study, positively charged PIP-loaded nanostructured lipid carriers (PIP-NLCs) were prepared via melt-emulsification and ultra-sonication method followed by pectin coating to get novel pectin-coated NLCs (PIP-P-NLCs) targeting hepatocellular carcinoma. Complete in vitro characterization was performed. In addition, cytotoxicity and cellular uptake of nanosystems in HepG2 cells were evaluated. Finally, in vivo anticancer activity was tested in the diethylnitrosamine-induced hepatocellular carcinoma mice model. Successful pectin coating was confirmed by an increased particle size of PIP-NLCs from 150.28 ± 2.51 nm to 205.24 ± 5.13 nm and revered Zeta potential from 33.34 ± 3.52 mV to -27.63 ± 2.05 mV. Nanosystems had high entrapment efficiency, good stability, spherical shape, and sustained drug release over 24 h. Targeted P-NLCs enhanced the cytotoxicity and cellular uptake compared to untargeted NLCs. Furthermore, PIP-P-NLCs improved in vivo anticancer effect of PIP as proved by histological examination of liver tissues, suppression of liver enzymes and oxidative stress environment in the liver, and alteration of cell cycle regulators. To conclude, PIP-P-NLCs can act as a promising approach for targeted delivery of PIP to hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanoestruturas , Alcaloides , Animais , Benzodioxóis , Carcinoma Hepatocelular/tratamento farmacológico , Portadores de Fármacos/uso terapêutico , Lipídeos , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Tamanho da Partícula , Pectinas , Piperidinas , Alcamidas Poli-Insaturadas
12.
Molecules ; 27(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35335302

RESUMO

(1) Background: The control of mosquitoes with essential oils is a growing demand. (2) Methods: This study evaluated the novel larvicidal and adulticidal activity of fennel and green tea oils and their nanostructured lipid carriers (NLC) against Culex pipiens (C. pipiens) in the laboratory, field conditions and evaluated their effect against non-target organisms. SLN type II nanoformulations were synthesized and characterized using dynamic light scattering (DLS), zeta potential and transmission electron microscope. (3) Results: The synthesized NLCs showed spherical shaped, homogenous, narrow, and monomodal particle size distribution. The mortality percent (MO%) post-treatment (PT) with 2000 ppm for 24 h with fennel oil and NLC fennel (NLC-F) reached 85% (LC50 = 643.81 ppm) and 100% (LC50 = 251.71), whereas MO% for green tea oil and NLC green tea (NLC-GT) were 80% (LC50 = 746.52 ppm) and 100% (LC50 = 278.63 ppm), respectively. Field trial data showed that the larval reduction percent of fennel oil and NLC-F reached 89.8% and 97.4%, 24 h PT and the reduction percent of green tea oil and NLC-GT reached 89% and 93%, 24 h PT with persistence reached 8 and 7 days, for NLC-F and NLC-GT, respectively. The adulticidal effects showed that NLC-F and NLC-GT (100% mortality) were more effective than fennel and green tea oils (90.0% and 83.33%), with 24 h PT, respectively. Moreover, their reduction of adult density after spraying with LC95 X2 for 15 min, with fennel oil, NLC-F, and green tea oil, NLC-GT were 83.6%, 100%, 79.1%, and 100%, respectively, with persistence (>50%) lasting for three days. The predation rate of the mosquitofish, Gambusia affinis, and the bug, Sphaerodema urinator, was not affected in both oil and its NLC, while the predation rate of the beetle, Cybister tripunctatus increased (66% and 68.3%) by green tea oil and NLC-GT, respectively. (4) Conclusions: NLCs nanoformulation encapsulated essential oils was prepared successfully with unique properties of size, morphology, and stability. In vitro larvicidal and adulticidal effects against C. pipiens supported with field evaluations have been performed using essential oils and their nanoformulations. The biological evaluation of nanoformulations manifested potential results toward both larvicidal and adulticidal compared to the essential oils themselves, especially NLC encapsulated fennel oil which had promising larvicidal and adulticidal activity.


Assuntos
Culex , Foeniculum , Nanoestruturas , Óleos Voláteis , Animais , Chá
13.
Drug Deliv ; 29(1): 743-753, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35244508

RESUMO

Hydroxy-α-sanshool (HAS), extracted from Zanthoxylum piperitum, is commonly used in oral surgery to relief pain. However, the application of HAS is limited in clinical practice due to its poor stability. This study focuses on the design of a novel nano-formulation delivery system for HAS to improve its stability and local anesthetic effect. Hydroxy-α-sanshool loaded nanostructured lipid carriers (HAS-NLCs) were prepared by melting emulsification and ultra-sonication using monostearate (GMS) and oleic acid (OA) as lipid carriers, and poloxamer-188 (F68) as a stabilizer. Besides, the formulation was optimized by response surface methodology (RSM). Then, the best formulation was characterized for particle size, polydispersity index (PDI), zeta potential, entrapment efficiency (EE%), drug loading (DL%), differential scanning calorimetry (DSC), and morphology (transmission electron microscopy, TEM). The obtained HAS-NLCs were homogeneous, near spherical particles with high DL% capacity. The stability of HAS-NLCs against oxygen, light, and heat was greatly improved over 10.79 times, 3.25 times, and 2.09 times, respectively, compared to free HAS. In addition, HAS-NLCs could exhibit sustained release in 24 h following a double-phase kinetics model in vitro release study. Finally, HAS-NLCs had excellent anesthetic effect at low dose in formalin test compared with free HAS and lidocaine, which indicated HAS-NLCs were a potential local anesthesia formulation in practice.


Assuntos
Portadores de Fármacos , Nanoestruturas , Amidas , Anestesia Local , Anestésicos Locais , Portadores de Fármacos/química , Nanoestruturas/química , Ácido Oleico , Tamanho da Partícula
14.
Zhongguo Zhong Yao Za Zhi ; 47(4): 913-921, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35285190

RESUMO

Emodin nanostructured lipid carriers(ED-NLC) were prepared and their quality was evaluated in vitro. Based on the results of single-factor experiments, the ED-NLC formulation was optimized by Box-Behnken response surface method with the dosages of emodin, isopropyl myristate and poloxamer 188 as factors and the nanoparticle size, encapsulation efficiency and drug loading as evaluation indexes. Then the evaluation was performed on the morphology, size and in vitro release of the nanoparticles prepared by emulsification-ultrasonic dispersion method in line with the optimal formulation, i.e., 3.27 mg emodin, 148.68 mg isopropyl myristate and 173.48 mg poloxamer 188. Under a transmission electron microscope(TEM), ED-NLC were spherical and their particle size distribution was uniform. The particle size of ED-NLC was(97.02±1.55) nm, the polymer dispersion index 0.21±0.01, the zeta potential(-38.96±0.65) mV, the encapsulation efficiency 90.41%±0.56% and the drug loading 1.55%±0.01%. The results of differential scanning calorimeter(DSC) indicated that emodin may be encapsulated into the nanostructured lipid carriers in molecular or amorphous form. In vitro drug release had obvious characteristics of slow release, which accorded with the first-order drug release equation. The fitting model of Box-Behnken response surface methodology was proved accurate and reliable. The optimal formulation-based ED-NLC featured concentrated particle size distribution and high encapsulation efficiency, which laid a foundation for the follow-up study of ED-NLC in vivo.


Assuntos
Emodina , Nanoestruturas , Portadores de Fármacos , Seguimentos , Lipídeos
15.
Drug Deliv ; 29(1): 837-855, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35277107

RESUMO

Sorafenib (SRB), a multikinase inhibitor, is effective in reducing experimental corneal neovascularization (CNV) after oral administration; however, its therapeutic use in ocular surface disorders is restricted due to poor solubility and limited bioavailability. This study aimed to develop and optimize SRB-loaded nanostructured lipid carriers (SRB-NLCs) for topical ocular delivery by a central composite design response surface methodology (CCD-RSM). It was spherical and uniform in morphology with an average particle size of 111.87 ± 0.93 nm and a narrow size distribution. The in vitro drug release from the released SRB-NLC formulation was well fitted to Korsmeyer Peppas release kinetics. The cell counting kit-8 (CCK-8) cell viability assay demonstrated that SRB-NLC was not obviously cytotoxic to human corneal epithelial cells (HCECs). An in vivo ocular irritation test showed that SRB-NLC was well tolerated by rabbit eyes. Ocular pharmacokinetics revealed 6.79-fold and 1.24-fold increase in the area under concentration-time curves (AUC0-12h) over 12 h in rabbit cornea and conjunctiva, respectively, treated with one dose of SRB-NLC compared with those treated with SRB suspension. Moreover, SRB-NLC (0.05% SRB) and dexamethasone (0.025%) similarly suppressed corneal neovascularization in mice. In conclusion, the optimized SRB-NLC formulation demonstrated excellent physicochemical properties and good tolerance, sustained release, and enhanced ocular bioavailability. It is safe and potentially effective for the treatment of corneal neovascularization.


Assuntos
Neovascularização da Córnea , Animais , Córnea , Neovascularização da Córnea/tratamento farmacológico , Portadores de Fármacos/química , Lipídeos/química , Camundongos , Coelhos , Sorafenibe
16.
J Biomed Mater Res B Appl Biomater ; 110(6): 1368-1390, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35019231

RESUMO

Considering the potential of Salvia officinalis in prevention and treatment of Alzheimer's disease (AD), as well as the ability of nanostructured lipid carriers (NLC) to successfully deliver drug molecules across blood-brain barrier (BBB), the objective of this study was design, development, optimization and characterization of freeze-dried salvia officinalis extract (FSE) loaded NLC intended for intranasal administration. NLC were prepared by solvent evaporation method and the optimization was carried out using central composite design (CCD) of experiments. Further, the optimized formulation (NLCo) was coated either with chitosan (NLCc) or poloxamer (NLCp). Surface characterization of the particles demonstrated a spherical shape with smooth exterior. Particle size of optimal formulations after 0.45 µm pore size filtration ranged from 127 ± 0.68 nm to 140 ± 0.74 nm. The zeta potential was -25.6 ± 0.404 mV; 22.4 ± 1.106 mV and - 6.74 ± 0.609 mV for NLCo, NLCc, and NLCp, respectively. Differential scanning calorimetry (DSC) confirmed the formation of NLC whereas Fourier-transform infrared spectroscopy confirmed the FSE encapsulation into particles. All formulations showcased relatively high drug loading (>86.74 mcg FSE/mg solid lipid) and were characterized by prolonged and controlled release that followed Peppas-Sahlin in vitro release kinetic model. Protein adsorption studies revealed the lowest adsorption of the proteins onto NLCp (43.53 ± 0.07%) and highest protein adsorption onto NLCc (55.97 ± 0.75%) surface. The modified ORAC assay demonstrated higher antioxidative activity for NLCo (95.31 ± 1.86%) and NLCc (97.76 ± 4.00%) as compared to FSE (90.30 ± 1.53%). Results obtained from cell cultures tests pointed to the potential of prepared NLCs for FSE brain targeting and controlled release.


Assuntos
Doença de Alzheimer , Nanoestruturas , Salvia officinalis , Doença de Alzheimer/tratamento farmacológico , Preparações de Ação Retardada , Portadores de Fármacos/química , Lipídeos/química , Nanoestruturas/química , Tamanho da Partícula , Extratos Vegetais/farmacologia
17.
Foods ; 11(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37430911

RESUMO

Whiteleg shrimp (Penaeus vannamei) have been vulnerable to the stress induced by different aquaculture operations such as capture, handling, and transportation. In this study, we developed a novel clove oil-nanostructured lipid carrier (CO-NLC) to enhance the water-soluble capability and improve its anesthetic potential in whiteleg shrimp. The physicochemical characteristics, stability, and drug release capacity were assessed in vitro. The anesthetic effect and biodistribution were fully investigated in the shrimp body as well as the acute multiple-dose toxicity study. The average particle size, polydispersity index, and zeta potential value of the CO-NLCs were 175 nm, 0.12, and -48.37 mV, respectively, with a spherical shape that was stable for up to 3 months of storage. The average encapsulation efficiency of the CO-NLCs was 88.55%. In addition, the CO-NLCs were able to release 20% of eugenol after 2 h, which was lower than the standard (STD)-CO. The CO-NLC at 50 ppm observed the lowest anesthesia (2.2 min), the fastest recovery time (3.3 min), and the most rapid clearance (30 min) in shrimp body biodistribution. The results suggest that the CO-NLC could be a potent alternative nanodelivery platform for increasing the anesthetic activity of clove oil in whiteleg shrimp (P. vannamei).

18.
Molecules ; 26(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34946734

RESUMO

A novel formulation based on nanostructured lipid carriers (NLCs) was developed to increase solubility and intestinal absorption of khellin. K-NLCs were prepared with stearic acid, hempseed oil, Brij S20, and Labrafil M 1944 CS, using the emulsification-ultrasonication method. Developed nanoparticles were chemically and physically characterized by liquid chromatography, light scattering techniques, and electron microscopy. The size, about 200 nm, was optimal for oral delivery, and the polydispersity index (around 0.26), indicated high sample homogeneity. Additionally, K-NLCs showed a spherical morphology without aggregation by microscopic analysis. The encapsulation efficiency of khellin was about 55%. In vitro release studies were carried out in media with different pH to mimic physiological conditions. K-NLCs were found to be physically stable in the simulated gastric and intestinal fluids, and they preserved about 70% of khellin after 6 h incubation. K-NLCs were also successfully lyophilized testing different lyoprotectants, and obtained freeze-dried K-NLCs demonstrated good shelf life over a month. Lastly, permeability studies on Caco-2 cells were performed to predict khellin passive diffusion across the intestinal epithelium, demonstrating that nanoparticles increased khellin permeability by more than two orders of magnitude. Accordingly, developed NLCs loaded with khellin represent a versatile formulation with good biopharmaceutical properties for oral administration, possibly enhancing khellin's bioavailability and therapeutic effects.


Assuntos
Cannabis , Quelina , Nanoestruturas/química , Extratos Vegetais , Administração Oral , Células CACO-2 , Cannabis/química , Humanos , Quelina/química , Quelina/farmacocinética , Quelina/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacocinética , Extratos Vegetais/farmacologia , Ácidos Esteáricos/química , Ácidos Esteáricos/farmacocinética , Ácidos Esteáricos/farmacologia
19.
Fitoterapia ; 155: 105033, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34517057

RESUMO

AIM: Cantharidin (CTD), the major component of the anti-cancer medicine obtained from Mylabris cichorii, exerts good inhibitory effects on several cancers, such as liver and breast cancer. However, owing to its toxicity, its oral administration can cause various adverse effects, limiting its clinical applications. Therefore, the development of a novel nano-drug delivery system for CTD would be highly beneficial. METHODS: A nanostructured lipid carrier (NLC) was designed to actively target CTD to tumor cells using a hyaluronic acid (HA)-decorated copolymer (mPEG-NH2); the NLCs were called HA-mPEG-CTD-NLC. HA-mPEG was synthesized using amidation, and HA-mPEG-CTD-NLC was generated through ultrasonic emulsification in water. The mean hydrodynamic diameter of the particles was approximately 119.3 nm. RESULTS: Pharmacokinetic studies revealed that the half-life of HA-mPEG-CTD-NLC and its area under the curve were higher than those of a CTD solution. Further, the plasma clearance rate of HA-mPEG-CTD-NLC was 0.41 times that of the CTD solution, implying a significantly prolonged drug retention time in vivo. Fluorescence in vivo endo-microscopy and optical in vivo imaging revealed that HA-mPEG-CTD-NLC had superior cytotoxicity and targeting efficacy against SMMC-7721 cells. An evaluation of the in vivo anti-tumor activity showed that HA-mPEG-CTD-NLC significantly inhibited tumor growth and prolonged survival in tumor-bearing mice, with a tumor inhibition rate of 65.96%. CONCLUSIONS: Our results indicate that HA-mPEG-CTD-NLC may have great potential in liver cancer-targeted therapy.


Assuntos
Cantaridina/administração & dosagem , Ácido Hialurônico/química , Sistemas de Liberação de Fármacos por Nanopartículas , Polietilenoglicóis/química , Animais , Cantaridina/farmacocinética , Linhagem Celular Tumoral , Feminino , Ácido Hialurônico/farmacocinética , Lipídeos/química , Neoplasias Hepáticas/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Sistemas de Liberação de Fármacos por Nanopartículas/farmacocinética , Polietilenoglicóis/farmacocinética , Ratos Sprague-Dawley
20.
Curr Drug Deliv ; 18(10): 1550-1562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33970844

RESUMO

BACKGROUND: Parkinsonism has a toxic cascade of neurodegeneration, with akinesia as a major manifestation. Some antioxidants have shown promise against the disease. Astaxanthin is a powerful antioxidant, demonstrates free radical scavenging, and is also a potential neuroprotective agent. OBJECTIVE: The objective of this study was to formulate astaxanthin-laden nanostructured lipid carriers based thermoreversible gel for better neuronal uptake and better neuronal efficacy. METHODS: The method for fabricating astaxanthin-nanostructured lipid carriers (ATX-NLC) was melt-emulsification, and these were optimized using factorial design and further evaluated for diverse parameters. Neurotoxicity was induced in rats by haloperidol. The treated and non-treated rats were then witnessed for their behaviour. TBARs and GSH levels were also determined. Pharmacokinetics was studied via HPLC. RESULTS: The average particle size (by DLS), entrapment efficiency and zeta potential of optimized ATX-NLC were 225.6 ± 3.04 nm, 65.91 ± 1.22% and -52.64 mV, respectively. Astaxanthin release (after 24 h in simulated nasal fluid) from optimized ATX-NLC was 92.5 ± 5.42%. Its thermoreversible nasal gel (ATX-NLC in-situ gel) was prepared using poloxamer-127. The obtained gel showed in-vivo betterment in the behaviour of animals when studied using the rotarod and akinesia test. Pharmacokinetic studies showed better availability of astaxanthin in the brain on the rats treated with ATX-NLC in-situ gel as compared to those treated with ATX-in-situ gel. CONCLUSION: Astaxanthin-loaded lipidic nanoparticulate gel can be a hopeful adjuvant therapy for Parkinsonism and holds scope for future studies.


Assuntos
Nanoestruturas , Transtornos Parkinsonianos , Animais , Portadores de Fármacos , Haloperidol , Lipídeos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Tamanho da Partícula , Ratos , Xantofilas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA