Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 193: 106460, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432539

RESUMO

Recent research highlights the profound impact of the gut microbiome on neuropsychiatric disorders, shedding light on its potential role in shaping human behavior. In this study, we investigate the role of the gut microbiome in appetite regulation using activity-based anorexia (ABA) mouse model of anorexia nervosa (AN) - a severe eating disorder with significant health consequences. ABA was induced in conventional, antibiotic-treated, and germ-free mice. Our results show the clear influence of the gut microbiome on the expression of four orexigenic (neuropeptide Y, agouti-related peptide, melanin-concentrating hormone, and orexin) and four anorexigenic peptides (cocaine- and amphetamine-regulated transcript, corticotropin-releasing hormone, thyrotropin-releasing hormone, and pro-opiomelanocortin) in the hypothalamus. Additionally, we assessed alterations in gut barrier permeability. While variations were noted in germ-free mice based on feeding and activity, they were not directly attributable to the gut microbiome. This research emphasizes that the gut microbiome is a pivotal factor in AN's appetite regulation beyond just dietary habits or physical activity.


Assuntos
Anorexia Nervosa , Microbioma Gastrointestinal , Neuropeptídeos , Humanos , Camundongos , Animais , Apetite/fisiologia , Anorexia Nervosa/metabolismo , Neuropeptídeos/metabolismo , Hipotálamo/metabolismo
2.
Peptides ; 173: 171138, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38147963

RESUMO

The hypothalamic neuropeptides linked to appetite and satiety were investigated in obese mice treated with cotadutide (a dual receptor agonist of glucagon-like peptide 1 (GLP-1R)/Glucagon (GCGR)). Twelve-week-old male C57BL/6 mice were fed a control diet (C group, n = 20) or a high-fat diet (HF group, n = 20) for ten weeks. Each group was further divided, adding cotadutide treatment and forming groups C, CC, HF, and HFC for four additional weeks. The hypothalamic arcuate neurons were labeled by immunofluorescence, and protein expressions (Western blotting) for neuropeptide Y (NPY), proopiomelanocortin (POMC), agouti-related protein (AgRP), and cocaine- and amphetamine-regulated transcript (CART). Cotadutide enhanced POMC and CART neuropeptides and depressed NPY and AGRP neuropeptides. In addition, gene expressions (RT-qPCR) determined that Lepr (leptin receptor) and Calcr (calcitonin receptor) were diminished in HF compared to C but enhanced in CC compared to C and HFC compared to HF. Besides, Socs3 (suppressor of cytokine signaling 3) was decreased in HFC compared to HF, while Sst (somatostatin) was higher in HFC compared to HF; Tac1 (tachykinin 1) and Mc4r (melanocortin-4-receptor) were lower in HF compared to C but increased in HFC compared to HF. Also, Glp1r and Gcgr were higher in HFC compared to HF. In conclusion, the findings are compelling, demonstrating the effects of cotadutide on hypothalamic neuropeptides and hormone receptors of obese mice. Cotadutide modulates energy balance through the gut-brain axis and its associated signaling pathways. The study provides insights into the mechanisms underlying cotadutide's anti-obesity effects and its possible implications for obesity treatment.


Assuntos
Glucagon , Neuropeptídeos , Peptídeos , Camundongos , Animais , Masculino , Proteína Relacionada com Agouti , Glucagon/metabolismo , Camundongos Obesos , Pró-Opiomelanocortina/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Camundongos Endogâmicos C57BL , Neuropeptídeos/genética , Hipotálamo/metabolismo , Neuropeptídeo Y/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo
3.
Adv Sci (Weinh) ; 10(33): e2303015, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37857552

RESUMO

Postmenopausal osteoporosis (PMO) is often accompanied by neuroendocrine changes in the hypothalamus, which closely associates with the microbial diversity, community composition, and intestinal metabolites of gut microbiota (GM). With the emerging role of GM in bone metabolism, a potential neuroendocrine signal neuropeptide Y (NPY) mediated brain-gut-bone axis has come to light. Herein, it is reported that exogenous overexpression of NPY reduced bone formation, damaged bone microstructure, and up-regulated the expressions of pyroptosis-related proteins in subchondral cancellous bone in ovariectomized (OVX) rats, but Y1 receptor antagonist (Y1Ra) reversed these changes. In addition, it is found that exogenous overexpression of NPY aggravated colonic inflammation, impaired intestinal barrier integrity, enhanced intestinal permeability, and increased serum lipopolysaccharide (LPS) in OVX rats, and Y1Ra also reversed these changes. Most importantly, NPY and Y1Ra modulated the microbial diversity and changed the community composition of GM in OVX rats, and thereby affecting the metabolites of GM (e.g., LPS) entering the blood circulation. Moreover, fecal microbiota transplantation further testified the effect of NPY-mediated GM changes on bone. In vitro, LPS induced pyroptosis, reduced viability, and inhibited differentiation of osteoblasts. The study demonstrated the existence of NPY-mediated brain-gut-bone axis and it might be a novel emerging target to treat PMO.


Assuntos
Microbioma Gastrointestinal , Osteoporose Pós-Menopausa , Feminino , Humanos , Ratos , Animais , Neuropeptídeo Y/metabolismo , Lipopolissacarídeos , Hipotálamo/metabolismo
4.
Adv Sci (Weinh) ; 10(35): e2305042, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37880864

RESUMO

Microgravity is the primary factor that affects human physiology in spaceflight, particularly bone loss and disturbances of the central nervous system. However, little is known about the cellular and molecular mechanisms of these effects. Here, it is reported that in mice hindlimb unloading stimulates expression of neuropeptide Y (NPY) and tyrosine hydroxylase (TH) in the hypothalamus, resulting in bone loss and altered fat metabolism. Enhanced expression of TH and NPY in the hypothalamus occurs downstream of a reduced prostaglandin E2 (PGE2)-mediated ascending interoceptive signaling of the skeletal interoception. Sympathetic antagonist propranolol or deletion of Adrb2 in osteocytes rescue bone loss in the unloading model. Moreover, depletion of TH+ sympathetic nerves or inhibition of norepinephrine release ameliorated bone resorption. Stereotactic inhibition of NPY expression in the hypothalamic neurons reduces the food intake with altered energy expenditure with a limited effect on bone, indicating hypothalamic neuroendocrine factor NPY in the facilitation of bone formation by sympathetic TH activity. These findings suggest that reduced PGE2-mediated interoceptive signaling in response to microgravity or unloading has impacts on the skeletal and central nervous systems that are reciprocally regulated.


Assuntos
Dinoprostona , Interocepção , Humanos , Camundongos , Animais , Dinoprostona/metabolismo , Neuropeptídeo Y/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo
5.
Brain Res ; 1810: 148367, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37054963

RESUMO

Exosomes (sEVs) are extracellular vesicles involved in the pathogenesis of obesity. Notably, exosomal microRNAs (miRNAs) have emerged as crucial mediators of communication between cells and are involved in the development of obesity. One region of the brain known to be dysregulated in obesity is the hypothalamus. It coordinates whole-body energy homeostasis through stimulation and inhibition of the orexigenic neuropeptide (NPY)/agouti-related peptide (AgRP) neurons and anorexigenic proopiomelanocortin (POMC) neurons. A role for hypothalamic astrocytic exosomes in communication with POMC neurons was previously elucidated. Yet, it was unknown whether NPY/AgRP neurons secreted exosomes. We previously established that the saturated fat palmitate alters the intracellular levels of miRNAs and we now questioned whether palmitate would also alter the miRNA content of exosomal miRNAs. We found that the mHypoE-46 cell line secreted particles consistent with the size of exosomes and that palmitate altered levels of a spectrum of miRNAs associated with exosomes. The predicted KEGG pathways of the collective miRNA predicted targets included fatty acid metabolism and type II diabetes mellitus. Of note, one of these altered secreted miRNAs was miR-2137, which was also altered within the cells. We also found that while sEVs collected from the mHypoE-46 neurons increased Pomc mRNA in the mHypoA-POMC/GFP-2 cells after 48 h, the effect was absent with sEVs isolated following palmitate treatment, indicating another potential route by which palmitate promotes obesity. Hypothalamic neuronal exosomes may therefore play a role in the control of energy homeostasis that may be disrupted in obese conditions.


Assuntos
Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Palmitatos , Humanos , Proteína Relacionada com Agouti/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Vesículas Extracelulares/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Obesidade/metabolismo , Palmitatos/farmacologia , Palmitatos/metabolismo , Pró-Opiomelanocortina/metabolismo
6.
Biochem Biophys Res Commun ; 658: 18-26, 2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37011479

RESUMO

Phenylbutyric acid (PBA) is a commonly used inhibitor of endoplasmic reticulum stress, as well as a histone deacetylase (HDAC) inhibitor, that increases hypothalamic expression of orexigenic neuropeptide Y (Npy). Elucidation of the dose-response relationship and mechanism of action of PBA may position this compound as a potential therapeutic for eating disorders where Npy is dysregulated, such as anorexia nervosa. The hypothalamic neuronal model mHypoE-41 was exposed to PBA (5 µM-5 mM) to assess the maximal Npy upregulation. Transcription factors and histone acetylation-related genes were assessed by qRT-PCR, as well as the involvement estrogen receptors (ER) using siRNA knockdown. Changes in global and Npy promoter-specific H3K9/14 acetylation were detected using western analysis and chromatin immunoprecipitation. Treatment with 5 mM PBA led to a 10-fold and 206-fold increase in Npy mRNA at 4 and 16 h, respectively, as well as increased NPY secretion. This induction was not observed with another orexigenic neuropeptide Agrp. PBA significantly increased the expression of Foxo1, Socs3 and Atf3 and the ERs Esr1 and Esr2 mRNA, but the PBA-mediated induction of Npy was not dependent on ERα or ERß. PBA induced histone H3K9/14 acetylation at 3 distinct Npy promoter regions, suggesting increased Npy transcriptional activation due to a more open chromatin structure. We also report changes in Hdac mRNAs by PBA and the fatty acid palmitate, highlighting the importance of epigenetic regulation in Npy transcription. Overall, we conclude that PBA has strong orexigenic potential and can robustly and specifically induce Npy in hypothalamic neurons through a mechanism likely involving histone H3 acetylation.


Assuntos
Histonas , Neuropeptídeo Y , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Histonas/metabolismo , Epigênese Genética , Acetilação , Hipotálamo/metabolismo , Neurônios/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Endocrinology ; 164(3)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36423209

RESUMO

In contrast to mammals, birds have a higher basal metabolic rate and undertake wide range of energy-demanding activities. As a consequence, food deprivation for birds, even for a short period, poses major energy challenge. The energy-regulating hypothalamic homeostatic mechanisms, although extensively studied in mammals, are far from clear in the case of birds. We focus on the interplay between neuropeptide Y (NPY) and thyrotropin-releasing hormone (TRH), 2 of the most important hypothalamic signaling agents, in modulating the energy balance in a bird model, the zebra finch, Taeniopygia guttata. TRH neurons were confined to a few nuclei in the preoptic area and hypothalamus, and fibers widely distributed. The majority of TRH neurons in the hypothalamic paraventricular nucleus (PVN) whose axons terminate in median eminence were contacted by NPY-containing axons. Compared to fed animals, fasting significantly reduced body weight, PVN pro-TRH messenger RNA (mRNA) and TRH immunoreactivity, but increased NPY mRNA and NPY immunoreactivity in the infundibular nucleus (IN, avian homologue of mammalian arcuate nucleus) and PVN. Refeeding for a short duration restored PVN pro-TRH and IN NPY mRNA, and PVN NPY innervation to fed levels. Compared to control tissues, treatment of the hypothalamic superfused slices with NPY or an NPY-Y1 receptor agonist significantly reduced TRH immunoreactivity, a response blocked by treatment with a Y1-receptor antagonist. We describe a detailed neuroanatomical map of TRH-equipped elements, identify new TRH-producing neuronal groups in the avian brain, and demonstrate rapid restoration of the fasting-induced suppression of PVN TRH following refeeding. We further show that NPY via Y1 receptors may regulate PVN TRH neurons to control energy balance in T. guttata.


Assuntos
Tentilhões , Hormônio Liberador de Tireotropina , Animais , Masculino , Hormônio Liberador de Tireotropina/genética , Neuropeptídeo Y/metabolismo , Hipotálamo/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , RNA Mensageiro/metabolismo , Mamíferos/genética
8.
Clin Pract ; 12(6): 926-938, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36412676

RESUMO

Background: Neurocytokines may upregulate or downregulate neuropathic pain. We hypothesized that dextrose (D-glucose) injections for therapeutic purposes (dextrose prolotherapy: DPT) in painful knee osteoarthritis (KOA) would favorably affect synovial-fluid neurocytokine concentrations. Methods: Twenty participants with grade IV symptomatic KOA received synovial-fluid aspiration followed by dextrose or simulated dextrose injections, followed by the reverse after one week. All participants then received open-label dextrose injections monthly for 6 months, with serial assessments of walking pain at 20 min for 9 months, as well as synovial-neurocytokine-concentration measurements (calcitonin gene-related peptide, substance P (SP), and neuropeptide Y (NPY)) at one week and three months. Results: Clinically important analgesia was observed at 20 min and for 9 months post dextrose injection. One -week synovial-fluid SP concentration rose by 111% (p = 0.028 within groups and p = 0.07 between groups) in the dextrose-injected knees compared to synovial-fluid aspiration only. Three-month synovial-fluid NPY concentration dropped substantially (65%; p < 0.001) after open-label dextrose injection in all knees. Conclusions: Prompt and medium-term analgesia after intra-articular dextrose injection in KOA was accompanied by potentially favorable changes in synovial-fluid neurocytokines SP and NPY, respectively, although these changes were isolated. Including neurocytokines in future assessments of DPT to elucidate mechanisms of action is recommended.

9.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36233056

RESUMO

Recent work has demonstrated the ability of the gut microbiota (GM) to alter the expression and release of gut peptides that control appetite and regulate energy homeostasis. However, little is known about the neuronal response of these hormones in germ-free (GF) animals, especially leptin, which is strikingly low in these animals. Therefore, we aimed to determine the response to exogenous leptin in GF mice as compared to conventionally raised (CONV-R) mice. Specifically, we injected and measured serum leptin in both GF and CONV-R mice and measured expression of orexigenic and anorexigenic peptides NPY, AgRP, POMC, and CART in the hypothalamus and hindbrain to examine whether the GM has an impact on central nervous system regulation of energy homeostasis. We found that GF mice had a significant increase in hypothalamic NPY and AgRP mRNA expression and a decrease in hindbrain NPY and AgRP mRNA, while mRNA expression of POMC and CART remained unchanged. Administration of leptin normalized circulating levels of leptin, GLP-1, PYY, and ghrelin, all of which were significantly decreased in GF mice. Finally, brief conventionalization of GF mice for 10 days restored the deficits in hypothalamic and hindbrain neuropeptides present in GF animals. Taken together, these results show that the GM regulates hypothalamic and hindbrain orexigenic/anorexigenic neuropeptide expression. This is in line with the role of gut microbiota in lipid metabolism and fat deposition that may contribute to excess fat in conventionalized animals under high feeding condition.


Assuntos
Microbioma Gastrointestinal , Neuropeptídeos , Proteína Relacionada com Agouti/genética , Animais , Grelina/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Camundongos , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/metabolismo
10.
Mol Brain ; 15(1): 75, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064426

RESUMO

Fibroblast growth factor 11 (FGF11) is a member of the intracellular fibroblast growth factor family. Here, we report the central role of FGF11 in the regulation of metabolism. Lentiviral injection of Fgf11 shRNA into the arcuate nucleus of the mouse hypothalamus decreased weight gain and fat mass, increased brown adipose tissue thermogenesis, and improved glucose and insulin intolerances under high-fat diet conditions. Fgf11 was expressed in the NPY-expressing neurons, and Fgf11 knockdown considerably decreased Npy expression and projection, leading to increased expression of tyrosine hydroxylase in the paraventricular nucleus. Mechanistically, FGF11 regulated Npy gene expression through the glycogen synthase kinase 3-cAMP response element-binding protein pathway. Our study defines the physiological significance of hypothalamic FGF11 in the regulation of metabolism in response to overnutrition such as high-fat diet.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Hipotálamo , Neuropeptídeo Y , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Dieta Hiperlipídica , Fatores de Crescimento de Fibroblastos/genética , Hipotálamo/metabolismo , Camundongos , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Neuropeptídeo Y/farmacologia , Obesidade/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo
11.
Front Pharmacol ; 13: 905711, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034826

RESUMO

Sociability is an essential component of the linkage structure in human and other vertebrate communication. Low sociability is defined as a poor social approach, including social withdrawal and apathy, and is implicated in a variety of psychiatric disorders. Ninjinyoeito (NYT), a traditional Japanese herbal medicine, has been used in the medical field. This study aimed to determine the effect of NYT on low sociality in NPY-KO zebrafish. NPY-KO zebrafish were fed a 3% NYT-supplemented diet for 4 days and subjected to behavioral tests. In the mirror test, NPY-KO zebrafish fed a control diet showed avoidance behavior toward their mirror counterparts. In contrast, the treatment of NPY-KO zebrafish with NYT significantly increased their interaction with their counterparts in the mirror. In addition, a 3-chambers test was conducted to confirm the effect of NYT on the low sociality of NPY-KO zebrafish. NPY-KO zebrafish fed the control diet showed less interaction with fish chambers, while NYT treatment increased the interaction. Phosphorylation of ERK, a marker of neuronal activity, was significantly reduced in the whole brain of NYT-fed NPY-KO zebrafish, compared to the control diet. NYT treatment significantly suppressed hypothalamic-pituitary-adrenal-related genes (gr, pomc, and crh) and sympathetic-adrenal-medullary-related genes (th1, th2, and cck) in NPY-KO zebrafish. NYT administration significantly reduced mRNA levels of gad1b compared to the control diet, suggesting the involvement of GABAergic neurons in NYT-induced improvement of low sociability. Furthermore, the expression of CREB was suppressed when NPY-KO zebrafish were fed NYT. Next, we attempted to identify the effective herb responsible for the NYT-induced improvement of low sociability. NPY-KO zebrafish were fed an experimental diet containing the target herb for 4 days, and its effect on sociability was evaluated using the 3-chambers test. Results showed that Cinnamon Bark and Polygala Root treatments significantly increased time spent in the fish tank area compared to the control diet, while the other 10 herbs did not. We confirmed that these two herbs suppressed the activity of HPA-, SAM-, and GABAergic neurons, as well as NYT-treated zebrafish, accompanied by downregulation of CREB signaling. This study suggests the potential use of NYT as a drug for sociability disorders.

12.
J Chem Neuroanat ; 123: 102117, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680104

RESUMO

The hypothalamus is a large brain region made of nuclei and areas involved in the control of behaviors and physiological regulations. Among them, the arcuate nucleus (ARH) and the lateral hypothalamic area (LHA) contain key neuronal populations expressing the pro-opiomelanocortin (POMC), the agouti-related peptide (AgRP), and the melanin-concentrating hormone (MCH), respectively, that are involved in goal-oriented behaviors (such as feeding behavior) and glucose homeostasis. These neuronal populations are generated from distinct parts of the germinative neuroepithelium during embryonic life, and acquire their cell fate under the influence of morphogen proteins, specific transcription factors, and epigenetic modulators. POMC and MCH neuronal development continues by sending long descending axonal projections before birth under the control of axon guidance molecules such as Netrin1 and Slit2. Later, during the postnatal period, POMC and AgRP neurons develop intra-hypothalamic projections notably to the paraventricular nucleus of the hypothalamus through the influence of other axon guidance cues such as the class3 Semaphorins. Other cellular processes, such as autophagy and primary cilia function, and hormonal cues also appear critical for the proper development of POMC neurons.


Assuntos
Hipotálamo , Pró-Opiomelanocortina , Proteína Relacionada com Agouti/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo
13.
J Neuroendocrinol ; 34(6): e13145, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35581942

RESUMO

Pregnancy is energetically demanding and therefore, by necessity, reproduction and energy balance are inextricably linked. With insufficient or excessive energy stores a female is liable to suffer complications during pregnancy or produce unhealthy offspring. Gonadotropin-releasing hormone neurons are responsible for initiating both the pulsatile and subsequent surge release of luteinizing hormone to control ovulation. Meticulous work has identified two hypothalamic populations of kisspeptin (Kiss1) neurons that are critical for this pattern of release. The involvement of the hypothalamus is unsurprising because its quintessential function is to couple the endocrine and nervous systems, coordinating energy balance and reproduction. Estrogens, more specifically 17ß-estradiol (E2 ), orchestrate the activity of a triumvirate of hypothalamic neurons within the arcuate nucleus (ARH) that govern the physiological underpinnings of these behavioral dynamics. Arising from a common progenitor pool, these cells differentiate into ARH kisspeptin, pro-opiomelanocortin (POMC), and agouti related peptide/neuropeptide Y (AgRP) neurons. Although the excitability of all these subpopulations is subject to genomic and rapid estrogenic regulation, Kiss1 neurons are the most sensitive, reflecting their integral function in female fertility. Based on the premise that E2 coordinates autonomic functions around reproduction, we review recent findings on how Kiss1 neurons interact with gonadotropin-releasing hormone, AgRP and POMC neurons, as well as how the rapid membrane-initiated and intracellular signaling cascades activated by E2 in these neurons are critical for control of homeostatic functions supporting reproduction. In particular, we highlight how Kiss1 and POMC neurons conspire to inhibit AgRP neurons and diminish food motivation in service of reproductive success.


Assuntos
Kisspeptinas , Pró-Opiomelanocortina , Proteína Relacionada com Agouti , Núcleo Arqueado do Hipotálamo/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Homeostase , Humanos , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Reprodução/fisiologia
14.
Reprod Biol ; 22(1): 100599, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35033902

RESUMO

The neuroendocrine mechanism underlying the sinusoidal wave nature of gonadotropin-releasing hormone pulse generator activity from infantile to adult age still needs to be meticulously defined. Direct inhibition of kisspeptin neurons by neuropeptide Y (NPY) and close intimacy between the two rekindle the importance of these two neuropeptides controlling reproductive axis activity. Thus, the present study was undertaken to decipher simultaneous fluctuations and to profile correlative changes in the relative expression of KISS1, NPY, and their receptor genes from the mediobasal hypothalamus of infant (n = 3), juvenile, pre-pubertal, and adult (n = 4 in each stage) male rhesus monkey (Macaca mulatta) by RT-qPCR. Significant elevation (p < 0.05-0.01) in KISS1 and KISS1R and low (p < 0.05) expression in NPY and NPY1R mRNA in the adult group as compared to the pre-pubertal group was observed. Moreover, significantly high (p < 0.05) expression of NPY and NPY1R mRNA with non-significant (p> 0.05) decline in KISS1 and KISS1R in pre-pubertal animals in comparison to infants describe inverse correlative age-associated changes during pubertal development. Current findings imply that NPY may contribute as a neurobiological brake for the dormancy of kisspeptin neurons before pubertal onset, while dwindling of this brake is likely to occasion kisspeptin dependent hypothalamic-pituitary-gonadal axis activation at puberty. These findings may help in the development of clinical and therapeutic strategies to regulate fertility in humans.


Assuntos
Envelhecimento , Kisspeptinas , Neuropeptídeo Y , Animais , Expressão Gênica , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Macaca mulatta/genética , Macaca mulatta/metabolismo , Masculino , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Maturidade Sexual/fisiologia
15.
Mol Cell Endocrinol ; 539: 111480, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624438

RESUMO

Bisphenol A (BPA) is an endocrine disrupting chemical that promotes obesity. It acts on the hypothalamus by increasing expression of the orexigenic neuropeptides, Npy and Agrp. Exactly how BPA dysregulates energy homeostasis is not completely clear. Since microRNAs (miRNA) have emerged as crucial weight regulators, the question of whether BPA could alter hypothalamic miRNA profiles was examined. Treatment of the mHypoA-59 cell line with 100 µM BPA altered a specific subset of miRNAs, and the most upregulated was miR-708-5p. BPA was found to increase the levels of miR-708-5p, and its parent gene Odz4, through the ER stress-related protein Chop. Overexpression of an miR-708-5p mimic resulted in a reduction of neuronatin, a proteolipid whose loss of expression is associated with obesity, and an increase in orexigenic Npy expression, thus potentially increasing feeding through converging regulatory pathways. Therefore, hypothalamic exposure to BPA can increase miR-708-5p that controls neuropeptides directly linked to obesity.


Assuntos
Compostos Benzidrílicos/efeitos adversos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hipotálamo/citologia , Proteínas de Membrana/genética , MicroRNAs/genética , Proteínas do Tecido Nervoso/genética , Neuropeptídeo Y/genética , Fenóis/efeitos adversos , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Modelos Biológicos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fator de Transcrição CHOP/metabolismo , Regulação para Cima
16.
Brain Struct Funct ; 227(3): 821-828, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34716471

RESUMO

Morphological and pharmacological studies indicate that hypothalamic neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons communicate with each other in rats and regulate a variety of hypothalamic and extrahypothalamic functions. Indeed, electron microscopic studies revealed NPY-immunoreactive (NPI-IR) synapses on ß-endorphin-IR neurons in the hypothalamus. However, no such connections have been reported in humans. Here, we studied the putative NPY-ß-endorphin associations with high-resolution light microscopic double-label immunocytochemistry in the human hypothalamus. The majority of ß-endorphin-IR perikarya appear to be innervated by abutting NPY-IR fibers in the infundibulum/median eminence, receiving more than 6 contacts (38% of the counted neurons) or three to six contacts (42% of the counted neurons). The rest of the ß-endorphin-IR neurons are lightly innervated by NPY fibers (14%, one-three contacts) or do not receive any detectable NPY-IR axon varicosities (6% of the counted neurons). Since ß-endorphin is cleaved from the proopiomelanocortin (POMC) precursor, the NPY-ß-endorphin connections also provide the foundation for NPY-α-MSH and NPY-ACTH connections and their subsequent physiology. The close anatomical connections between NPY-IR nerve terminals and ß-endorphin-IR neurons reported herein may represent functional synapses and provide the foundation for NPY-stimulated ß-endorphin release. By interacting with ß-endorphin, NPY may have a more widespread regulatory capacity than acting alone on different neurotransmitter systems.


Assuntos
Hipotálamo , Neuropeptídeo Y , beta-Endorfina , Animais , Humanos , Hipotálamo/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Ratos , Sinapses/metabolismo , beta-Endorfina/metabolismo
17.
Biol Trace Elem Res ; 200(9): 3996-4006, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34708332

RESUMO

Obesity is a mild chronic inflammation that causes many metabolic diseases. It was aimed to investigate some parameters affective on the energy metabolism by adding zinc (Zn, ZnSO4) to drinking water of diet-induced obese rats. Five-week aged, male Sprague Dawley rats divided into as control group, consuming standard rat diet, and high-fat diet (HFD) group. After obesity induced by feeding HFD for 8 weeks, the obese rats were divided into Zn-supplemented obese group (HFD + obese + Zn; 150 mg Zn/L (for 6 weeks), 235 mg Zn/L (7th week), 250 mg Zn/L (8th week) in drinking water) and obese group (HFD + obese). Mean body weight, serum concentrations of C-reactive protein, neuropeptide-Y, leptin, insulin fasting blood glucose, and HOMA-IR were statistically decreased by given Zn in HFD + obese + Zn group compared to HFD + obese rats. It was observed that the total cholesterol, LDL, and HDL cholesterol levels of HFD + obese + Zn group became closer to the control group level, and Zn supplementation caused a statistically significant decrease in cholesterol profile than HFD + obese rats. Also, increased mean serum nesfatin-1 level, an effective protein for the formation of satiety, was analyzed in HFD + obese + Zn group when compared to HFD + obese ones. Serum triglyceride concentration tended to decrease with the effect of Zn in obese rats. In conclusion, it can be said that oral use of Zn could improve energy balance and prevent the occurrence of metabolic diseases related to obesity depending on the anti-inflammatory effect of Zn.


Assuntos
Obesidade , Zinco , Animais , Proteína C-Reativa , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Água Potável , Leptina , Masculino , Neuropeptídeo Y , Nucleobindinas , Obesidade/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Zinco/farmacologia
18.
Reprod Sci ; 29(1): 173-183, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34767244

RESUMO

Adulthood obesity, diabetes, and metabolic diseases are associated with small for gestational age (SGA) newborns. This association could be related to abnormal appetite signaling pathways in the hypothalamus. This study investigated the appetite regulation by the hypothalamus of SGA newborns by establishing an SGA rat model and culturing SGA neural progenitor cells (NPCs) in vitro. Models of SGA were established by maternal food restriction embryonic day 10 (E10). At E18, postpartum day 1 (P1), and P5, hypothalamic neural precursor cells (NPCs) of offspring were cultured in vitro. Immunofluorescence, Western blot (WB), and qRT-PCR were used to assess NPY, POMC, and FoxO1 expression levels. The effects on mRNA expression of the FoxO1-specific inhibitor AS1842856 were examined. The results indicated that compared with controls, NPY was higher, and POMC was lower at embryonic day 18 (E18), postpartum day 1 (P1), and P5. The proliferation and migration of NPCs in the third ventricle of SGA hypothalami were lower than in controls. After treatment with the FoxO1 inhibitor AS1842856, the differences in the mRNA expression of NPY and POMC between the two groups disappeared. NPY and POMC mRNA levels in the SGA group treated with AS1842856 were not significantly different compared with the control group without AS1842856 treatment. In conclusion, SGA pups showed an increase in appetite-promoting NPY and a decrease in appetite-reducing POMC, probably contributing to adulthood weight gain, obesity, and endocrine disorders.


Assuntos
Proteína Forkhead Box O1/metabolismo , Hipotálamo/metabolismo , Células-Tronco Neurais/metabolismo , Neuropeptídeo Y/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Proteína Forkhead Box O1/genética , Idade Gestacional , Hipotálamo/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neuropeptídeo Y/genética , Pró-Opiomelanocortina/genética , Quinolonas/farmacologia , Ratos
19.
Elife ; 102021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34468315

RESUMO

The central nervous system regulates activity of peripheral organs through interoception. In our previous study, we have demonstrated that PGE2/EP4 skeleton interception regulate bone homeostasis. Here, we show that ascending skeleton interoceptive signaling downregulates expression of hypothalamic neuropeptide Y (NPY) and induce lipolysis of adipose tissue for osteoblastic bone formation. Specifically, the ascending skeleton interoceptive signaling induces expression of small heterodimer partner-interacting leucine zipper protein (SMILE) in the hypothalamus. SMILE binds to pCREB as a transcriptional heterodimer on Npy promoters to inhibit NPY expression. Knockout of EP4 in sensory nerve increases expression of NPY causing bone catabolism and fat anabolism. Importantly, inhibition of NPY Y1 receptor (Y1R) accelerated oxidation of free fatty acids in osteoblasts and rescued bone loss in AvilCre:Ptger4fl/fl mice. Thus, downregulation of hypothalamic NPY expression lipolyzes free fatty acids for anabolic bone formation through a neuroendocrine descending interoceptive regulation.


Assuntos
Tecido Adiposo/metabolismo , Osso e Ossos/metabolismo , Hipotálamo/fisiologia , Interocepção/fisiologia , Neuropeptídeo Y/metabolismo , Esqueleto/fisiologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Camundongos , Camundongos Knockout , Neuropeptídeo Y/genética , Osteoblastos/fisiologia , Transdução de Sinais
20.
Life (Basel) ; 11(6)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208526

RESUMO

The objective of this experiment was to evaluate the effects of feeding different levels concentrations of dietary calcium propionate (CaPr) on lambs' growth performance; ruminal fermentation parameters; glucose-insulin concentration; and hypothalamic mRNA expression for neuropeptide Y (NPY), agouti-related peptide (AgRP), and proopiomelanocortin (POMC). Thirty-two individually fed lambs were randomly assigned to four treatments: (1) control diet (0 g/kg of CaPr), (2) low CaPr, (30 g/kg dry matter (DM)), (3) medium CaPr, (35 g/kg DM), and (4) high CaPr (40 g/kg DM). After 42 days of feeding, lambs were slaughtered for collecting samples of the hypothalamus. Data were analyzed as a complete randomized design, and means were separated using linear and quadratic polynomial contrast. Growth performance was not affected (p ≥ 0.11) by dietary CaPr inclusion. The ruminal concentration of total volatile fatty acids (VFA) increased linearly (p = 0.04) as dietary CaPr increased. Likewise, a linear increase in plasma insulin concentration (p = 0.03) as dietary CaPr concentration increased. The relative mRNA expression of NPY exhibited a quadratic effect (p < 0.01), but there were significant differences in the mRNA expression of AgRP and POMC (p ≥ 0.10). Dietary calcium propionate did not improve lamb growth performance in lambs feed with only forage diets. Intake was not correlated with feed intake with mRNA expression of neuropeptides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA