Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Tradit Chin Med ; 44(1): 122-130, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38213247

RESUMO

OBJECTIVE: To investigate the potential pharmacological mechanisms of Ganshuang granules (, GSG) in treating non-alcoholic fatty liver (NAFLD). METHODS: All the active components and targets of GSG were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. Protein-Protein interaction network, Kyoto Encyclopedia of Genes and Genomes and Gene Ontology function annotation of common targets were analyzed to predict the mechanisms of action of GSG in the treatment of NAFLD. Then, the mouse models of NAFLD were constructed in a diet-induced manner and treated with GSG. The levels of interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway-related proteins in the liver of mice in each group were measured by enzyme linked immunosorbent assay and Western blot, respectively. RESULTS: Network pharmacology revealed a total of 159 potential targets of GSG for the treatment of NAFLD. Functional enrichment analysis indicated that the PI3K/AKT signaling pathway may be involved during GSG treatment of NAFLD. Further experiments showed that the significantly decreased alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total cholesterol, triglyceride and low-density lipoprotein cholesterol levels in NAFLD model mice serum after GSG treatment, as well as the expression levels of IL-6 and TNF-α in the liver. Furthermore, drug intervention increased the protein expression levels of phosphorylated-PI3K (P-PI3K) and P-AKT in the liver of the model group mice, and decreased the protein expression level of sterol regulatory element-binding protein 1. CONCLUSION: We found that GSG is effective in treating NAFLD and the potential therapeutic targets may be involved in PI3K/AKT signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Proteínas Proto-Oncogênicas c-akt/genética , Fator de Necrose Tumoral alfa/genética , Farmacologia em Rede , Interleucina-6 , Fosfatidilinositol 3-Quinases/genética , Colesterol
2.
J Ethnopharmacol ; 325: 117805, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38278374

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Colorectal cancer (CRC) belongs to the category of intestinal wind, anal ulcer, abdominal mass and other diseases in traditional Chinese medicine (TCM). Floris Sophorae Powder (F.S), is a classical prescription is recorded in Puji Benshi Fang for the treatment of intestinal carbuncle. It has been incorporated into the prescriptions for the treatment of intestinal diseases and achieved remarkable results in modern medicine. However, the mechanism of F.S in the treatment of colorectal cancer remains unclear and requires further study. AIM OF THE STUDY: To investigate F.S in treating CRC and clarify the underlying mechanism. MATERIALS AND METHODS: This study was based on Dextran Sulfate Sodium Salt (DSS) combined with Azoxymethane (AOM) induced CRC mouse model to clarify the pharmacological effects of F.S. The serum metabolomics was used to study the mechanism of action, and the chemical composition of F.S was found by UPLC-Q-TOF-MS. The rationality of serm metabolomics results was verified through the clinical target database of network pharmacology, and the upstream and downstream targets of related pathways were found. The mechanism pathway was verified by Western blot to clarify its mechanism of action. RESULTS: In vivo pharmacological experiments showed that F.S inhibited tumor growth and improved hematochezia. The vital signs of mice in the high-dose F.S group approached to those in the control group. A total of 43 differential metabolites were found to be significantly changed by serum metabolomics. F.S could modulate and recover most of the differential metabolites, which proved to be closely related to the KRAS/MEK-ERK signaling pathway. A total of 46 compounds in F.S were identified, and the rationality of serm metabolic pathway was verified by network pharmacology. Western blot results also verified that the expression of KRAS, E2F1, p-MEK and p-ERK were significantly decreased after F.S treatment. CONCLUSION: Classical prescription Floris Sophorae Powder treat colorectal cancer by regulating KRAS/MEK-ERK signaling pathway.


Assuntos
Neoplasias Colorretais , Medicamentos de Ervas Chinesas , Animais , Camundongos , Pós/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Transdução de Sinais , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias Colorretais/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
3.
Cancer Biother Radiopharm ; 39(1): 19-34, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37797218

RESUMO

It is now well understood that many signaling pathways are vital in carrying out and controlling essential pro-survival and pro-growth cellular functions. The NOTCH signaling pathway, a highly conserved evolutionary signaling pathway, has been thoroughly studied since the discovery of NOTCH phenotypes about 100 years ago in Drosophila melanogaster. Abnormal NOTCH signaling has been linked to the pathophysiology of several diseases, notably cancer. In tumorigenesis, NOTCH plays the role of a "double-edged sword," that is, it may act as an oncogene or as a tumor suppressor gene depending on the nature of the context. However, its involvement in several cancers and inhibition of the same provides targeted therapy for the management of cancer. The use of gamma (γ)-secretase inhibitors and monoclonal antibodies for cancer treatment involved NOTCH receptors inhibition, leading to the possibility of a targeted approach for cancer treatment. Likewise, several natural compounds, including curcumin, resveratrol, diallyl sulfide, and genistein, also play a dynamic role in the management of cancer by inhibition of NOTCH receptors. This review outlines the functions and structure of NOTCH receptors and their associated ligands with the mechanism of the signaling pathway. In addition, it also emphasizes the role of NOTCH-targeted nanomedicine in various cancer treatment strategies.


Assuntos
Drosophila melanogaster , Neoplasias , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Transdução de Sinais , Receptores Notch/genética , Receptores Notch/metabolismo , Oncogenes
4.
Explor Target Antitumor Ther ; 4(5): 1027-1038, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023987

RESUMO

Mutant Kirsten rat sarcoma viral oncogene homolog (KRAS) is now a drugable oncogenic driver and the KRAS G12C variant responds clinically to sotorasib and adagrasib that covalently block the cysteine of the active center and inhibit downstream signaling and proliferation. Unfortunately, progression-free survival (PFS) of lung cancer patients is only 5-6 months and no survival advantage has been found for sotorasib in comparison to docetaxel chemotherapy. Increased responses to KRAS inhibitors are tested in combination with the son of sevenless 1 (SOS1) inhibitors, upstream and downstream signaling modulators as well as chemotherapeutics. Some of these approaches are limited by toxicity to normal tissues and by diverse mechanisms of resistance. In essence, most of these attempts are directed to the inhibition of proliferation by impairment of the signal transduction pathways. The final target of KRAS-mediated growth stimulation is MYC in the cell nucleus that stimulates transcription of a host of genes. In detail, MYC alters genomic enhancer and super-enhancers of transcription that are frequently deregulated in cancer. Such enhancers can be targeted by bromodomain and extra-terminal (BET) inhibitors (BETi) or degraders and this review discusses whether integrated SOS1 inhibition and BET targeting of MYC synergizes against mutant KRAS tumor growth. BET degraders in the form of proteolysis-targeting chimeras (PROTACs) combined with BAY-293-mediated SOS1 inhibition revealed marked cytotoxic synergy against mutant KRAS cancer cells and may constitute a promising option for clinical treatment.

5.
FEBS Open Bio ; 13(8): 1522-1535, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37402485

RESUMO

Oncogene E6 plays a critical role in the development and progression of esophageal cancer caused by human papillomavirus (HPV) infection. Alpha-ketoglutarate (AKG) is a key metabolite in the tricarboxylic acid cycle and has been widely used as a dietary and anti-ageing supplement. In this study, we found that treating esophageal squamous carcinoma cells with a high dose of AKG can induce cell pyroptosis. Furthermore, our research confirms that HPV18 E6 inhibits AKG-induced pyroptosis of esophageal squamous carcinoma cells by lowering P53 expression. P53 downregulates malate dehydrogenase 1 (MDH1) expression; however, MDH1 downregulates L-2-hydroxyglutarate (L-2HG) expression, which inhibits a rise in reactive oxygen species (ROS) levels-as L-2HG is responsible for excessive ROS. This study reveals the actuating mechanism behind cell pyroptosis of esophageal squamous carcinoma cells induced by high concentrations of AKG, and we posit the molecular pathway via which the HPV E6 oncoprotein inhibits cell pyroptosis.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Humanos , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Esofágicas/metabolismo , Papillomavirus Humano 18/metabolismo , Ácidos Cetoglutáricos , Espécies Reativas de Oxigênio/metabolismo , Piroptose , Proteínas Oncogênicas Virais/metabolismo , Biomarcadores Tumorais , Proteínas Citotóxicas Formadoras de Poros/metabolismo
6.
Front Oncol ; 13: 1169876, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152007

RESUMO

C-ros oncogene 1 (ROS1) fusion is a pathogenic driver gene in non-small cell lung cancer (NSCLC). Currently, clinical guidelines from the National Comprehensive Cancer Network (NCCN) have recommended molecular pathologic tests for patients with NSCLC, including the detection of the ROS1 gene. Crizotinib is a small molecule tyrosine kinase inhibitor of anaplastic lymphoma kinase (ALK), ROS1, and mesenchymal-epithelial transition (MET). In recent years, the efficacy of crizotinib in NSCLC patients with ROS1 fusion has been reported. Here, a 77-year-old woman was diagnosed with stage IVA lung adenocarcinoma harboring a novel low-density lipoprotein receptor (LDLR)-ROS1 fusion variant. This novel LDLR-ROS1 fusion was identified by targeted DNA next-generation sequencing (NGS) panel and then verified by RNA fusion panel based on amplicon sequencing. This patient benefited from subsequent crizotinib therapy and achieved progression-free survival of 15 months without significant toxic symptoms. Our case report recommended a promising targeted therapeutic option for patients with metastatic NSCLC with LDLR-ROS1 fusion and highlighted the importance of genetic testing for accurate treatment.

7.
Elife ; 122023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36645410

RESUMO

Background: We have previously shown that the long non-coding (lnc)RNA prostate cancer associated 3 (PCA3; formerly prostate cancer antigen 3) functions as a trans-dominant negative oncogene by targeting the previously unrecognized prostate cancer suppressor gene PRUNE2 (a homolog of the Drosophila prune gene), thereby forming a functional unit within a unique allelic locus in human cells. Here, we investigated the PCA3/PRUNE2 regulatory axis from early (tumorigenic) to late (biochemical recurrence) genetic events during human prostate cancer progression. Methods: The reciprocal PCA3 and PRUNE2 gene expression relationship in paired prostate cancer and adjacent normal prostate was analyzed in two independent retrospective cohorts of clinically annotated cases post-radical prostatectomy: a single-institutional discovery cohort (n=107) and a multi-institutional validation cohort (n=497). We compared the tumor gene expression of PCA3 and PRUNE2 to their corresponding expression in the normal prostate. We also serially examined clinical/pathological variables including time to disease recurrence. Results: We consistently observed increased expression of PCA3 and decreased expression of PRUNE2 in prostate cancer compared with the adjacent normal prostate across all tumor grades and stages. However, there was no association between the relative gene expression levels of PCA3 or PRUNE2 and time to disease recurrence, independent of tumor grades and stages. Conclusions: We concluded that upregulation of the lncRNA PCA3 and targeted downregulation of the protein-coding PRUNE2 gene in prostate cancer could be early (rather than late) molecular events in the progression of human prostate tumorigenesis but are not associated with biochemical recurrence. Further studies of PCA3/PRUNE2 dysregulation are warranted. Funding: We received support from the Human Tissue Repository and Tissue Analysis Shared Resource from the Department of Pathology of the University of New Mexico School of Medicine and a pilot award from the University of New Mexico Comprehensive Cancer Center. RP and WA were supported by awards from the Levy-Longenbaugh Donor-Advised Fund and the Prostate Cancer Foundation. EDN reports research fellowship support from the Brazilian National Council for Scientific and Technological Development (CNPq), Brazil, and the Associação Beneficente Alzira Denise Hertzog Silva (ABADHS), Brazil. This work has been funded in part by the NCI Cancer Center Support Grants (CCSG; P30) to the University of New Mexico Comprehensive Cancer Center (CA118100) and the Rutgers Cancer Institute of New Jersey (CA072720).


Assuntos
Neoplasias da Próstata , RNA Longo não Codificante , Humanos , Masculino , Antígenos de Neoplasias/genética , Biomarcadores Tumorais/genética , Recidiva Local de Neoplasia/genética , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Estudos Retrospectivos , RNA Longo não Codificante/genética
8.
Toxicol Rep ; 10: 104-116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36685271

RESUMO

Despite the widespread use of silver nanoparticles (NPs), these NPs can accumulate and have toxic effects on various organs. However, the effects of silver nanostructures (Ag-NS) with alginate coating on the male reproductive system have not been studied. Therefore, this study aimed to investigate the impacts of this NS on sperm function and testicular structure. After the synthesis and characterization of Ag-NS, the animals were divided into five groups (n = 8), including one control group, two sham groups (received 1.5 mg/kg/day alginate solution for 14 and 35 days), and two treatment groups (received Ag-NS at the same dose and time). Following injections, sperm parameters, apoptosis, and autophagy were analyzed by the TUNEL assay and measurement of the mRNA expression of Bax, Bcl-2, caspase-3, LC3, and Beclin-1. Fertilization rate was assessed by in vitro fertilization (IVF), and testicular structure was analyzed using the TUNEL assay and hematoxylin and eosin (H&E) staining. The results showed that the NS was rod-shaped, had a size of about 60 nm, and could reduce sperm function and fertility. Gene expression results demonstrated an increase in the apoptotic markers and a decrease in autophagy markers, indicating apoptotic cell death. Moreover, Ag-NS invaded testicular tissues, especially in the chronic phase (35 days), resulting in tissue alteration and epithelium disintegration. The results suggest that sperm parameters and fertility were affected. In addition, NS has negative influences on testicular tissues, causing infertility in men exposed to these NS.

9.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36678596

RESUMO

Momordica cochinchinensis is a herbal medicine used throughout Asia and this study investigated the antimelanoma potentials and molecular mechanisms of M. cochinchinensis seed with emphasis on extraction to optimise bioactivity. Overall, the aqueous extract was superior, with a wider diversity and higher concentration of proteins and peptides that was more cytotoxic to the melanoma cells than other extraction solvents. The IC50 of the aqueous extract on melanoma cells were similar to treatment with current anticancer drugs, vemurafenib and cisplatin. This cytotoxicity was cancer-specific with lower cytotoxic effects on HaCaT epidermal keratinocytes. Cytotoxicity correlated with MAPK signalling pathways leading to apoptosis and necrosis induced by triggering tumour necrosis factor receptor-1 (TNFR1), reducing the expression of nuclear factor kappa B (NF-kB), and suppression of BRAF/MEK. This efficacy of M. cochinchinensis seed extracts on melanoma cells provides a platform for future clinical trials as potent adjunctive therapy for metastatic melanoma.

10.
J Orthop Translat ; 39: 34-42, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36636358

RESUMO

Background: Osteosarcoma (OS) is the most common primary malignancy in bone tissues, and effective therapeutics remain absent in clinical practice. Traditional Chinese medicines (TCM) have been used for thousands of years, which provide great insights into OS management. Gallic acid (GA) is a natural phenolic acid enriched in various foods and herbs. Several pharmacological activities of GA such as anti-oxidation and anti-inflammation have been well-established. However, its biological function in OS remains not fully understood. Methods: The potential anti-cancer properties of GA were evaluated in 143 â€‹B, U2OS and MG63 â€‹cells. Its effects on cell growth, cell cycle, apoptosis and migration were examined in these OS cells. The lncRNA H19 and Wnt/ß-catenin signaling were detected by qPCR, luciferase activity and Western blotting assays. The in vivo effect of GA on tumor growth was investigated using an orthotopic mouse model. Results: In the present study, GA was found to suppress the tumor growth in vitro via inducing cell cycle arrest and apoptosis in OS cells, and inhibit the invasion and metastasis as well. Using the orthotopic animal model, GA was also found to suppress tumorigenesis in vivo. Long noncoding RNA (lncRNA) H19 was demonstrated to be down-regulated by GA, and thus disrupted the canonical Wnt/ß-catenin signaling in OS cells. Furthermore, the ectopic expression of H19 rescued the GA-induced suppressive effects on tumor growth and metastasis, and partially reversed the inactivation of Wnt/ß-catenin signaling. Conclusions: Taken together, our results indicated that GA inhibited tumor growth through an H19-mediated Wnt/ß-catenin signaling regulatory axis in OS cells. The translational potential of this article: The information gained from this study provides a novel underlying mechanism of GA mediated anti-OS activity, suggesting that GA may be a promising drug candidate for OS patients.

11.
Mater Today Bio ; 17: 100441, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36388462

RESUMO

Thyroid cancer, as one of the most common endocrine cancers, has seen a surge in incidence in recent years. This is most likely due to the lack of specificity and accuracy of its traditional diagnostic modalities, leading to the overdiagnosis of thyroid nodules. Although there are several treatment options available, they are limited to surgery and 131I radiation therapy that come with significant side effects and hence cannot meet the treatment needs of anaplastic thyroid carcinoma with very high malignancy. Optical imaging that utilizes optical absorption, refraction and scattering properties, not only observes the structure and function of cells, tissues, organs, or even the whole organism to assist in diagnosis, but can also be used to perform optical therapy to achieve targeted non-invasive and precise treatment of thyroid cancer. These applications of screening, diagnosis, and treatment, lend to optical imaging's promising potential within the realm of thyroid cancer surgical navigation. Over the past decade, research on optical imaging in the diagnosis and treatment of thyroid cancer has been growing year by year, but no comprehensive review on this topic has been published. Here, we review key advances in the application of optical imaging in the diagnosis and treatment of thyroid cancer and discuss the challenges and potential for clinical translation of this technology.

12.
Cancer Treat Res Commun ; 33: 100647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36327576

RESUMO

MicroRNAs (miRNAs) are non-coding RNAs which modulate gene expression via multiple post-transcriptional mechanisms. They are involved in a variety of biological processes, including cell proliferation, metastasis, metabolism, tumorigenesis, and apoptosis. Dysregulation of miRNA expression has been implicated in human cancers, and they may also serve as biomarkers of disease progression and prognosis. The miR-17-92 cluster is one of the most widely studied miRNA clusters, which was initially reported as an oncogene, but was later reported to exhibit tumour suppressive effects in some human cancers. This review summarizes the recent progress and context-dependant role of this cluster in various cancers. We summarize the known mechanisms which regulate miR-17-92 expression and molecular pathways that are in turn controlled by it. We discuss examples where it acts as an oncogene or a tumour suppressor along with key targets affecting hallmarks of cancer. We discuss how cellular contexts regulate the biological effects of miR-17-92. The plausible mechanisms of its paradoxical roles are explained, and mechanisms are described that may contribute to cell fate regulation by miR-17-92. Further, we discuss recently developed strategies to target miR-17-92 cluster in human cancers. MiR-17-92 may serve as a potential biomarker for prognosis and response to therapy as well as a target for cancer prevention and therapeutics.


Assuntos
MicroRNAs , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico , Proliferação de Células , Progressão da Doença
13.
J Cancer Res Ther ; 18(6): 1674-1682, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36412429

RESUMO

Background: Non small cell lung cancer (NSCLC) is a global, fatal oncological malady to which conventional and targeted therapies proved less effective with consequent side effects; hence, phytocomponents from herbal sources may provide potent alternative and should be tested for cancer intervention. Activation and overexpression of proto-oncogene tyrosine kinase Src (c-Src) and focal adhesion kinase (FAK) lead to cell proliferation and invasion. Hence, in the present investigation, in silico analysis was carried out to identify molecular intervention of phytocomponents in blocking the active site and thus inhibiting c-Src and FAK activation, which in turn could control progression of NSCLC. Materials and Methods: In silico analysis was carried out using Molegro Virtual Docker, Molegro Molecular Viewer, and ClusPro server for ligand-protein and protein-protein interaction study. Phytochemical analysis and assay for antioxidant activity of hydroalcoholic extract of Rosmarinus officinalis L. were carried out using standard phytochemical tests, high-performance thin-layer chromatography, and 2, 2-diphenyl-1-picrylhydrazyl assay. Effectiveness of extract in arresting cell proliferation was confirmed using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay on A549 cell line. Results: In silico analysis indicated effective binding of rosmarinic acid to the active site of target proteins FAK and c-Src, blocking their activity. MTT assay revealed potent antiproliferative activity of hydroalcoholic extract which acted in dose-dependent manner. Phytochemical analysis confirmed that the extract was rich in phytocomponents and had antioxidant activity of 94.9%, which could therefore effectively eliminate free radicals and inhibit cell progression. Conclusion: In silico and in vitro studies confirmed that phytocomponents present in hydroalcoholic extract of R. officinalis L. could effectively block the active site of target proteins and thus controlled cell proliferation on NSCLC cells, suggesting herb as an effective alternative medicine for the treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Rosmarinus , Humanos , Antioxidantes , Domínio Catalítico , Proteína-Tirosina Quinases de Adesão Focal , Neoplasias Pulmonares/tratamento farmacológico , Rosmarinus/metabolismo , Proteína Tirosina Quinase CSK/metabolismo
14.
Acta Pharmacol Sin ; 43(12): 3015-3020, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36424452

RESUMO

Anticancer drug discovery has yielded unprecedented progress in recent decades, resulting in the approval of innovative treatment options for patients and the successful implementation of personalized medicine in clinical practice. This remarkable progress has also reshaped the research scope of pharmacological research. This article, as a tribute to cancer research at Shanghai Institute of Materia Medica in celebration of the institute's 90th birthday, provides an overview of the conceptual revolution occurring in anticancer therapy, and summarizes our recent progress in the development of molecularly targeted therapeutics and exploration of new strategies in personalized medicine. With this review, we hope to provide a glimpse into how antitumor pharmacological researchers have embraced the new era of personalized medicine research and to propose a future path for anticancer drug discovery and pharmacological research.


Assuntos
Antineoplásicos , Medicina de Precisão , Humanos , China , Descoberta de Drogas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
15.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35743191

RESUMO

Standard treatment for advanced non-small cell lung cancer (NSCLC) historically consisted of systemic cytotoxic chemotherapy until the early 2000s, when precision medicine led to a revolutionary change in the therapeutic scenario. The identification of oncogenic driver mutations in EGFR, ALK and ROS1 rearrangements identified a subset of patients who largely benefit from targeted agents. However, since the proportion of patients with druggable alterations represents a minority, the discovery of new potential driver mutations is still an urgent clinical need. We provide a comprehensive review of the emerging molecular targets in NSCLC and their applications in the advanced setting.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Medicina de Precisão , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética
16.
Cells ; 10(11)2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34831354

RESUMO

Cancer is a global health problem. The delineation of molecular mechanisms pertinent to cancer initiation and development has spurred cancer therapy in the form of precision medicine. The Hippo signalling pathway is a tumour suppressor pathway implicated in a multitude of cancers. Elucidation of the Hippo pathway has revealed an increasing number of regulators that are implicated, some being potential therapeutic targets for cancer interventions. WW domain-binding protein 2 (WBP2) is an oncogenic transcriptional co-factor that interacts, amongst others, with two other transcriptional co-activators, YAP and TAZ, in the Hippo pathway. WBP2 was recently discovered to modulate the upstream Hippo signalling components by associating with LATS2 and WWC3. Exacerbating the complexity of the WBP2/Hippo network, WBP2 itself is reciprocally regulated by Hippo-mediated microRNA biogenesis, contributing to a positive feedback loop that further drives carcinogenesis. Here, we summarise the biological mechanisms of WBP2/Hippo reciprocal regulation and propose therapeutic strategies to overcome Hippo defects in cancers through targeting WBP2.


Assuntos
Via de Sinalização Hippo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transativadores/metabolismo , Variações do Número de Cópias de DNA/genética , Humanos , Modelos Biológicos , Medicina de Precisão
17.
J Tradit Chin Med ; 41(5): 677-683, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34708625

RESUMO

OBJECTIVE: To investigate the possible molecular mechanism of total glycosides of Chishao (Radix Paeoniae Rubra) (TG-RPR) on proliferation and apoptosis of hepatocellular carcinoma cells. METHODS: The proliferation of TG-RPR on HepG2 cells was detected using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptosis of HepG2 cells was measured by annexin V-FITC/double staining. The phosphatase and tensin homolog deleted on chromosome ten (PTEN) / phosphatidylinositol 3-kinase (PI3K) / protein kinase B (Akt) signaling pathway was evaluated by Western Blot and reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: TG-RPR can up-regulation the expression of pro-apoptotic factors such as PTEN and BCL2-Associated X (Bax), down-regulation the expression of anti-apoptotic factors including B-cell lymphoma-2 (Bcl-2), PI3K, and Akt. CONCLUSION: TG-RPR significantly inhibits the proliferation of HepG2 cells in a dose-dependent manner and promotes apoptosis. These results demonstrated TG-RPR has significant inhibitory effect on HepG2 cells. These results identify a critical role of TG-RPR in proliferation and apoptosis of HepG2 cells via modulating PTEN/PI3K/Akt signaling pathway. TG-RPR may offer a promise as a potential pharmaceutical therapy for hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/patologia , Medicamentos de Ervas Chinesas/farmacologia , Glucosídeos , Neoplasias Hepáticas/patologia , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Cromossomos/metabolismo , Glucosídeos/farmacologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
18.
Acta Pharm Sin B ; 11(5): 1148-1157, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34094825

RESUMO

As one of the most lethal diseases, pancreatic cancer shows a dismal overall prognosis and high resistance to most treatment modalities. Furthermore, pancreatic cancer escapes early detection during the curable period because early symptoms rarely emerge and specific markers for this disease have not been found. Although combinations of new drugs, multimodal therapies, and adjuvants prolong survival, most patients still relapse after surgery and eventually die. Consequently, the search for more effective treatments for pancreatic cancer is highly relevant and justified. As a newly re-discovered mediator of gasotransmission, hydrogen sulfide (H2S) undertakes essential functions, encompassing various signaling complexes that occupy key processes in human biology. Accumulating evidence indicates that H2S exhibits bimodal modulation of cancer development. Thus, endogenous or low levels of exogenous H2S are thought to promote cancer, whereas high doses of exogenous H2S suppress tumor proliferation. Similarly, inhibition of endogenous H2S production also suppresses tumor proliferation. Accordingly, H2S biosynthesis inhibitors and H2S supplementation (H2S donors) are two distinct strategies for the treatment of cancer. Unfortunately, modulation of endogenous H2S on pancreatic cancer has not been studied so far. However, H2S donors and their derivatives have been extensively studied as potential therapeutic agents for pancreatic cancer therapy by inhibiting cell proliferation, inducing apoptosis, arresting cell cycle, and suppressing invasion and migration through exploiting multiple signaling pathways. As far as we know, there is no review of the effects of H2S donors on pancreatic cancer. Based on these concerns, the therapeutic effects of some H2S donors and NO-H2S dual donors on pancreatic cancer were summarized in this paper. Exogenous H2S donors may be promising compounds for pancreatic cancer treatment.

19.
Phytother Res ; 35(7): 3732-3746, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33724576

RESUMO

Natural products have been of much interest in research studies owing to their wide pharmacological applications, chemical diversity, low side effects, and multitarget activities. Examples of these compounds include matrine, sulforaphane, silibinin, curcumin, berberin, resveratrol, and quercetin. Some of the present anticancer drugs, such as taxol, vincristine, vinblastine, and doxorubicin are also derived from natural products. The anti-carcinogenic effects of these products are partly mediated through modulation of microRNA-21 (miR-21) expression. To date, numerous downstream targets of miR-21 have been recognized, which include phosphatase and tensin homolog (PTEN), ras homolog gene family member B (RHOB), phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), programmed cell death 4 (PDCD4), signal transducer and activator of transcription (STAT)-3, and nuclear factor kappa B (NF-κB) pathways. These signaling pathways, their regulation by oncomiR-21 in cancer, and the modulating impact of natural products are the main focus of this review.


Assuntos
Produtos Biológicos , MicroRNAs , Neoplasias , Proteínas Reguladoras de Apoptose/metabolismo , Produtos Biológicos/farmacologia , Humanos , MicroRNAs/genética , NF-kappa B/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Proteína rhoB de Ligação ao GTP/metabolismo
20.
Mol Med Rep ; 23(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33179084

RESUMO

Lung cancer is the most prevalent and observed type of cancer in Xuanwei County, Yunnan, South China. Lung cancer in this area is called Xuanwei lung cancer. However, its pathogenesis remains largely unknown. To date, a number of studies have shown that microRNA (miR)­218 functions as a tumor suppressor in multiple types of cancer. However, the role of miR­218 and its regulatory gene network in Xuanwei lung cancer have yet to be investigated. The current study identified that the expression levels of miR­218 in XWLC­05 cells were markedly lower compared with those in immortalized lung epithelial BEAS­2B cells. The present study also demonstrated that overexpression of miR­218 could decrease cell proliferation, invasion, viability and migration in Xuanwei lung cancer cell line XWLC­05 and NSCLC cell line NCI­H157. Additionally, the results revealed that overexpression of miR­218 could induce XWLC­05 and NCI­H157 cell apoptosis by arresting the cell cycle at G2/M phase. Finally, the present study demonstrated that overexpression of miR­218 could lead to a significant increase in phosphatase and tensin homolog (PTEN) and YY1 transcription factor (YY1), and a decrease in B­cell lymphoma 2 (BCL­2) and BMI1 proto­oncogene, polycomb ring finger (BMI­1) at the mRNA and protein level in XWLC­05 and NCI­H157 cell lines. However, we did not observe any remarkable difference in the roles of miR­218 and miR­218­mediated regulation of BCL­2, BMI­1, PTEN and YY1 expression in the progression of Xuanwei lung cancer. In conclusion, miR­218 could simultaneously suppress cell proliferation and tumor invasiveness and induce cell apoptosis by increasing PTEN and YY1 expression, while decreasing BCL­2 and BMI­1 in Xuanwei lung cancer. The results demonstrated that miR­218 might serve a vital role in tumorigenesis and progression of Xuanwei lung cancer and overexpression of miR­218 may be a novel approach for the treatment of Xuanwei lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Regulação para Baixo , Neoplasias Pulmonares/genética , MicroRNAs/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , China , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA