Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 108(7): 2081-2089, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38386301

RESUMO

Houttuynia cordata is a prevalent vegetable in several Asian countries and is commonly used as a traditional Chinese medicinal herb for treating various diseases in China. Unfortunately, its yield and quality are adversely affected by root rot. However, the pathogen responsible for the losses remains unidentified, and effective fungicides for its management have not been thoroughly explored. In this work, we demonstrate the first report of Globisporangium spinosum as the causative agent causing root rot of H. cordata. Moreover, we evaluated the efficacy of hymexazol to manage the disease, which displayed remarkable inhibitory effects against mycelial growth of G. spinosum in vitro, with EC50 values as low as 1.336 µg/ml. Furthermore, hymexazol completely inhibited sporangia in G. spinosum at a concentration of 0.3125 µg/ml. Specifically, we observed that hymexazol was highly efficacious in reducing the incidence of H. cordata root rot caused by G. spinosum in a greenhouse setting. These findings offer a potential management tool for utilization of hymexazol in controlling H. cordata root rot in field production.


Assuntos
Fungicidas Industriais , Houttuynia , Doenças das Plantas , Raízes de Plantas , Houttuynia/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia , Fungicidas Industriais/farmacologia
2.
Braz J Microbiol ; 55(1): 867-873, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37999913

RESUMO

This study sought to evaluate the in vitro and ex vivo susceptibility of Pythium insidiosum to ozonized sunflower oil (OSO) and verify the morphological alterations of OSO-exposed hyphae. Susceptibility assays were performed according to the broth microdilution protocol M38-A2/CLSI, and the minimal inhibitory (MIC) and minimal oomicidal (MOC) concentrations were also determined. Non-ozonated sunflower oil (SO) was used as the oil control. Additionally, kunkers from equine pythiosis were exposed to OSO. Damages caused by OSO and SO on P. insidiosum hyphae ultrastructure were verified using scanning electron microscopy. The MIC range for OSO was 7000 to 437.5 mg/mL, and the values for SO were higher, ranging from 56000 to 14000 mg/mL. The MOC was equal to MIC for both oil formulations. The OSO fully inhibited the oomycete growth from kunkers, although there was P. insidiosum growth in the kunker control in 24 h of incubation. The SEM analyses showed that both OSO and SO caused morphological alterations in P. insidiosum hyphae, highlighting the presence of cavitation along the hyphae with loss of continuity of the cell wall, which was more evident in the OSO-treated hyphae. The OSO had the best oomicidal activity, leading us to believe that our findings may support future research containing this formulation to be applied in integrative medicine protocols to control pythiosis in animals and humans.


Assuntos
Pitiose , Pythium , Humanos , Animais , Cavalos , Óleo de Girassol , Pitiose/microbiologia , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura
3.
J Agric Food Chem ; 71(51): 20613-20624, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38100671

RESUMO

Pathogenic oomycetes infect a wide variety of organisms, including plants, animals, and humans, and cause massive economic losses in global agriculture, aquaculture, and human health. Salicylic acid (SA), an endogenous phytohormone, is regarded as an inducer of plant immunity. Here, the potato late blight pathogen Phytophthora infestans was used as a model system to uncover the inhibitory mechanisms of SA on pathogenic oomycetes. In this research, SA significantly inhibited the mycelial growth, sporulation, sporangium germination, and virulence of P. infestans. Inhibition was closely related to enhanced autophagy, suppression of translation initiation, and ribosomal biogenesis in P. infestans, as shown by multiomics analysis (transcriptomics, proteomics, and phosphorylated proteomics). Monodansylcadaverine (MDC) staining and Western blotting analysis showed that SA promoted autophagy in P. infestans by probably targeting the TOR signaling pathway. These observations suggest that SA has the potential to control late blight caused by P. infestans.


Assuntos
Phytophthora infestans , Solanum tuberosum , Humanos , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Doenças das Plantas , Solanum tuberosum/metabolismo
4.
Molecules ; 28(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37959721

RESUMO

Potato late blight disease is caused by the oomycete Phytophthora infestans and is listed as one of the most severe phytopathologies on Earth. The current environmental issues require new methods of pest management. For that reason, plant secondary metabolites and, in particular, essential oils (EOs) have demonstrated promising potential as pesticide alternatives. This review presents the up-to-date work accomplished using EOs against P. infestans at various experimental scales, from in vitro to in vivo. Additionally, some cellular mechanisms of action on Phytophthora spp., especially towards cell membranes, are also presented for a better understanding of anti-oomycete activities. Finally, some challenges and constraints encountered for the development of EOs-based biopesticides are highlighted.


Assuntos
Óleos Voláteis , Phytophthora infestans , Solanum tuberosum , Óleos Voláteis/farmacologia , Doenças das Plantas/prevenção & controle
5.
Environ Sci Pollut Res Int ; 30(51): 110240-110250, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37779122

RESUMO

Botanicals are various plant-based products like plant extracts or essential oils. Anti-fungal activities of selected essential oils were tested on the pathogen causing potato and tomato late blight (Phytophthora infestans). Tests to evaluate anti-oomycete activities of commercial essential oils and their major compounds were carried out in vitro in microplate in liquid media. Anti-oomycete activities on Phytophthora infestans strain were obtained from essential oils/major compounds: Eucalyptus citriodora/citronellal; Syzygium aromaticum (clove)/eugenol; Mentha spicata/D-Carvone, L-Carvone; Origanum compactum/carvacrol; Satureja montana (savory)/carvacrol; Melaleuca alternifolia (tea tree)/terpinen-4-ol, and Thymus vulgaris/thymol. As an active substance of mineral origin, copper sulfate was chosen as a control. All selected essential oils showed an anti-oomycete activity calculated with IC50 indicator. The essential oils of clove, savory, and thyme showed the best anti-oomycete activities similar to copper sulfate, while oregano, eucalyptus, mint, and tea tree essential oils exhibited significantly weaker activities than copper sulfate. Clove essential oil showed the best activity (IC50 = 28 mg/L), while tea tree essential oil showed the worst activity (IC50 = 476 mg/L). For major compounds, three results were obtained: they were statistically more active than their essential oils (carvacrol for oregano, D- and L-Carvone for mint) or as active as their essential oils sources (thymol for thyme, carvacrol for savory, terpinen-4-ol for tea tree) or less active than their original essential oils (eugenol for clove, citronellal for eucalyptus). Microscopical observations carried out with the seven essential oils showed that they were all responsible for a modification of the morphology of the mycelium. The results demonstrated that various essential oils show different anti-oomycete activities, sometimes related to a major compound and sometimes unrelated, indicating that other compounds must play a role in total anti-oomycete activity.


Assuntos
Mentha , Óleos Voláteis , Origanum , Phytophthora infestans , Thymus (Planta) , Timol/análise , Eugenol , Sulfato de Cobre , Chá , Óleos de Plantas
6.
Pest Manag Sci ; 79(12): 5073-5086, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37572366

RESUMO

BACKGROUND: As a highly prevalent epidemic disease of potato, late blight caused by Phytophthora infestans poses a serious threat to potato yield and quality. At present, chemical fungicides are mainly used to control potato late blight, but long-term overuse of chemical fungicides may lead to environmental pollution and human health threats. Endophytes, natural resources for plant diseases control, can promote plant growth, enhance plant resistance, and secrete antifungal substances. Therefore, there is an urgent need to find some beneficial endophytes to control potato late blight. RESULTS: We isolated a strain of Bacillus subtilis H17-16 from potato healthy roots. It can significantly inhibit mycelial growth, sporangia germination and the pathogenicity of Phytophthora infestans, induce the resistance of potato to late blight, and promote potato growth. In addition, H17-16 has the ability to produce protease, volatile compounds (VOCs) and form biofilms. After H17-16 treatment, most of the genes involved in metabolism, virulence and drug resistance of Phytophthora infestans were down-regulated significantly, and the genes related to ribosome biogenesis were mainly up-regulated. Moreover, field and postharvest application of H17-16 can effectively reduce the occurrence of potato late blight, and the combination of H17-16 with chitosan or chemical fungicides had a better effect than single H17-16. CONCLUSION: Our results reveal that Bacillus subtilis H17-16 has great potential as a natural fungicide for controlling potato late blight, laying a theoretical basis for its development as a biological control agent. © 2023 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Phytophthora infestans , Solanum tuberosum , Humanos , Phytophthora infestans/genética , Solanum tuberosum/genética , Bacillus subtilis , Fungicidas Industriais/farmacologia , Raízes de Plantas , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
7.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834885

RESUMO

Potato late blight, caused by Phytophthora infestans, leads to a significant reduction in the yield and value of potato. Biocontrol displays great potential in the suppression of plant diseases. Diallyl trisulfide (DATS) is a well-known natural compound for biocontrol, although there is little information about it against potato late blight. In this study, DATS was found to be able to inhibit the hyphae growth of P. infestans, reduce its pathogenicity on detached potato leaves and tubers, and induce the overall resistance of potato tubers. DATS significantly increases catalase (CAT) activity of potato tubers, and it does not affect the levels of peroxidase (POD), superoxide dismutase (SOD), and malondialdehyde (MDA). The transcriptome datasets show that totals of 607 and 60 significantly differentially expressed genes (DEGs) and miRNAs (DEMs) are detected. Twenty-one negatively regulated miRNA-mRNA interaction pairs are observed in the co-expression regulatory network, which are mainly enriched in metabolic pathways, biosynthesis of secondary metabolites, and starch and sucrose metabolism based on the KEGG pathway. Our observations provide new insight into the role of DATS in biocontrol of potato late blight.


Assuntos
MicroRNAs , Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/genética , RNA Mensageiro , Transcriptoma , Phytophthora infestans/genética , Doenças das Plantas/genética
8.
New Phytol ; 238(2): 781-797, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36653957

RESUMO

Ubiquitin-like domain-containing proteins (UDPs) are involved in the ubiquitin-proteasome system because of their ability to interact with the 26S proteasome. Here, we identified potato StUDP as a target of the Phytophthora infestans RXLR effector Pi06432 (PITG_06432), which supresses the salicylic acid (SA)-related immune pathway. By overexpressing and silencing of StUDP in potato, we show that StUDP negatively regulates plant immunity against P. infestans. StUDP interacts with, and destabilizes, the 26S proteasome subunit that is referred to as REGULATORY PARTICLE TRIPLE-A ATP-ASE (RPT) subunit StRPT3b. This destabilization represses the proteasome activity. Proteomic analysis and Western blotting show that StUDP decreases the stability of the master transcription factor SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) in SA biosynthesis. StUDP negatively regulates the SA signalling pathway by repressing the proteasome activity and destabilizing StSARD1, leading to a decreased expression of the SARD1-targeted gene ISOCHORISMATE SYNTHASE 1 and thereby a decrease in SA content. Pi06432 stabilizes StUDP, and it depends on StUDP to destabilize StRPT3b and thereby supress the proteasome activity. Our study reveals that the P. infestans effector Pi06432 targets StUDP to hamper the homeostasis of the proteasome by the degradation of the proteasome subunit StRPT3b and thereby suppresses SA-related immunity.


Assuntos
Phytophthora infestans , Solanum tuberosum , Phytophthora infestans/metabolismo , Ubiquitinas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica , Imunidade Vegetal , Doenças das Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Plant Biotechnol J ; 21(3): 646-661, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36519513

RESUMO

Phytophthora infestans causes severe losses in potato production. The MAPK kinase StMKK1 was previously found to negatively regulate potato immunity to P. infestans. Our results showed that StMKK1 interacts with a protein tyrosine phosphatase, referred to as StPTP1a, and StMKK1 directly phosphorylates StPTP1a at residues Ser-99, Tyr-223 and Thr-290. StPTP1a is a functional phosphatase and the phosphorylation of StPTP1a at these three residues enhances its stability and catalytic activity. StPTP1a negatively regulates potato immunity and represses SA-related gene expression. Furthermore, StPTP1a interacts with, and dephosphorylates, the StMKK1 downstream signalling targets StMPK4 and -7 at their Tyr-203 residue resulting in the repression of salicylic acid (SA)-related immunity. Silencing of NbPTP1a + NbMPK4 or NbPTP1a + NbMPK7 abolished the plant immunity to P. infestans caused by NbPTP1a silencing, indicating that PTP1a functions upstream of NbMPK4 and NbMPK7. StMKK1 requires StPTP1a to negatively regulate SA-related immunity and StPTP1a is phosphorylated and stabilized during immune activation to promote the de-phosphorylation of StMPK4 and -7. Our results reveal that potato StMKK1 activates and stabilizes the tyrosine phosphatase StPTP1a that in its turn de-phosphorylates StMPK4 and -7, thereby repressing plant SA-related immunity.


Assuntos
Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/genética , Proteínas de Plantas/genética , Imunidade Vegetal , Phytophthora infestans/fisiologia , Proteínas Tirosina Fosfatases/metabolismo , Doenças das Plantas/genética
10.
Proc Natl Acad Sci U S A ; 119(35): e2114064119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994659

RESUMO

Plants are resistant to most microbial species due to nonhost resistance (NHR), providing broad-spectrum and durable immunity. However, the molecular components contributing to NHR are poorly characterised. We address the question of whether failure of pathogen effectors to manipulate nonhost plants plays a critical role in NHR. RxLR (Arg-any amino acid-Leu-Arg) effectors from two oomycete pathogens, Phytophthora infestans and Hyaloperonospora arabidopsidis, enhanced pathogen infection when expressed in host plants (Nicotiana benthamiana and Arabidopsis, respectively) but the same effectors performed poorly in distantly related nonhost pathosystems. Putative target proteins in the host plant potato were identified for 64 P. infestans RxLR effectors using yeast 2-hybrid (Y2H) screens. Candidate orthologues of these target proteins in the distantly related non-host plant Arabidopsis were identified and screened using matrix Y2H for interaction with RxLR effectors from both P. infestans and H. arabidopsidis. Few P. infestans effector-target protein interactions were conserved from potato to candidate Arabidopsis target orthologues (cAtOrths). However, there was an enrichment of H. arabidopsidis RxLR effectors interacting with cAtOrths. We expressed the cAtOrth AtPUB33, which unlike its potato orthologue did not interact with P. infestans effector PiSFI3, in potato and Nicotiana benthamiana. Expression of AtPUB33 significantly reduced P. infestans colonization in both host plants. Our results provide evidence that failure of pathogen effectors to interact with and/or correctly manipulate target proteins in distantly related non-host plants contributes to NHR. Moreover, exploiting this breakdown in effector-nonhost target interaction, transferring effector target orthologues from non-host to host plants is a strategy to reduce disease.


Assuntos
Arabidopsis , Resistência à Doença , Especificidade de Hospedeiro , Nicotiana , Doenças das Plantas , Proteínas de Plantas , Arabidopsis/metabolismo , Arabidopsis/parasitologia , Oomicetos/metabolismo , Phytophthora infestans/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/metabolismo , Solanum tuberosum/parasitologia , Nicotiana/metabolismo , Nicotiana/parasitologia , Técnicas do Sistema de Duplo-Híbrido
12.
J Agric Food Chem ; 69(40): 11794-11803, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34605240

RESUMO

SYP-34773 is a pyrimidinamine derivative and a novel fungicide modified from diflumetorim. This study determined the antimicrobial spectrum of SYP-34773, which showed it could strongly inhibit the growth of some important plant pathogens including fungi and oomycetes. In particular, Phytophthora infestans is an oomycete sensitive to SYP-34773, and the mycelium growth stage was found to be the most sensitive stage, with an EC50 value of 0.2030 µg/mL. At a concentration of 200 µg/mL, SYP-34773 displayed an excellent control efficacy of 69.55% and 81.48% against potato and tomato blight disease caused by P. infestans under field conditions, respectively. Mode of action investigations showed that this fungicide could cause severe ultrastructure damage to the mycelia of P. infestans, inhibit its respiration, and increase the cell membrane permeability of this pathogen. The results of this study could provide useful information for the fungicide registration and application of SYP-34773 as a novel fungicide.


Assuntos
Fungicidas Industriais , Phytophthora infestans , Solanum lycopersicum , Solanum tuberosum , Fungicidas Industriais/farmacologia , Doenças das Plantas
13.
Mol Plant Pathol ; 22(6): 737-752, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33724663

RESUMO

Phytophthora infestans is a destructive pathogen of potato and a model for investigations of oomycete biology. The successful application of a CRISPR gene editing system to P. infestans is so far unreported. We discovered that it is difficult to express CRISPR/Cas9 but not a catalytically inactive form in transformants, suggesting that the active nuclease is toxic. We were able to achieve editing with CRISPR/Cas12a using vectors in which the nuclease and its guide RNA were expressed from a single transcript. Using the elicitor gene Inf1 as a target, we observed editing of one or both alleles in up to 13% of transformants. Editing was more efficient when guide RNA processing relied on the Cas12a direct repeat instead of ribozyme sequences. INF1 protein was not made when both alleles were edited in the same transformant, but surprisingly also when only one allele was altered. We discovered that the isolate used for editing, 1306, exhibited monoallelic expression of Inf1 due to insertion of a copia-like element in the promoter of one allele. The element exhibits features of active retrotransposons, including a target site duplication, long terminal repeats, and an intact polyprotein reading frame. Editing occurred more often on the transcribed allele, presumably due to differences in chromatin structure. The Cas12a system not only provides a tool for modifying genes in P. infestans, but also for other members of the genus by expanding the number of editable sites. Our work also highlights a natural mechanism that remodels oomycete genomes.


Assuntos
Edição de Genes , Phytophthora infestans/genética , Doenças das Plantas/parasitologia , Solanum tuberosum/parasitologia , Alelos , Sistemas CRISPR-Cas , Cromatina/genética , Genômica , Phytophthora infestans/fisiologia
14.
Mol Plant Pathol ; 22(6): 644-657, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33764635

RESUMO

A cascade formed by phosphorylation events of mitogen-activated protein kinases (MAPKs) takes part in plant stress responses. However, the roles of these MAPKs in resistance of potato (Solanum tuberosum) against Phytophthora pathogens is not well studied. Our previous work showed that a Phytophthora infestans RXLR effector targets and stabilizes the negative regulator of MAPK kinase 1 of potato (StMKK1). Because in Arabidopsis thaliana the AtMPK4 is the downstream phosphorylation target of AtMKK1, we performed a phylogenetic analysis and found that potato StMPK4/6/7 are closely related and are orthologs of AtMPK4/5/11/12. Overexpression of StMPK4/7 enhances plant resistance to P. infestans and P. parasitica. Yeast two-hybrid analysis revealed that StMPK7 interacts with StMKK1, and StMPK7 is phosphorylated on flg22 treatment and by expressing constitutively active StMKK1 (CA-StMKK1), indicating that StMPK7 is a direct downstream signalling partner of StMKK1. Overexpression of StMPK7 in potato enhances potato resistance to P. infestans. Constitutively active StMPK7 (CA-StMPK7; StMPK7D198G, E202A ) was found to promote immunity to Phytophthora pathogens and to trigger host cell death when overexpressed in Nicotiana benthamiana leaves. Cell death triggered by CA-StMPK7 is SGT1/RAR1-dependent. Furthermore, cell death triggered by CA-StMPK7 is suppressed on coexpression with the salicylate hydroxylase NahG, and StMPK7 activation promotes salicylic acid (SA)-responsive gene expression. We conclude that potato StMPK7 is a downstream signalling component of the phosphorelay cascade involving StMKK1 and StMPK7 plays a role in immunity to Phytophthora pathogens via an SA-dependent signalling pathway.


Assuntos
Resistência à Doença , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Phytophthora infestans/fisiologia , Doenças das Plantas/imunologia , Solanum tuberosum/genética , Morte Celular , Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/genética , Filogenia , Doenças das Plantas/parasitologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/parasitologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Solanum tuberosum/imunologia , Solanum tuberosum/parasitologia , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/parasitologia
15.
J Equine Vet Sci ; 98: 103305, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33663716

RESUMO

The goal of the present study was to characterize the antimicrobial action of different ozone (O3) presentations against Pythium insidiosum isolated from horses. In experiment 1, P. insidiosum was treated with ozonated distilled water, ozonated sunflower oils with distinct peroxide indexes or O3 gas (72 µg O3 mL-1). In experiment 2, samples were exposed one or three times to oxygen (O2) or O3 gas (72 µg O3 mL-1; 30 min/day). In experiment 3, P. insidiosum was treated with different concentrations of O3 gas (Ø, 32, 52, or 72 µg O3 mL-1) for three days (30 min/day). In experiment 4, samples were exposed to O2 or O3 gas (72 µg O3 mL-1) for 05, 15, or 30 minutes during three days. Posteriorly, all samples were cultured for two weeks, and the pathogen growth area was measured until D14. Samples with absence of growth on D14 were recultured to assess the germicidal or germistatic action of the treatment. In experiment 1, only ozonized sunflower oil with a high peroxide index had germicidal action against the pathogen. In experiment 2, samples exposed three times to O3 gas were inactivated. In experiment 3, the O3 therapy had germicidal action against P. insidiosum independently of the gas concentration (P > .1). In experiment 4, O3 treatments ≥15 minutes suppressed the pathogen development, whereas samples exposed to O3 gas for 5 minutes had progressive growth (P < .01). In conclusion, ozonated sunflower oil with a high peroxide index and multiple exposures to O3 gas mixtures were able to inactivate P. insidiosum isolated from horses.


Assuntos
Anti-Infecciosos , Doenças dos Cavalos , Ozônio , Pitiose , Pythium , Animais , Doenças dos Cavalos/tratamento farmacológico , Cavalos , Ozônio/farmacologia
16.
New Phytol ; 229(1): 501-515, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32772378

RESUMO

Pathogens secret a plethora of effectors into the host cell to modulate plant immunity. Analysing the role of effectors in altering the function of their host target proteins will reveal critical components of the plant immune system. Here we show that Phytophthora infestans RXLR effector PITG20303, a virulent variant of AVRblb2 (PITG20300) that escapes recognition by the resistance protein Rpi-blb2, suppresses PAMP-triggered immunity (PTI) and promotes pathogen colonization by targeting and stabilizing a potato MAPK cascade protein, StMKK1. Both PITG20300 and PITG20303 target StMKK1, as confirmed by multiple in vivo and in vitro assays, and StMKK1 was shown to be a negative regulator of plant immunity, as determined by overexpression and gene silencing. StMKK1 is a negative regulator of plant PTI, and the kinase activities of StMKK1 are required for its suppression of PTI and effector interaction. PITG20303 depends partially on MKK1, PITG20300 does not depend on MKK1 for suppression of PTI-induced reactive oxygen species burst, while the full virulence activities of nuclear targeted PITG20303 and PITG20300 are dependent on MKK1. Our results show that PITG20303 and PITG20300 target and stabilize the plant MAPK cascade signalling protein StMKK1 to negatively regulate plant PTI response.


Assuntos
Phytophthora infestans , Solanum tuberosum , Moléculas com Motivos Associados a Patógenos , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas/genética
17.
J Sci Food Agric ; 101(9): 3613-3619, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33275277

RESUMO

BACKGROUND: Phytophthora spp., soil-borne oomycetes, cause brown rot (BR) on postharvest lemons. The management of this disease is based on cultural practices and chemical control using inorganic salts of limited efficacy. In the search for new alternatives, the aim of this work was to evaluate the effect of low-toxicity compounds to inhibit the growth of P. citrophthora and to control BR disease on lemons. Sodium bicarbonate, potassium sorbate, polyhexamethylene guanidine, Ascophyllum nodosum extract and a formulation containing phosphite salts plus A. nodosum (P+An) were evaluated. RESULTS: All tested products inhibited mycelial growth, sporangia formation and zoospore germination of P. citrophthora in vitro. In postharvest applications on artificially inoculated lemons, only P+An exhibited a BR curative effect, with incidence reduction of around 60%. When this formulation was applied in field treatments, BR incidence was reduced by 40% on lemons harvested and inoculated up to 30 days post application. CONCLUSION: Our results demonstrate the in vitro direct anti-oomycete effect of low-toxicity compounds and the in vivo efficacy of P+An formulation to control BR, encouraging the incorporation of the latter in the management of citrus BR. © 2020 Society of Chemical Industry.


Assuntos
Ascophyllum/química , Citrus/microbiologia , Fungicidas Industriais/farmacologia , Phytophthora/efeitos dos fármacos , Doenças das Plantas/microbiologia , Extratos Vegetais/farmacologia , Frutas/microbiologia , Guanidinas/farmacologia , Phytophthora/crescimento & desenvolvimento , Bicarbonato de Sódio/farmacologia , Ácido Sórbico/farmacologia
18.
Plants (Basel) ; 9(10)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007947

RESUMO

We report the inhibitory effect of peptide extracts obtained from seven medicinal plants against a causative agent of late blight disease Phytophthora infestans. We find that all the extracts possess inhibitory activity toward the zoospores output, zoosporangium germination, and the development of P. infestans on potato disc tubers at different quantitative levels. Based on the biological effects detected, an extract of common horsetail (Equisetum arvense) biomass is recognized as the most effective and is selected for further structural analysis. We perform a combination of amino acid analysis and MALDI-TOF mass spectrometry, which reveal the presence of Asn/Asp- and Gln/Glu-rich short peptides with molecular masses in the range of 500-900 Da and not exceeding 1500 Da as the maximum. Analytical anion-exchange HPLC is successfully applied for separation of the peptide extract from common horsetail (E. arvense). We collect nine dominant components that are combined in two groups with differences in retention times. The N-terminal amino acid sequence of the prevalent compounds after analytical ion-exchange HPLC allows us to identify them as peptide fragments of functionally active proteins associated with photosynthesis, aquatic transport, and chitin binding. The anti-oomycete effects may be associated with the conversion of ribulose-1,5-bisphosphate carboxylase/oxygenase to produce a number of biologically active anionic peptides with possible regulatory functions. These data inform our knowledge regarding biologically active peptide fragments; they are the components of programmed or induced proteolysis of plant proteins and can realize secondary antimicrobial functions.

19.
Mol Plant Pathol ; 21(11): 1502-1512, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32935441

RESUMO

Potato late blight, caused by the oomycete pathogen Phytophthora infestans, significantly hampers potato production. Recently, a new Resistance to Phytophthora infestans (Rpi) gene, Rpi-amr1, was cloned from a wild Solanum species, Solanum americanum. Identification of the corresponding recognized effector (Avirulence or Avr) genes from P. infestans is key to elucidating their naturally occurring sequence variation, which in turn informs the potential durability of the cognate late blight resistance. To identify the P. infestans effector recognized by Rpi-amr1, we screened available RXLR effector libraries and used long read and cDNA pathogen-enrichment sequencing (PenSeq) on four P. infestans isolates to explore the untested effectors. Using single-molecule real-time sequencing (SMRT) and cDNA PenSeq, we identified 47 highly expressed effectors from P. infestans, including PITG_07569, which triggers a highly specific cell death response when transiently coexpressed with Rpi-amr1 in Nicotiana benthamiana, suggesting that PITG_07569 is Avramr1. Here we demonstrate that long read and cDNA PenSeq enables the identification of full-length RXLR effector families and their expression profile. This study has revealed key insights into the evolution and polymorphism of a complex RXLR effector family that is associated with the recognition by Rpi-amr1.


Assuntos
Phytophthora infestans/genética , Doenças das Plantas/parasitologia , Polimorfismo Genético/genética , Solanum tuberosum/parasitologia , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Morte Celular , DNA Complementar/genética , Phytophthora infestans/patogenicidade , Solanum/virologia , Nicotiana/virologia
20.
J Mycol Med ; 30(1): 100919, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31901425

RESUMO

We evaluated the in vitro activity of miltefosine against 29 Pythium spp. and the in vivo therapeutic response of 2mg/kg/day of miltefosine given orally to rabbit with pythiosis induced experimentally. The MICs (in µg/mL) of miltefosine was medium-dependent and ranged from 0.5 to 2 and 32-64 on RPMI 1640 and Mueller Hinton broth, respectively. The treatment with miltefosine demonstrated significantly lower subcutaneous lesion areas compared to the control group but was not sufficient for the complete remission of the lesions. This study indicates that miltefosine has limited efficacy against pythiosis and furthers in vitro and in vivo studies are necessary to determine the possible potential of this drug in the treatment of pythiosis.


Assuntos
Antifúngicos/uso terapêutico , Dermatomicoses/tratamento farmacológico , Fosforilcolina/análogos & derivados , Pitiose/tratamento farmacológico , Animais , Dermatomicoses/microbiologia , Dermatomicoses/patologia , Modelos Animais de Doenças , Progressão da Doença , Relação Dose-Resposta a Droga , Feminino , Humanos , Testes de Sensibilidade Microbiana , Fosforilcolina/uso terapêutico , Pitiose/microbiologia , Pitiose/patologia , Pythium/isolamento & purificação , Pythium/patogenicidade , Coelhos , Tela Subcutânea/microbiologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA