RESUMO
BACKGROUND: Hyperthermia can play a synergistic role with chemotherapy in combination therapy. Although the association between caspase activation, apoptosis, and pyroptosis have been published for both cisplatin (CDDP) and hyperthermia therapies independently, the interactions between these molecular pathways in combination therapy are unknown. The present study aimed to investigate the possible interactions between caspase 8 activation, apoptosis, and pyroptosis in combination therapy. METHODS: Cells were treated with CDDP (15 µg/ml), followed by hyperthermia at optimized temperature (42.5 °C) in water-bath. After combination therapy, cell viability was analyzed by CCK-8, and cell death was analyzed by Annexin-V-FITC/PI and caspases activation. Immuno-staining and co-immuno-precipitation were used to examine the interaction between p62 and caspase-8. Pyroptosis was investigated by western blotting and transmission electron microscopy. E3 ligase Cullin 3 was knockdown by siRNA. In addition, caspase-8 activation was modulated by CRISPR-Cas9 gene-editing or pharmacological inhibition. RESULTS: Combination therapy promoted K63-linked polyubiquitination of caspase-8 and cellular accumulation of caspase-8. In turn, polyubiquitinated caspase-8 interacted with p62 and led to the activation of caspase-3. Knockdown of the E3 ligase Cullin 3 by siRNA reduced caspase-8 polyubiquitination and activation. In addition, combination therapy induced release of the pore-forming N-terminus from gasdermins and promoted pyroptosis along with caspase-8 accumulation and activation. Knockdown of caspase-8 by CRISPR/Cas9 based gene editing reduced the sensitivity of tumor cells to apoptosis and pyroptosis. CONCLUSIONS: Our study presented a novel mechanism in which hyperthermia synergized with chemotherapy in promoting apoptosis and pyroptosis in a caspase-8 dependent manner.
Assuntos
Antineoplásicos , Cisplatino , Hipertermia Induzida , Neoplasias , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 3/farmacologia , Caspase 8/efeitos dos fármacos , Caspase 8/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Proteínas Culina/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Piroptose/efeitos dos fármacos , RNA Interferente PequenoRESUMO
BACKGROUND: Electroacupuncture, recognized as a crucial non-pharmacological therapeutic approach, has demonstrated notable efficacy in enhancing cognitive function among Alzheimer's disease (AD) patients. This study aimed to investigate the neuroprotective properties of electroacupuncture in APP/PS1 mice with AD. METHODS: A total of thirty APP/PS1 mice were randomly assigned to three groups: the Alzheimer's disease group (AD), the electroacupuncture treatment group (EA), and the ferroptosis inhibitor deferasirox treatment group (DFX). Additionally, ten C57BL/6 mice were included as a control group (Control). In the EA group, mice underwent flat needling at Baihui and Yintang, as well as point needling at Renzhong, once daily for 15 min each time. In the DFX group, mice received intraperitoneal injections of deferasirox at a dosage of 100 mg/kg/day. Following the 28-day treatment period, behavioral evaluation, morphological observation of neurons, and detection of neuronal ferroptosis were conducted. RESULTS: The electroacupuncture treatment demonstrated a significant improvement in spatial learning, memory ability, and neuronal damage in mice with AD. Analysis of neuronal ferroptosis markers indicated that electroacupuncture interventions reduced the elevated levels of malondialdehyde, iron, and ptgs2 expression, while also increasing superoxide dismutase activity, Ferroportin 1 and glutathione peroxidase 4 expression. Moreover, the regulatory impact of electroacupuncture on ferroptosis may be attributed to its ability to enhance the expression and nuclear translocation of Nrf2. CONCLUSIONS: This study suggested that electroacupuncture could inhibit the neuronal ferroptosis by activating the antioxidant function in neurons through p62/Keap1/Nrf2 signal pathway, thereby improve the cognitive function of AD mice by the neuronal protection effect.
Assuntos
Doença de Alzheimer , Eletroacupuntura , Ferroptose , Animais , Camundongos , Doença de Alzheimer/terapia , Secretases da Proteína Precursora do Amiloide/genética , Cognição , Deferasirox , Hipocampo/metabolismo , Hipocampo/patologia , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Presenilina-1/genéticaRESUMO
BACKGROUND: Hepatocellular carcinoma (HCC) is a highly lethal cancer characterized by dominant driver mutations, including p53. Consequently, there is an urgent need to search for novel therapeutic agents to treat HCC. Andrographolide (Andro), a clinically available anti-inflammatory phytochemical agent, has shown inhibitory effects against various types of cancer, including HCC. However, the underlying molecular mechanisms of its action remain poorly understood. PURPOSE: This study aims to investigate the molecular mechanisms by which p53 and p62 collectively affect Andro-induced HCC cell death, using both in vitro and in vivo models. METHODS: In vitro cellular experiments were conducted to examine the effects of Andro on cell viability and elucidate its mechanisms of action. In vivo xenograft experiments further validated the anti-cancer effects of Andro. RESULTS: Andro induced dose- and time-dependent HCC cell death while sparing normal HL-7702 hepatocytes. Furthermore, Andro caused DNA damage through the generation of reactive oxygen species (ROS), a critical event leading to cell death. Notably, HCC cells expressing p53 exhibited greater resistance to Andro-induced cell death compared to p53-deficient cells, likely due to the ability of p53 to induce G2/M cell cycle arrest. Additionally, Andro-induced p62 aggregation led to the proteasomal degradation of RAD51 and 53BP1, two key proteins involved in DNA damage repair. Consequently, silencing or knocking out p62 facilitated DNA damage repair and protected HCC cells. Importantly, disruption of either p53 or p62 did not affect the expression of the other protein. These findings were further supported by the observation that xenograft tumors formed by p62-knockout HCC cells displayed increased resistance to Andro treatment. CONCLUSION: This study elucidates the mechanistic basis of Andro-induced HCC cell death. It provides valuable insights for repurposing Andro for the treatment of HCC, regardless of the presence of functional p53.
Assuntos
Carcinoma Hepatocelular , Diterpenos , Neoplasias Hepáticas , Humanos , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Morte Celular , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Linhagem Celular Tumoral , Anti-Inflamatórios/farmacologia , Dano ao DNARESUMO
Realgar is a traditional Chinese medicine that contains arsenic. It has been reported that the abuse of medicine-containing realgar has potential central nervous system (CNS) toxicity, but the toxicity mechanism has not been elucidated. In this study, we established an in vivo realgar exposure model and selected the end product of realgar metabolism, DMA, to treat SH-SY5Y cells in vitro. Many assays, including behavioral, analytical chemistry, and molecular biology, were used to elucidate the roles of the autophagic flux and the p62-NRF2 feedback loop in realgar-induced neurotoxicity. The results showed that arsenic could accumulate in the brain, causing cognitive impairment and anxiety-like behavior. Realgar impairs the ultrastructure of neurons, promotes apoptosis, perturbs autophagic flux homeostasis, amplifies the p62-NRF2 feedback loop, and leads to p62 accumulation. Further analysis showed that realgar promotes the formation of the Beclin1-Vps34 complex by activating JNK/c-Jun to induce autophagy and recruit p62. Meanwhile, realgar inhibits the activities of CTSB and CTSD and changes the acidity of lysosomes, leading to the inhibition of p62 degradation and p62 accumulation. Moreover, the amplified p62-NRF2 feedback loop is involved in the accumulation of p62. Its accumulation promotes neuronal apoptosis by upregulating the expression levels of Bax and cleaved caspase-9, resulting in neurotoxicity. Taken together, these data suggest that realgar can perturb the crosstalk between the autophagic flux and the p62-NRF2 feedback loop to mediate p62 accumulation, promote apoptosis, and induce neurotoxicity. Realgar promotes p62 accumulation to produce neurotoxicity by perturbing the autophagic flux and p62-NRF2 feedback loop crosstalk.
Assuntos
Arsênio , Neuroblastoma , Humanos , Apoptose , Arsênio/toxicidade , Autofagia , Retroalimentação , Fator 2 Relacionado a NF-E2/metabolismoRESUMO
BACKGROUND: Shikonin, a natural naphthoquinone compound, has a wide range of pharmacological effects, but its anti-tumor effect and underlying mechanisms in bladder cancer remain unclear. PURPOSE: We aimed to investigate the role of shikonin in bladder cancer in vitro and in vivo in order to broaden the scope of shikonin's clinical application. STUDY DESIGN AND METHODS: We performed MTT and colony formation to detect the inhibiting effect of shikonin on bladder cancer cells. ROS staining and flow cytometry assays were performed to detect the accumulation of ROS. Western blotting, siRNA and immunoprecipitation were used to evaluate the effect of necroptosis in bladder cancer cells. Transmission electron microscopy and immunofluorescence were used to examine the effect of autophagy. Nucleoplasmic separation and other pharmacological experimental methods described were used to explore the Nrf2 signal pathway and the crosstalk with necroptosis and autophagy. We established a subcutaneously implanted tumor model and performed immunohistochemistry assays to study the effects and the underlying mechanisms of shikonin on bladder cancer cells in vivo. RESULTS: The results showed that shikonin has a selective inhibitory effect on bladder cancer cells and has no toxicity on normal bladder epithelial cells. Mechanically, shikonin induced necroptosis and impaired autophagic flux via ROS generation. The accumulation of autophagic biomarker p62 elevated p62/Keap1 complex and activated the Nrf2 signaling pathway to fight against ROS. Furthermore, crosstalk between necroptosis and autophagy was present, we found that RIP3 may be involved in autophagosomes and be degraded by autolysosomes. We found for the first time that shikonin-induced activation of RIP3 may disturb the autophagic flux, and inhibiting RIP3 and necroptosis could accelerate the conversion of autophagosome to autolysosome and further activate autophagy. Therefore, on the basis of RIP3/p62/Keap1 complex regulatory system, we further combined shikonin with late autophagy inhibitor(chloroquine) to treat bladder cancer and achieved a better inhibitory effect. CONCLUSION: In conclusion, shikonin could induce necroptosis and impaired autophagic flux through RIP3/p62/Keap1 complex regulatory system, necroptosis could inhibit the process of autophagy via RIP3. Combining shikonin with late autophagy inhibitor could further activate necroptosis via disturbing RIP3 degradation in bladder cancer in vitro and in vivo.
Assuntos
Naftoquinonas , Neoplasias da Bexiga Urinária , Humanos , Espécies Reativas de Oxigênio/metabolismo , Necroptose , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Morte Celular , Naftoquinonas/farmacologia , Autofagia , Neoplasias da Bexiga Urinária/tratamento farmacológicoRESUMO
To investigate the protective effect and the potential mechanism of leonurine(Leo) against erastin-induced ferroptosis in human renal tubular epithelial cells(HK-2 cells), an in vitro erastin-induced ferroptosis model was constructed to detect the cell viability as well as the expressions of ferroptosis-related indexes and signaling pathway-related proteins. HK-2 cells were cultured in vitro, and the effects of Leo on the viability of HK-2 cells at 10, 20, 40, 60, 80 and 100 µmol·L~(-1) were examined by CCK-8 assay to determine the safe dose range of Leo administration. A ferroptosis cell model was induced by erastin, a common ferroptosis inducer, and the appropriate concentrations were screened. CCK-8 assay was used to detect the effects of Leo(20, 40, 80 µmol·L~(-1)) and positive drug ferrostatin-1(Fer-1, 1, 2 µmol·L~(-1)) on the viability of ferroptosis model cells, and the changes of cell morphology were observed by phase contrast microscopy. Then, the optimal concentration of Leo was obtained by Western blot for nuclear factor erythroid 2-related factor 2(Nrf2) activation, and transmission electron microscope was further used to detect the characteristic microscopic morphological changes during ferroptosis. Flow cytometry was performed to detect reactive oxygen species(ROS), and the level of glutathione(GSH) was measured using a GSH assay kit. The expressions of glutathione peroxidase 4(GPX4), p62, and heme oxygenase 1(HO-1) in each group were quantified by Western blot. RESULTS:: showed that Leo had no side effects on the viability of normal HK-2 cells in the concentration range of 10-100 µmol·L~(-1). The viability of HK-2 cells decreased as the concentration of erastin increased, and 5 µmol·L~(-1) erastin significantly induced ferroptosis in the cells. Compared with the model group, Leo dose-dependently increased cell via-bility and improved cell morphology, and 80 µmol·L~(-1) Leo promoted the translocation of Nrf2 from the cytoplasm to the nucleus. Further studies revealed that Leo remarkably alleviated the characteristic microstructural damage of ferroptosis cells caused by erastin, inhibited the release of intracellular ROS, elevated GSH and GPX4, promoted the nuclear translocation of Nrf2, and significantly upregulated the expression of p62 and HO-1 proteins. In conclusion, Leo exerted a protective effect on erastin-induced ferroptosis in HK-2 cells, which might be associated with its anti-oxidative stress by activating p62/Nrf2/HO-1 signaling pathway.
Assuntos
Ferroptose , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Células Epiteliais/metabolismo , GlutationaRESUMO
Diabetic ulcer(DU) is a chronic and refractory ulcer which often occurs in the foot or lower limbs. It is a diabetic complication with high morbidity and mortality. The pathogenesis of DU is complex, and the therapies(such as debridement, flap transplantation, and application of antibiotics) are also complex and have long cycles. DU patients suffer from great economic and psychological pressure while enduring pain. Therefore, it is particularly important to promote rapid wound healing, reduce disability and mortality, protect limb function, and improve the quality of life of DU patients. By reviewing the relevant literatures, we have found that autophagy can remove DU wound pathogens, reduce wound inflammation, and accelerate ulcer wound healing and tissue repair. The main autophagy-related factors microtubule-binding light chain protein 3(LC3), autophagy-specific gene Beclin-1, and ubiquitin-binding protein p62 mediate autophagy. The traditional Chinese medicine(TCM) treatment of DU mitigates clinical symptoms, accelerates ulcer wound healing, reduces ulcer recurrence, and delays further deterioration of DU. Furthermore, under the guidance of syndrome differentiation and treatment and the overall concept, TCM treatment harmonizes yin and yang, ameliorates TCM syndrome, and treats underlying diseases, thereby curing DU from the root. Therefore, this article reviews the role of autophagy and major related factors LC3, Beclin-1, and p62 in the healing of DU wounds and the intervention of TCM, aiming to provide reference for the clinical treatment of DU wounds and subsequent in-depth studies.
Assuntos
Complicações do Diabetes , Diabetes Mellitus , Pé Diabético , Humanos , Úlcera/terapia , Medicina Tradicional Chinesa , Proteína Beclina-1 , Qualidade de Vida , Cicatrização , Autofagia , Pé Diabético/tratamento farmacológico , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genéticaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Lonicera japonica Thunb. is a traditional medicinal herb with a long history owing to its widespread use in Asia for the treatment of several inflammatory diseases including allergic dermatitis; however, its active components and mechanism of action have not been fully elucidated. AIM OF THE STUDY: In this study, a homogeneous polysaccharide with strong anti-inflammatory effects was extracted from the traditional Chinese medicine Lonicera japonica. The mechanism by which the polysaccharide WLJP-025p regulates p62 to activate Nrf2, promote NLRP3 inflammasome degradation, and improve AD was investigated. MATERIALS AND METHODS: An AD model was established using DNCB, and saline was used as a control. The WLJP-L and WLJP-H groups were administered 30 and 60 mg/kg WLJP-025p during the model challenge period, respectively. The therapeutic effect of WLJP-025p was evaluated by determining the skin thickness, performing HE and toluidine blue staining, detecting TSLP via IHC, and determining serum IgE and IL-17 levels. Th17 differentiation was detected using flow cytometry. IF and WB were performed to evaluate the expression levels of c-Fos, p-p65, NLRP3 inflammatory bodies, autophagy pathway, ubiquitination, and Nrf2 proteins. RESULTS: WLJP-025p significantly inhibited DNCB-induced skin hyperplasia and pathological abnormalities and increased TSLP levels in mice. The differentiation of Th17 in the spleen, IL-17 release, p-c-Fos, p-p65 protein expression, and NLRP3 inflammasome activation in the skin tissues were reduced. Furthermore, p62 expression, p62 Ser403 phosphorylation, and ubiquitinated proteins were increased. CONCLUSIONS: WLJP-025p improved AD in mice by upregulating p62 to activate Nrf2 and promote the ubiquitination and degradation of NLRP3.
Assuntos
Dermatite Atópica , Lonicera , Camundongos , Animais , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Interleucina-17 , Dinitroclorobenzeno , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêuticoRESUMO
Cerebral ischaemia-reperfusion injury (CIRI) is a critical component of ischaemic stroke pathogenesis. Ferroptosis contributes to and aggravates CIRI, whereas the P62/Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor 2 (Nrf2) pathway exerts neuroprotective effects. Astragaloside IV (AST IV) is the primary active ingredient of Astragalus, an herb with anti-CIRI properties used in traditional Chinese medicine. However, the mechanism of its anti-CIRI action is unclear. This study examined the mechanisms underlying the anti-CIRI action of AST IV using a combination of in vitro and in vivo approaches. We established an erastin-induced ferroptosis model, oxygen and glucose deprivation/reoxygenation (OGD/R)-induced model in SH-SY5Y cells, and middle cerebral artery occlusion-reperfusion (MCAO/R) model using Sprague-Dawley rats. The extent of cell damage and brain damage in rats, ferroptosis indicator changes, and expression of P62, Keap1, and Nrf2 were investigated. AST IV inhibited erastin-induced ferroptosis, attenuated OGD/R-induced cell damage, and ameliorated sensorimotor dysfunction and injury in the MCAO/R model. Further, AST IV promoted Nrf2 activation, inhibited ferroptosis, and reduced cell damage. Notably, these effects were inhibited by ML385, an Nrf2 inhibitor. AST IV increased the P62 and Nrf2 levels and decreased the Keap1 levels. P62 silencing reduced the effects of AST IV on the P62/Keap1/Nrf2 pathway and ferroptosis. Our findings suggest that AST IV mitigates CIRI by inhibiting ferroptosis via activation of the P62/Keap1/Nrf2 pathway. This study provides an important scientific basis and direction for the application and research of AST IV and provides new potential targets and ideas for the study of the pathological mechanism of CIRI.
Assuntos
Isquemia Encefálica , Ferroptose , Neuroblastoma , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Ratos , Humanos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Ratos Sprague-Dawley , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Transdução de Sinais , Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismoRESUMO
Triptolide (TP) is one of the major components of Tripterygium wilfordii, which is a traditional Chinese medicine widely used in the treatment of various autoimmune and inflammatory diseases. However, the cardiotoxicity induced by TP greatly limits its widespread clinical application. In view of the role of ROS-mediated oxidative stress in TP-induced cardiotoxicity, mitoQ, a mitochondria-targeted ROS scavenger, was used in this study to investigate its protective effect against TP-induced cardiomyocyte toxicity and its possible underlying mechanism. Here we demonstrated that mitoQ could significantly attenuate TP-induced cardiotoxicity in cardiomyocyte H9c2 cells, with a remarkable improvement in cell viability and reduction in ROS levels. P62-Nrf2 signaling pathway has been reported to play a critical role in regulating oxidative stress and protecting cells from harmful stimuli. In this study, we found that mitoQ significantly activated p62-Nrf2 signaling pathway in H9c2 cells with or without TP treatment. Moreover, knockdown of p62 or Nrf2 could block the protective effect of mitoQ against TP in H9c2 cells. Taken together, our study demonstrates that mitoQ can alleviate TP-induced cardiotoxicity via the activation of p62-Nrf2 signaling pathway, which provides new potential strategies to combat TP-induced cardiomyocyte toxicity.
Assuntos
Cardiotoxicidade , Fator 2 Relacionado a NF-E2 , Ubiquinona , Humanos , Apoptose , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/farmacologiaRESUMO
This study aimed to investigate the therapeutic effect of quercetin on ethanol-induced hepatic steatosis in L02 cells and elucidate the potential mechanism. In brief, L02 cells were pretreated with or without ethanol (3%) for 24 h, then treated quercetin (80, 40, 20 µM) for 24 h. The transfection procedure was performed with transcription factor EB (TFEB) small interfering RNA (siRNA TFEB) for 24 h. Our results showed that quercetin autophagic flux in the L02 cells, via upregulating of microtubule associated protein light chain 3B (LC3-II) and lysosome-associated membrane protein 1 (LAMP1), then downregulating of protein sequestosome 1 (SQSTM1/p62). Mechanistically, quercetin activated TFEB nuclear translocation, contributing to lysosomal biogenesis and autophagic activation. Accordingly, the genetic inhibition of TFEB-dependent autophagy decreased ethanol-induced fat accumulation in L02 cells via regulating fatty acid ß oxidation and lipid synthesis. Subsequently, quercetin-induced TFEB-dependent autophagic activation was also linked to inhibit oxidative stress via suppressing reactive oxygen species (ROS), enhancing activities of antioxidant enzymes, and promoting nuclear transfer of the nuclear factor E2-related factor 2 (Nrf2) translocation. Thus, we uncovered a novel protective mechanism against ethanol-induced hepatic steatosis and oxidative stress through TFEB-mediated lysosomal biogenesis and discovered insufficient autophagy as a novel previously unappreciated autophagic flux.
Assuntos
Etanol , Fígado Gorduroso , Humanos , Etanol/toxicidade , Quercetina/farmacologia , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/tratamento farmacológico , Autofagia , Lisossomos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Realgar, the main component of which is As2S2 or As4S4 (≥90%), is a traditional Chinese natural medicine that has been used to treat carbuncles, furuncles, snake and insect bites, abdominal pain caused by parasitic worms, and epilepsy in China for many years. Because realgar contains arsenic, chronic or excessive use of single-flavor realgar and realgar-containing Chinese patent medicine can lead to drug-induced arsenic poisoning, but the exact mechanism underlying its toxicity to the central nervous system is unclear. AIM OF THE STUDY: The aim of this study was to clarify the mechanism of realgar-induced neurotoxicity and to investigate the effects of realgar on autophagy and the Keap1-Nrf2-ARE pathway. MATERIALS AND METHODS: We used rats treated with the autophagy inhibitor 3-methyladenine (3-MA) or adeno-associated virus (AAV2/9-r-shRNA-Sqstm1, sh-p62) to investigate realgar-induced neurotoxicity and explore the specific relationship between autophagy and the Keap1-Nrf2-ARE pathway (the Nrf2 pathway) in the cerebral cortex. Molecular docking analysis was used to assess the interactions among the Nrf2, p62 and Keap1 proteins. RESULTS: Our results showed that arsenic from realgar accumulated in the brain and blood to cause neuronal and synaptic damage, decrease exploratory behavior and spontaneous movement, and impair memory ability in rats. The mechanism may have involved realgar-mediated autophagy impairment and continuous activation of the Nrf2 pathway via the LC3-p62-Keap1-Nrf2 axis. However, because this activation of the Nrf2 pathway was not sufficient to counteract oxidative damage, apoptosis was aggravated in the cerebral cortex. CONCLUSIONS: This study revealed that autophagy, the Nrf2 pathway, and apoptosis are involved in realgar-induced central nervous system toxicity and identified p62 as the hub of the LC3-p62-Keap1-Nrf2 axis in the regulation of autophagy, the Nrf2 pathway, and apoptosis.
Assuntos
Arsênio , Fator 2 Relacionado a NF-E2 , Animais , Ratos , Autofagia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Transdução de SinaisRESUMO
Diabetic ulcer(DU) is a chronic and refractory ulcer which often occurs in the foot or lower limbs. It is a diabetic complication with high morbidity and mortality. The pathogenesis of DU is complex, and the therapies(such as debridement, flap transplantation, and application of antibiotics) are also complex and have long cycles. DU patients suffer from great economic and psychological pressure while enduring pain. Therefore, it is particularly important to promote rapid wound healing, reduce disability and mortality, protect limb function, and improve the quality of life of DU patients. By reviewing the relevant literatures, we have found that autophagy can remove DU wound pathogens, reduce wound inflammation, and accelerate ulcer wound healing and tissue repair. The main autophagy-related factors microtubule-binding light chain protein 3(LC3), autophagy-specific gene Beclin-1, and ubiquitin-binding protein p62 mediate autophagy. The traditional Chinese medicine(TCM) treatment of DU mitigates clinical symptoms, accelerates ulcer wound healing, reduces ulcer recurrence, and delays further deterioration of DU. Furthermore, under the guidance of syndrome differentiation and treatment and the overall concept, TCM treatment harmonizes yin and yang, ameliorates TCM syndrome, and treats underlying diseases, thereby curing DU from the root. Therefore, this article reviews the role of autophagy and major related factors LC3, Beclin-1, and p62 in the healing of DU wounds and the intervention of TCM, aiming to provide reference for the clinical treatment of DU wounds and subsequent in-depth studies.
Assuntos
Humanos , Úlcera/terapia , Medicina Tradicional Chinesa , Proteína Beclina-1 , Qualidade de Vida , Cicatrização , Complicações do Diabetes , Autofagia , Pé Diabético/tratamento farmacológico , Diabetes Mellitus/genéticaRESUMO
OBJECTIVE: To observe the effect of acupuncture on the cerebral infarct volume and expressions of Beclin1, microtubule-associated protein 1 light chain 3 (LC3) and p62 proteins related to cell autophagy in rats with cerebral ischemia (CI), so as to explore its mechanisms underlying improvement of CI injury. METHODS: Male SD rats were randomized into 3 groups: sham operation, model and acupuncture which were further divided into 4 subgroups according to different ischemia time-points: 3, 6, 12 and 24 h (n=7 in each subgroup). The CI model was established by occlusion of the middle cerebral artery (MCAO) with surgical suture-embolus. For rats of the acupuncture group, acupuncture was applied to "Shuigou" (GV26) and bilateral "Neiguan" (PC6), and twirled for 1-3 min every time, 10 times altogether, and kept for 30 min. The neurological deficit score accoding to Longa's method was used for assessing the neurological function. The CI volume was measured after 2, 3, 5-triphenyltetrazolium chloride staining. The expression levels of autophagy-related proteins Beclin1ï¼LC3 and p62 in the brain tissue were detected using Western blot. RESULTS: Compared with those of the sham operation groupï¼the neurological deficit scores at 2, 3, 6ï¼ 12 and 24 h after CI, and the infarct volumes, the expression levels of Beclin1 and the ratios of LC3-â ¡/LC3-â at 3, 6, 12 and 24 h were considerably increased (P<0.01, P<0.05), and the expression levels of p62 at 3, 6, 12 and 24 h were significantly decreased (P<0.01) in the model group. Relevant to the model group, acupuncture stimulation of GV26 and PC6 induced an obvious decrease in the neurological deficit scores at 6, 12 and 24 h, CI volumes at 3, 6, 12 and 24 h, and the expression levels of Beclin1 and the ratios of LC3-â ¡/LC3-â both at 6 and 12 h (P<0.01, P<0.05), and an evident increase in the expression levels of p62 at 6, 12 and 24 h after CI (P<0.05, P<0.01). CONCLUSION: Acupuncture stimulation of GV26 and PC6 can reduce the CI volume and improve neurological function in CI ratsï¼ which may be related to its efficacy in down-regulating the expression of Beclin1 and the ratio of LC3-â ¡/LC3-â , and up-regulating the expression of p62 in the ischemic brain tissueï¼ thereby improving autophagy flux.
Assuntos
Terapia por Acupuntura , Lesões Encefálicas , Masculino , Animais , Ratos , Ratos Sprague-Dawley , Proteína Beclina-1/genética , Isquemia , Autofagia/genética , Infarto CerebralRESUMO
Doxorubicin (DOX) is a most common anthracycline chemotherapeutic agent; however, its clinical efficacy is limited due to its severe and irreversible cardiotoxicity. Ferroptosis, characterized by iron overload and lipid peroxidation, plays a pivotal role in DOX-induced cardiotoxicity. Resveratrol (RSV) displays cardioprotective and anticancer effects, owing to its antioxidative and anti-inflammatory properties. However, the role and mechanism of RSV in DOX-mediated ferroptosis in cardiomyocytes is unclear. This study showed that DOX decreased cell viability, increased iron accumulation and lipid peroxidation in H9c2 cells; however, these effects were reversed by RSV and ferroptosis inhibitor ferrostatin-1 (Fer-1) pre-treatment. Additionally, RSV significantly increased the cell viability of H9c2 cells treated with ferroptosis inducers Erastin (Era) and RSL3. Mechanistically, RSV inhibited mitochondrial reactive oxygen species (mtROS) overproduction and upregulated the p62-NRF2/HO-1 pathway. RSV-induced NRF2 activation was partially dependent on p62, and the selective inhibition of p62 (using p62-siRNA interference) or NRF2 (using NRF2 specific inhibitor, ML385) significantly abolished the anti-ferroptosis function of RSV. Furthermore, RSV treatment protected mice against DOX-induced cardiotoxicity, including significantly improving left ventricular function, ameliorating myocardial fibrosis and suppressing ferroptosis. Consistent with in vitro results, RSV also upregulated the p62-NRF2/HO-1 expression, which was inhibited by DOX, in the myocardium. Notably, the protective effect of RSV in DOX-mediated ferroptosis was similar to that of Fer-1 in vitro and in vivo. Thus, the p62-NRF2 axis plays a critical role in regulating DOX-induced ferroptosis in cardiomyocytes. RSV as a potent p62 activator has potential as a therapeutic target in preventing DOX-induced cardiotoxicity via ferroptosis modulation.
Assuntos
Miócitos Cardíacos , Fator 2 Relacionado a NF-E2 , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Estresse Oxidativo , Doxorrubicina/efeitos adversosRESUMO
Gastric mucosal injury is the initial stage of the occurrence and development of gastric diseases. Oxidative stress and ferroptosis caused by the imbalance of redox and iron dynamics in gastric mucosal epithelial cells are present throughout the occurrence and development of gastric mucosal injury. Therefore, the inhibition of oxidative stress and ferroptosis is a potential target for the treatment of the gastric mucosal injury. Xiaojianzhong decoction (XJZ), which consists of six Chinese herbal medicines and extracts, is used for the treatment of diseases related to gastrointestinal mucosal injury; however, its specific mechanism of action has yet to be clarified. In this study, we clarified the protective effect of XJZ on gastric mucosa and revealed its underlying mechanism. We established a gastric mucosal injury model using aspirin and administered XJZ. Furthermore, we systematically evaluated the mucosal injury and examined the expression of genes related to oxidative stress, ferroptosis, and inflammation. The study found that XJZ significantly counteracted aspirin-induced gastric mucosal injury and inhibited oxidative stress and ferroptosis in mice. Upon examining SQSTM1/p62(p62)/Kelch-like ECH-associated protein 1 (Keap1)/Nuclear Factor erythroid 2-Related Factor 2 (Nrf2), a well-known signaling pathway involved in the regulation of oxidative stress and ferroptosis, we found that its activation was significantly inhibited by aspirin treatment and that this signaling pathway was activated after XJZ intervention. Our study suggests that XJZ may inhibit aspirin induced oxidative stress and ferroptosis via the p62/Keap1/Nrf2 signaling pathway, thereby attenuating gastric mucosal injury.
Assuntos
Ferroptose , Gastropatias , Animais , Camundongos , Aspirina/farmacologia , Aspirina/metabolismo , Mucosa Gástrica/metabolismo , Ferro/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteína Sequestossoma-1/metabolismo , Transdução de SinaisRESUMO
Type 1 diabetes (T1D) is an autoimmune disease initiated by genetic predisposition and environmental influences culminating in the immunologically mediated destruction of pancreatic ß-cells with eventual loss of insulin production. Although T1D can be accurately predicted via autoantibodies, therapies are lacking that can intercede autoimmunity and protect pancreatic ß-cells. There are no approved interventional modalities established for this purpose. One such potential source for clinical agents of this use is from the frequently utilized Cornus officinalis (CO) in the field of ethnopharmacology. Studies by our lab and others have demonstrated that CO has robust proliferative, metabolic, and cytokine protective effects on pancreatic ß-cells. To identify the molecular mechanism of the biological effects of CO, we performed a proteomic and phosphoproteomic analysis examining the cellular networks impacted by CO application on the 1.1B4 pancreatic ß-cell line. Our label-free mass spectrometry approach has demonstrated significant increased phosphorylation of the selective autophagy receptor of p62 (Sequestosome-1/SQSTM1/p62) and predicted activation of the antioxidant Kelch-like ECH-associated protein 1 (Keap1)/Nuclear factor-erythroid factor 2-related factor 2 (Nrf2) pathway. Further validation by immunoblotting and immunofluorescence revealed markers of autophagy such as increased LC3-II and decreased total p62 along with nuclear localization of Nrf2. Both autophagy and the Keap1/Nrf2 pathways have been shown to be impaired in human and animal models of T1D and may serve as an excellent potential therapeutic target stimulated by CO.
Assuntos
Cornus , Diabetes Mellitus Tipo 1 , Insulinas , Animais , Antioxidantes/metabolismo , Autoanticorpos , Autofagia/fisiologia , Citocinas/metabolismo , Humanos , Insulinas/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteômica , Proteína Sequestossoma-1/metabolismoRESUMO
Di(2-ethylhexyl) phthalate (DEHP) is an omnipresent environmental pollutant. It has been determined that DEHP is involved in multiple health disorders. Lycopene (Lyc) is a natural carotenoid pigment, with anti-inflammatory and antioxidant properties. However, it is not clear whether Lyc can protect the spleen from DEHP-induced oxidative damage. A total of 140 mice were randomly divided into seven groups (n = 20) and continuously gavaged with corn oil, distilled water, DEHP (500 or 1000 mg/kg BW/day) and/or Lyc (5 mg/kg BW/day) for 28 days. Histopathological and ultrastructural results showed a DEHP-induced inflammatory response and mitochondrial injuries. Moreover, DEHP exposure induced redox imbalance, which resulted in the up-regulation of ROS activity and MDA content, and the down-regulation of T-AOC, T-SOD and CAT in the DEHP groups. Simultaneously, our results also demonstrated that DEHP-induced kelch-like ECH-associated protein 1 (Keap1) expression was downregulated, and the expression levels of P62, nuclear factor erythroid 2-related factor (NRF2) and their downstream target genes were up-regulated. However, the supplementary Lyc reverted these changes to normal levels. Together, Lyc prevented DEHP-induced splenic injuries by regulating the P62-Keap1-NRF2 signaling pathway. Hence, the protective effects of Lyc might be a therapeutic strategy to ameliorate DEHP-induced splenic damage.
Assuntos
Dietilexilftalato , Poluentes Ambientais , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Óleo de Milho/farmacologia , Dietilexilftalato/toxicidade , Poluentes Ambientais/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Licopeno/farmacologia , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ácidos Ftálicos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Baço/metabolismo , Superóxido Dismutase/metabolismo , ÁguaRESUMO
Vitiligo is a skin disease characterized by lack of functional melanocytes. Lycium barbarum polysaccharide (LBP) has been demonstrated to preserve keratinocytes and fibroblasts against oxidative stress. This study aimed to explore the efficacy and underlying mechanisms of LBP on autophagy in H2 O2 -damaged human melanocytes. Cellular viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and annexin V-fluorescein isothiocyanate/propidium iodide double staining. Reverse transcription-polymerase chain reaction, western blotting and electron microscopy were performed to detect autophagy. The protein expression level of Nrf2 and p62 were assessed by western blotting. Plasmid transfection and lentiviral infection were used to overexpress and silence Nrf2 in PIG1 cells. LBP promoted the proliferation and inhibited apoptosis of H2 O2 -damaged PIG1 cells. LBP increased the proliferation of H2 O2 -damaged PIG1 cells via induction of autophagy, and Nrf2 shRNA experiment confirmed that LBP activated the Nrf2/p62 signal pathway. These results suggest that LBP may be used for the treatment of vitiligo. PRACTICAL APPLICATIONS: Goji berry is the mature and dried fruit of Lycium barbarum L., which is a common food with a long history in China, as well as a Traditional Chinese Medicine. Our previous research found that LBP could activated the Nrf2/ARE pathway in an ultraviolet (UV)-induced photodamage model of keratinocytes, and increase the levels of phase II detoxification and antioxidant enzymes. We firstly confirmed the anti-vitiligo effects of L. barbarum polysaccharide (LBP) by inducing autophagy and promoted proliferation of human melanocytes, and LBP induced autophagy via activating the Nrf2/p62 signaling pathway in this study. These results proved that LBP can be an effective therapy for vitiligo treatment.
Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Anexina A5/metabolismo , Anexina A5/farmacologia , Antioxidantes/farmacologia , Autofagia , Proliferação de Células , Medicamentos de Ervas Chinesas , Fluoresceínas/farmacologia , Humanos , Isotiocianatos/farmacologia , Melanócitos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Polissacarídeos/farmacologia , Propídio/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Transdução de SinaisRESUMO
Alglucosidase alpha is an orphan drug approved for enzyme replacement therapy (ERT) in Pompe disease (PD); however, its efficacy is limited in skeletal muscle because of a partial blockage of autophagic flux that hinders intracellular trafficking and enzyme delivery. Adjunctive therapies that enhance autophagic flux and protect mitochondrial integrity may alleviate autophagic blockage and oxidative stress and thereby improve ERT efficacy in PD. In this study, we compared the benefits of ERT combined with a ketogenic diet (ERT-KETO), daily administration of an oral ketone precursor (1,3-butanediol; ERT-BD), a multi-ingredient antioxidant diet (ERT-MITO; CoQ10, α-lipoic acid, vitamin E, beetroot extract, HMB, creatine, and citrulline), or co-therapy with the ketone precursor and multi-ingredient antioxidants (ERT-BD-MITO) on skeletal muscle pathology in GAA-KO mice. We found that two months of 1,3-BD administration raised circulatory ketone levels to ≥1.2 mM, attenuated autophagic buildup in type 2 muscle fibers, and preserved muscle strength and function in ERT-treated GAA-KO mice. Collectively, ERT-BD was more effective vs. standard ERT and ERT-KETO in terms of autophagic clearance, dampening of oxidative stress, and muscle maintenance. However, the addition of multi-ingredient antioxidants (ERT-BD-MITO) provided the most consistent benefits across all outcome measures and normalized mitochondrial protein expression in GAA-KO mice. We therefore conclude that nutritional co-therapy with 1,3-butanediol and multi-ingredient antioxidants may provide an alternative to ketogenic diets for inducing ketosis and enhancing autophagic flux in PD patients.