Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Plant Dis ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38268174

RESUMO

Passion fruit (Passiflora edulis), a medicinal plant, was introduced into China in the early 19th century, is mainly cultivated in southern provinces (Liang et al. 2019). During March 2023, a survey was carried out and 167 samples were taken from passion fruit cultivated area in Yulin (22.6570263°E; 110.1765019°N) apart from the planting base appeared yellow leaves, stunted growth, and distinctive galls on the roots. Within the galls, Meloidogyne sp. females and egg masses were observed. From the rhizosphere soil, second-stage juveniles (J2) were extracted, and population density was 105/500 g soil. The species was determined to be Meloidogyne enterolobii based on morphological characteristics, including female perineal pattern, and genetic analyses. Female (n = 10) perineal patterns showed oval shape, with coarse and smooth striae, dorsal arch rounded to square, and lateral lines not distinct. The male head cap was high and rounded, with the head region only slightly set off from the body, knobs large, ovoid to rounded. The measurements of males (n = 10) included body length, 1,230.7 ± 244.94 (997 to 1,569) µm; a, 38.58 ± 7.8 (33.45 to 47.05) µm; c, 113.03 ± 26.22 (80.82 to 144.23) µm; stylet, 15.68 ± 1.1 (14.5 to 17.4) µm; spicules, 31.83 ± 2.84 (28.69 to 36.1) µm; tail, 11.09 ± 1.72 (8.02 to 13.38) µm; and gubernaculum length, 8.34 ± 0.28 (8.11 to 8.98) µm. Measurements of J2 (n = 20) included body length, 455.75 ± 44.94 (381 to 512) µm; a, 26.32 ± 3.89 (18.18 to 32.70) µm; c, 8.56 ± 1.2 (6.36 to 10.80) µm; stylet, 12.44 ± 0.76 (11.2 to 13.8) µm; DGO, 3.65 ± 0.54 (2.84 to 4.68) µm; tail, 53.89 ± 6.36 (39.8 to 62.2) µm; and hyaline tail terminus, 11.77 ± 2.83 (7.14 to 16.2) µm. These morphological characteristics are similar to those reported in the original description of M. enterolobii (Yang and Eisenback 1983). The sequences of the partial ITS region was amplified with V5367 (5'-TTGATTACGTCCCTGCCCTTT-3') and 26S (5'-TTTCACTCGCCGTTACTAAGG-3') primers (Vrain et al. 1992). The region between cytochrome oxidase subunit II (COII) and the 16S rRNA mitochondrial DNA (mtDNA COII) was also amplified with the primers C2F3 (5'-GGTCAATGTTCAGAAATTTGTGG-3') (Powers and Harris 1993) and MRH106 (5'-AATTTCTAAAGACTTTTCTTAGT-3') (Stanton et al. 1997). The ITS region yielded a fragment of 757 bp (OR072957) and mtDNA COII of 706 bp (OR078415). A BLAST search indicated the sequences were 100% identical to several sequences of M. enterolobii (MT406250, MH756127 and AY831967, MN269940, respectively). To confirm pathogenicity, 20 passion fruit (P. edulis Sim. f. flavicarpa) 30-day-old seedlings were transplanted into pots with an autoclaved mixture of sand and field soil (3:1) and maintained in the glasshouse at 25 ± 2°C with 65 ± 5% relative humidity. After eight weeks, fifteen plants were inoculated with 500 J2/pot (nematode culture collected from the original field), and another five uninoculated plants served as a control. Two months later, aboveground symptoms were similar to those observed in the field. Nematode reproduction occurred and root galls were observed. The reproduction factor (nematode final population density/initial population density) was 4.8. The disease caused by M. enterolobii was severe in Yulin city of Guangxi. Guangxi is an important area for passion fruit culture, with about 2000 ha, which is responsible for two-thirds of China production (Xing et al. 2020). This is the first record of P. edulis natural infection with M. enterolobii in the Yulin City of Guangxi, China.

2.
JMIR Res Protoc ; 13: e51660, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252481

RESUMO

BACKGROUND: Seasonal malaria chemoprevention (SMC) is recommended by the World Health Organization for the sub-Sahel region in sub-Saharan Africa for preventing malaria in children 3 months old to younger than 5 years. Since 2016, the Malian National Malaria Control Program has deployed SMC countrywide during its high malaria transmission season at a rate of 4 monthly cycles annually. The standard SMC regimen includes sulfadoxine-pyrimethamine (SP) plus amodiaquine (AQ). Resistance against SP is suspected to be rising across West Africa; therefore, assessing the effectiveness of an alternative antimalarial drug for SMC is needed to provide a second-line regimen when it is ultimately needed. It is not well understood whether SMC effectively prevents malaria in children aged 5 years or older. OBJECTIVE: The primary goal of the study is to compare 2 SMC regimens (SP-AQ and dihydroartemisinin-piperaquine [DHA-PQ]) in preventing uncomplicated Plasmodium falciparum malaria in children 3 months to 9 years old. Secondly, we will assess the possible use of DHA-PQ as an alternative SMC drug in areas where resistance to SP or AQ may increase following intensive use. METHODS: The study design is a 3-arm cluster-randomized design comparing the SP-AQ and DHA-PQ arms in 2 age groups (younger than 5 years and 5-9 years) and a control group for children aged 5-9 years. Standard SMC (SP-AQ) for children younger than 5 years was provided to the control arm, while SMC with SP-AQ was delivered to children aged 3 months to 9 years (arm 2), and SMC with DHA-PQ will be implemented in study arm 3 for children up to 9 years of age. The study was performed in Mali's Koulikoro District, a rural area in southwest Mali with historically high malaria transmission rates. The study's primary outcome is P falciparum incidence for 2 SMC regimens in children up to 9 years of age. Should DHA-PQ provide an acceptable alternative to SP-AQ, a plausible second-line prevention option would be available in the event of SP resistance or drug supply shortages. A significant byproduct of this effort included bolstering district health information systems for rapid identification of severe malaria cases. RESULTS: The study began on July 1, 2019. Through November 2022, a total of 4556 children 3 months old to younger than 5 years were enrolled. Data collection ended in spring 2023, and the findings are expected to be published later in early 2024. CONCLUSIONS: Routine evaluation of antimalarial drugs is needed to establish appropriate SMC age targets. The study goals here may impact public health policy and provide alternative therapies in the event of drug shortages or resistance. TRIAL REGISTRATION: ClinicalTrials.gov NCT04149106, https://clinicaltrials.gov/ct2/show/NCT04149106. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/51660.

3.
Braz J Vet Med ; 45: e004923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149034

RESUMO

The present study describes from the holistic One Health perspective a case report of dioctophimosis in a community dog (defined as stray dogs managed by the local community) residing in a park in the city of Curitiba-PR, considering the multispecies collectives directly affected by the dynamics of this dangerous zoonosis. The work underlines the importance of the community dog program of the Rede de Proteção Animal, demonstrating the health barrier function of these dogs. Despite being a cosmopolitan zoonosis, dioctophimosis is of particular importance in regions of the developing world, including Latin America, because of large populations of stray animals and social inequalities. Public policies focused on raising awareness among the general population about this parasitic disease and its risks and the restraint of actions that determine risks of infection for humans and companion animals are fundamental to a One Health approach to prevent this zoonosis.


No presente estudo, é descrito um relato de caso de dioctofimose em um cão comunitário (descrito como um cão em situação de rua mantido pela comunidade local) residente em um parque da cidade de Curitiba-PR, sob a perspectiva holística da Saúde Única, considerando os coletivos multiespécies que estão diretamente envolvidos e influenciados pela dinâmica desta perigosa zoonose. O trabalho aborda a importância do programa do cão comunitário da Rede de Proteção Animal, demonstrando claramente a função de barreira sanitária desses cães. Argumenta-se que apesar de ser uma zoonose praticamente cosmopolita, a dioctofimose tem importância significativa em regiões do mundo em desenvolvimento, incluindo a América Latina, devido às grandes populações de animais errantes e às desigualdades sociais comuns nesta porção do planeta. Políticas públicas que envolvam a sensibilização da população em geral sobre esta doença parasitária e seus riscos, bem como a coibição de ações que determinem riscos de infecção para humanos e animais de companhia são fundamentais para uma abordagem de Saúde Única com objetivo de prevenir esta zoonose.

4.
Molecules ; 28(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37959788

RESUMO

This study is part of the work investigating bioactive fruit enzymes as sustainable alternatives to parasite anthelmintics that can help reverse the trend of lost efficacy. The study looked to define biological and molecular interactions that demonstrate the ability of the pomegranate extract punicalagin against intracellular parasites. The study compared transcriptomic reads of two distinct conditions. Condition A was treated with punicalagin (PA) and challenged with Citrobacter rodentium, while condition B (CM) consisted of a group that was challenged and given mock treatment of PBS. To understand the effect of punicalagin on transcriptomic changes between conditions, a differential correlation analysis was conducted. The analysis examined the regulatory connections of genes expressed between different treatment conditions by statistically querying the relationship between correlated gene pairs and modules in differing conditions. The results indicated that punicalagin treatment had strong positive correlations with the over-enriched gene ontology (GO) terms related to oxidoreductase activity and lipid metabolism. However, the GO terms for immune and cytokine responses were strongly correlated with no punicalagin treatment. The results matched previous studies that showed punicalagin to have potent antioxidant and antiparasitic effects when used to treat parasitic infections in mice and livestock. Overall, the results indicated that punicalagin enhanced the effect of tissue-resident genes.


Assuntos
Citrobacter rodentium , Transcriptoma , Camundongos , Animais , Taninos Hidrolisáveis/farmacologia , Antioxidantes/análise
5.
Parasitology ; 150(10): 939-949, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37565486

RESUMO

Perkinsus olseni is an industrially significant protozoan parasite of Manila clam, Ruditapes philippinarum. So far, various media, based on Dulbecco's Modified Eagle Medium and Ham's F-12 nutrient mixture with supplementation of fetal bovine serum (FBS), have been developed to proliferate the parasitizing trophozoite stage of P. olseni. The present study showed that P. olseni did not proliferate in FBS-deficient Perkinsus broth medium (PBMΔF), but proliferated well in PBMΔF supplemented with tissue extract of host Manila clams, indicating that FBS and Manila clam tissue contained molecule(s) required for P. olseni proliferation. Preliminary characterization suggested that the host-derived molecule(s) was a heat-stable molecule(s) with a molecular weight of less than 3 kDa, and finally a single molecule required for the proliferation was purified by high-performance liquid chromatography processes. High-resolution electrospray ionization mass spectrometry and nuclear magnetic resonance analyses identified this molecule as glycine betaine (=trimethylglycine), and the requirement of this molecule for P. olsseni proliferation was confirmed by an assay using chemically synthesized, standard glycine betaine. Although glycine betaine was required for the proliferation of all examined Perkinsus species, supplementation of glycine betaine precursors, such as choline and betaine aldehyde, enhanced the proliferation of 4 Perkinsus species (P. marinus, P. chesapeaki, P. mediterraneus and P. honshuensis), but not of 2 others (P. olseni and P. beihaiensis). Thus, it was concluded that the ability to biosynthesise glycine betaine from its precursors varied among Perkinsus species, and that P. olseni and P. beihaiensis lack the ability required to biosynthesize glycine betaine for proliferation.


Assuntos
Alveolados , Bivalves , Parasitos , Animais , Betaína/farmacologia , Bivalves/parasitologia , Trofozoítos , Proliferação de Células
6.
Acta Trop ; 245: 106982, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37406792

RESUMO

Green nanotechnology has recently attracted a lot of attention as a potential technique for drug development. In the present study, silver nanoparticles were synthesised by using Sargassum tenerrimum, a marine seaweed crude extract (Ag-ST), and evaluated for antimalarial activity in both in vitro and in vivo models. The results showed that Ag-ST nanoparticles exhibited good antiplasmodial activity with IC50 values 7.71±0.39 µg/ml and 23.93±2.27 µg/ml against P. falciparum and P. berghei respectively. These nanoparticles also showed less haemolysis activity suggesting their possible use in therapeutics. Further, P. berghei infected C57BL/6 mice were used for the four-day suppressive, curative and prophylactic assays where it was noticed that the Ag-ST nanoparticles significantly reduced the parasitaemia and there were no toxic effects observed in the biochemical and haematological parameters. Further to understand its possible toxic effects, both in vitro and in vivo genotoxicological studies were performed which revealed that these nanoparticles are non-genotoxic in nature. The possible antimalarial activity of Ag-ST may be due to the presence of bioactive phytochemicals and silver ions. Moreover, the phytochemicals prevent the nonspecific release of ions responsible for low genotoxicity. Together, the bio-efficacy and toxicology outcomes demonstrated that the green synthesized silver nanoparticles (Ag-ST) could be a cutting-edge alternative for therapeutic applications.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Nanopartículas Metálicas , Sargassum , Alga Marinha , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Malária/prevenção & controle , Prata/farmacologia , Prata/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Plasmodium falciparum , Camundongos Endogâmicos C57BL , Plasmodium berghei , Malária Falciparum/tratamento farmacológico , Compostos Fitoquímicos/farmacologia
7.
BMC Biol ; 21(1): 138, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316905

RESUMO

BACKGROUND: The influence of diet on immune function and resistance to enteric infection and disease is becoming ever more established. Highly processed, refined diets can lead to inflammation and gut microbiome dysbiosis, whilst health-promoting dietary components such as phytonutrients and fermentable fibres are thought to promote a healthy microbiome and balanced mucosal immunity. Chicory (Cichorium intybus) is a leafy green vegetable rich in fibres and bioactive compounds that may promote gut health. RESULTS: Unexpectedly, we here show that incorporation of chicory into semisynthetic AIN93G diets renders mice susceptible to infection with enteric helminths. Mice fed a high level of chicory leaves (10% dry matter) had a more diverse gut microbiota, but a diminished type-2 immune response to infection with the intestinal roundworm Heligmosomoides polygyrus. Furthermore, the chicory-supplemented diet significantly increased burdens of the caecum-dwelling whipworm Trichuris muris, concomitant with a highly skewed type-1 immune environment in caecal tissue. The chicory-supplemented diet was rich in non-starch polysaccharides, particularly uronic acids (the monomeric constituents of pectin). In accordance, mice fed pectin-supplemented AIN93G diets had higher T. muris burdens and reduced IgE production and expression of genes involved in type-2 immunity. Importantly, treatment of pectin-fed mice with exogenous IL-25 restored type-2 responses and was sufficient to allow T. muris expulsion. CONCLUSIONS: Collectively, our data suggest that increasing levels of fermentable, non-starch polysaccharides in refined diets compromises immunity to helminth infection in mice. This diet-infection interaction may inform new strategies for manipulating the gut environment to promote resistance to enteric parasites.


Assuntos
Dieta , Infecções por Nematoides , Animais , Camundongos , Polissacarídeos , Suplementos Nutricionais , Pectinas
8.
Antioxidants (Basel) ; 12(5)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37237850

RESUMO

(1) Background: Ionic transport in Trypanosoma cruzi is the object of intense studies. T. cruzi expresses a Fe-reductase (TcFR) and a Fe transporter (TcIT). We investigated the effect of Fe depletion and Fe supplementation on different structures and functions of T. cruzi epimastigotes in culture. (2) Methods: We investigated growth and metacyclogenesis, variations of intracellular Fe, endocytosis of transferrin, hemoglobin, and albumin by cell cytometry, structural changes of organelles by transmission electron microscopy, O2 consumption by oximetry, mitochondrial membrane potential measuring JC-1 fluorescence at different wavelengths, intracellular ATP by bioluminescence, succinate-cytochrome c oxidoreductase following reduction of ferricytochrome c, production of H2O2 following oxidation of the Amplex® red probe, superoxide dismutase (SOD) activity following the reduction of nitroblue tetrazolium, expression of SOD, elements of the protein kinase A (PKA) signaling, TcFR and TcIT by quantitative PCR, PKA activity by luminescence, glyceraldehyde-3-phosphate dehydrogenase abundance and activity by Western blotting and NAD+ reduction, and glucokinase activity recording NADP+ reduction. (3) Results: Fe depletion increased oxidative stress, inhibited mitochondrial function and ATP formation, increased lipid accumulation in the reservosomes, and inhibited differentiation toward trypomastigotes, with the simultaneous metabolic shift from respiration to glycolysis. (4) Conclusion: The processes modulated for ionic Fe provide energy for the T. cruzi life cycle and the propagation of Chagas disease.

9.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175675

RESUMO

The medicinal plant Cistanche deserticola Ma (Orobanchaceae) is a holoparasitic angiosperm that takes life-essential materials from Haloxylon ammodendron (C. A. Mey.) Bunge (Amaranthaceae) roots. Although many experiments have been conducted to improve the quality of C. deserticola, little attention has been paid to the host's influence on metabolite accumulation. In this study, transcriptomic and metabolomic analyses were performed to unveil the host's role in C. deserticola's metabolite accumulation, especially of phenylethanoid glycosides (PhGs). The results indicate that parasitism by C. deserticola causes significant changes in H. ammodendron roots in relation to metabolites and genes linked to phenylalanine metabolism, tryptophan metabolism and phenylpropanoid biosynthesis pathways, which provide precursors for PhGs. Correlation analysis of genes and metabolites further confirms that C. deserticola's parasitism affects PhG biosynthesis in H. ammodendron roots. Then we found specific upregulation of glycosyltransferases in haustoria which connect the parasites and hosts. It was shown that C. deserticola absorbs PhG precursors from the host and that glycosylation takes place in the haustorium. We mainly discuss how the host resists C. deserticola parasitism and how this medicinal parasite exploits its unfavorable position and takes advantage of host-derived metabolites. Our study highlights that the status of the host plant affects not only the production but also the quality of Cistanches Herba, which provides a practical direction for medicinal plant cultivation.


Assuntos
Cistanche , Plantas Medicinais , Cistanche/genética , Cistanche/metabolismo , Perfilação da Expressão Gênica , Glicosídeos/metabolismo , Transcriptoma , Plantas Medicinais/genética , Metaboloma
10.
J Nutr Biochem ; 116: 109316, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36940885

RESUMO

Polyphenols are a class of bioactive plant compounds with health-promoting properties, however, the interactions between polyphenols and pathogen infection and their cumulative impact on inflammation and metabolic health are not well understood. Here, we investigated if a subclinical parasitic infection modulates the hepatic response to dietary polyphenol supplementation in a porcine model. Pigs were fed a diet with or without 1% grape proanthocyanidins (PAC) for 28 days. During the final 14 days of the experiment, half the pigs in each dietary group were inoculated with the parasitic nematode Ascaris suum. Serum biochemistry was measured and hepatic transcriptional responses were determined by RNA-sequencing coupled with gene-set enrichment analysis. A. suum infection resulted in reduced serum phosphate, potassium, sodium, and calcium, and increased serum iron concentrations. In uninfected pigs, PAC supplementation markedly changed the liver transcriptome including genes related to carbohydrate and lipid metabolism, insulin signaling, and bile acid synthesis. However, during A. suum infection, a separate set of genes were modulated by dietary PAC, indicating that the polyphenol-mediated effects were dependent on infection status. A. suum infection strongly influenced the expression of genes related to cellular metabolism, and, in contrast to the effects of PAC, these changes were mostly identical in both control-fed and PAC-fed pigs. Thus, the hepatic response to infection was mostly unaffected by concurrent polyphenol intake. We conclude that the presence of a commonly occurring parasite substantially influences the outcome of dietary polyphenol supplementation, which may have important relevance for nutritional interventions in populations where intestinal parasitism is widespread.


Assuntos
Ascaríase , Suínos , Animais , Ascaríase/parasitologia , Transcriptoma , Dieta/veterinária , Fígado , Polifenóis/farmacologia
11.
Drug Deliv Transl Res ; 13(3): 862-882, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36223030

RESUMO

The most common form of leishmaniasis is cutaneous leishmaniasis (CL). The major difficulties in the treatment of leishmaniasis include emergence of resistance, toxicity, long-term treatment, and the high cost of the current drugs. Although the therapeutic effect of sorafenib (SF) has been demonstrated in both in vitro and in vivo models of Leishmania infection, the therapeutic applications are limited due to severe drug-related toxicity; this is, in turn, due to non-specific distribution in the body. Thus, topical delivery has the advantage of the site directed delivery of SF. This research study evaluated SF-loaded hybrid nanofibers (NFs) which were composed of polycaprolactone (PCL) and cellulose acetate (CA) for the CL topical treatment. Accordingly, SF-loaded hybrid NFs were prepared using the electrospinning method. Formulation variables including total polymer concentration, drug/polymer ratio, and CA concentration were optimized using a full factorial design. The prepared SF-loaded NFs were then characterized for morphology, diameter, encapsulation efficiency (EE)%, drug loading (DL) %, and percentage of release efficiency during a 24-h period (RE24h%); the mechanical characteristics were also considered. The physical state of the drug in the optimized NF was evaluated by the X-ray diffraction analysis. Finally, its in vivo efficacy was determined in L. major-infected mice. The optimized formulation had a smooth, cylindrical, non-beaded shape fiber with a diameter of 281.44 nm, EE of 97.96%, DL of 7.48%, RE of 51.05%, ultimate tensile strength of 1.08 MPa, and Young's moduli of 74.96 MPa. The XRD analysis also demonstrated the amorphous state of SF in NF. Further, the in vivo results displayed the higher anti-leishmanial activity of the SF-loaded hybrid NF by efficiently healing lesion and successfully reducing the parasite burden. This, thus, indicated the potential of the clinical capability of the SF-loaded hybrid NF for the effective treatment of CL.


Assuntos
Leishmaniose Cutânea , Nanofibras , Camundongos , Animais , Sorafenibe , Leishmaniose Cutânea/tratamento farmacológico , Polímeros/uso terapêutico
12.
Exp Parasitol ; 241: 108345, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35985513

RESUMO

Haemonchus contortus is a highly pathogenic and prevalent helminth that causes many deaths in sheep herds. Anthelmintics are usually employed to overcome this issue; however, they do not guarantee immediate and lasting efficacy because of the occurrence of drug-resistant parasites. Among substances that are used in scientific studies for parasitic control, essential oils are known to have different pharmacological properties. However, they demonstrate instability owing to several factors, and therefore, nanoemulsification is considered an alternative to control the instability and degradability of these compounds. The objective of this study was to evaluate the cytotoxicity of nanoemulsions containing essential oil of Eucalyptus globulus against the blood of healthy sheep and to verify their activity against the parasite H. contortus in sheep. The results presented adequate nanotechnological characteristics (diameter 72 nm, PDI 0.2, zeta -11 mV, and acidic pH) and adequate morphology. Further, the corona effect and cytotoxic profiles of the free oil and nanoemulsion against blood cells from healthy sheep were evaluated. The tests results did not present a toxicity profile. For evaluating efficacy, we observed an important anthelmintic action of the nanoemulsion containing oil in comparison to the free oil; the results demonstrate a potential role of the nanoemulsion in the inhibition of egg hatchability and the development of larvae L1 to L3 (infective stage). Based on these results, we developed an important and potential anthelmintic alternative for the control of the parasite H. contortus.


Assuntos
Anti-Helmínticos , Hemoncose , Haemonchus , Óleos Voláteis , Doenças dos Ovinos , Animais , Anti-Helmínticos/uso terapêutico , Anti-Helmínticos/toxicidade , Óleo de Eucalipto/farmacologia , Hemoncose/tratamento farmacológico , Hemoncose/parasitologia , Hemoncose/veterinária , Larva , Óleos Voláteis/química , Óleos Voláteis/toxicidade , Ovinos , Doenças dos Ovinos/tratamento farmacológico , Doenças dos Ovinos/parasitologia
13.
Environ Res ; 214(Pt 4): 114009, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36027957

RESUMO

Plant extracts' ability to collect metals and decrease metal ions makes them a superior candidate for the biosynthesis of nanoparticles; hence, they are referred to as bio-nano factories since both living and dead dried biomass are employed to produce metallic nanoparticles. The antiparasitic activity of biosynthesized copper oxide nanoparticles (CuO NPs) was examined against cow tick larvae (Rhipicephalus microplus, Haemaphysalis bispinosa, and Hippobosca maculata). These parasitic larvae were treated with various concentrations of methanolic leaf extract of A. marmelos (MLE-AM) and biosynthesized CuO NPs for 24 h. CuO NPs were synthesized quickly using A. marmelos leaf extract, and nanoparticle synthesis was identified within 15 min. The results from characteristic XRD, FTIR, SEM, EDX, and TEM analyses confirmed the biosynthesis of CuO NPs. The presence of 26-Hydroxycholesterol was discovered as the predominant chemical present in the GC-MS analysis of MLE-AM. The maximum efficacy was observed in biosynthesized CuO NPs against R. microplus larvae, H. bispinosa adults, and Hip. maculata larvae (LC50 = 4.30, 9.50, and 11.13 mg/L; and LC90 = 8.30, 19.57, and 21.65 mg/L; and 6.219, 6.547, and 2.587). Overall, the bio-fabrication of CuO NPs has the potential to develop better and safer antiparasitic control techniques.


Assuntos
Acaricidas , Nanopartículas Metálicas , Nanopartículas , Parasitos , Acaricidas/farmacologia , Animais , Antiparasitários/toxicidade , Bovinos , Cobre/toxicidade , Feminino , Larva , Nanopartículas Metálicas/toxicidade , Óxidos , Extratos Vegetais/farmacologia
14.
Elife ; 112022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35775739

RESUMO

Malaria is caused by infection of the erythrocytes by the parasites Plasmodium. Inside the erythrocytes, the parasites multiply via schizogony, an unconventional cell division mode. The inner membrane complex (IMC), an organelle located beneath the parasite plasma membrane, serving as the platform for protein anchorage, is essential for schizogony. So far, the complete repertoire of IMC proteins and their localization determinants remain unclear. Here we used biotin ligase (TurboID)-based proximity labeling to compile the proteome of the schizont IMC of the rodent malaria parasite Plasmodium yoelii. In total, 300 TurboID-interacting proteins were identified. 18 of 21 selected candidates were confirmed to localize in the IMC, indicating good reliability. In light of the existing palmitome of Plasmodium falciparum, 83 proteins of the P. yoelii IMC proteome are potentially palmitoylated. We further identified DHHC2 as the major resident palmitoyl-acyl-transferase of the IMC. Depletion of DHHC2 led to defective schizont segmentation and growth arrest both in vitro and in vivo. DHHC2 was found to palmitoylate two critical IMC proteins CDPK1 and GAP45 for their IMC localization. In summary, this study reports an inventory of new IMC proteins and demonstrates a central role of DHHC2 in governing the IMC localization of proteins during the schizont development.


Assuntos
Malária , Parasitos , Animais , Eritrócitos/parasitologia , Lipoilação , Malária/parasitologia , Parasitos/metabolismo , Plasmodium falciparum/fisiologia , Proteoma/metabolismo , Proteômica , Proteínas de Protozoários/metabolismo , Reprodutibilidade dos Testes , Esquizontes
15.
J Biol Chem ; 298(8): 102243, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35810787

RESUMO

Like many other apicomplexan parasites, Toxoplasma gondii contains a plastid harboring key metabolic pathways, including the sulfur utilization factor (SUF) pathway that is involved in the biosynthesis of iron-sulfur clusters. These cofactors are crucial for a variety of proteins involved in important metabolic reactions, potentially including plastidic pathways for the synthesis of isoprenoid and fatty acids. It was shown previously that impairing the NFS2 cysteine desulfurase, involved in the first step of the SUF pathway, leads to an irreversible killing of intracellular parasites. However, the metabolic impact of disrupting the pathway remained unexplored. Here, we generated another mutant of this pathway, deficient in the SUFC ATPase, and investigated in details the phenotypic consequences of TgNFS2 and TgSUFC depletion on the parasites. Our analysis confirms that Toxoplasma SUF mutants are severely and irreversibly impacted in division and membrane homeostasis, and suggests a defect in apicoplast-generated fatty acids. However, we show that increased scavenging from the host or supplementation with exogenous fatty acids do not fully restore parasite growth, suggesting that this is not the primary cause for the demise of the parasites and that other important cellular functions were affected. For instance, we also show that the SUF pathway is key for generating the isoprenoid-derived precursors necessary for the proper targeting of GPI-anchored proteins and for parasite motility. Thus, we conclude plastid-generated iron-sulfur clusters support the functions of proteins involved in several vital downstream cellular pathways, which implies the SUF machinery may be explored for new potential anti-Toxoplasma targets.


Assuntos
Apicoplastos , Proteínas Ferro-Enxofre , Proteínas de Protozoários , Toxoplasma , Apicoplastos/genética , Apicoplastos/metabolismo , Ácidos Graxos/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Plastídeos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Terpenos/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo
16.
Int J Parasitol ; 52(8): 509-518, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35533730

RESUMO

Parasites, similar to all other organisms, time themselves to environmental cues using a molecular clock to generate and maintain rhythms. Chronotherapeutic (timed treatment) techniques based on such rhythms offer great potential for improving control of chronic, problematic parasites. Fish lice are a key disease threat in aquaculture, with current control insufficient. Assessing the rhythmicity of fish lice transcriptomes offers not only insight into the viability of chronotherapy, but the opportunity to identify new drug targets. Here, for the first known time in any crustacean parasite, diel changes in gene transcription are examined, revealing that approximately half of the Argulus foliaceus annotated transcriptome displays significant daily rhythmicity. We identified rhythmically transcribed putative clock genes including core clock/cycle and period/timeless pairs, alongside rhythms in feeding-associated genes and processes involving immune response, as well as fish louse drug targets. A substantial number of gene pathways showed peak transcription in hours immediately preceding onset of light, potentially in anticipation of peak host anti-parasite responses or in preparation for increased feeding activity. Genes related to immune haemocyte activity and chitin development were more highly transcribed 4 h post light onset, although inflammatory gene transcription was highest during dark periods. Our study provides an important resource for application of chronotherapy in fish lice; timed application could increase efficacy and/or reduce dose requirement, improving the current landscape of drug resistance and fish health while reducing the economic cost of infection.


Assuntos
Arguloida , Doenças dos Peixes , Parasitos , Ftirápteros , Animais , Aquicultura , Arguloida/genética , Doenças dos Peixes/parasitologia , Parasitos/genética , Ftirápteros/genética , Transcriptoma
17.
mSphere ; 7(3): e0010622, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35586987

RESUMO

Some antimalarial drugs that have lost clinical usefulness have been repurposed for experimental applications. One example is sulfadiazine, an analog of p-aminobenzoic acid (pABA), which inhibits the parasite's folate synthesis pathway to block DNA synthesis. Sulfadiazine treatment of mice infected with Plasmodium yoelii and P. berghei is routinely used to enrich for gametocytes by killing asexual blood-stage parasites, but it is not well known if there are downstream effects on transmission. To determine if there was a significant effect of sulfadiazine exposure upon transmission, we transmitted Plasmodium yoelii (17XNL strain) parasites to Anopheles stephensi mosquitoes and evaluated the prevalence and intensity of infection under different sulfadiazine treatment conditions. We observed that there was a reduction in both the number of mosquitoes that became infected and in the intensity of infection if parasites were exposed to sulfadiazine in the mouse host or mosquito vector. Sulfadiazine treatment could be marginally overcome if mosquitoes were provided fresh pABA. In contrast, we determined that gametocytes exposed to sulfadiazine could develop into morphologically mature ookinetes in vitro, thus sulfadiazine exposure in the host may be reversible if the drug is washed out and the parasites are supplemented with pABA in the culture media. Overall, this indicates that sulfadiazine dampens host-to-vector transmission and that this inhibition can only be partially overcome by exposure to fresh pABA in vivo and in vitro. Because gametocytes are of great interest for developing transmission-blocking interventions, we recommend the use of less disruptive approaches for gametocyte enrichment. IMPORTANCE In this work, we have uncovered a substantial problem with how many studies of the sexual stages of rodent malaria parasites are conducted. Briefly, the isolation of sexual blood-stage Plasmodium parasites, or gametocytes, is essential to study pretransmission and transmission-stage biology of malaria. A routine method for the isolation of this specific stage in rodent-infectious malaria models is drug treatment with sulfadiazine, an antifolate that selectively kills actively replicating asexual blood-stage parasites but not gametocytes. Thus, researchers use this as a convenient way to produce highly enriched gametocyte samples. However, in this work, we describe how this standard drug selection with sulfadiazine not only kills asexual blood-stage parasites but also substantially impacts host-to-vector transmission.


Assuntos
Anopheles , Malária , Plasmodium yoelii , Ácido 4-Aminobenzoico , Animais , Anopheles/parasitologia , Malária/parasitologia , Camundongos , Sulfadiazina/farmacologia , Sulfadiazina/uso terapêutico
18.
Sci Total Environ ; 834: 155299, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35439509

RESUMO

Green nanoparticles (GNPs), mainly green silver nanoparticles (Ag NPs), have been recommended as sustainable and eco-friendly technologies to control vectors and intermediate hosts. The aim of the current study is to carry out a historical and systematic literature review about the use of green plant-based Ag NPs (GP-Ag NPs) to control medically important mosquito, tick and gastropods. Data about the number of studies published per year, geographical distribution of studies (mailing address of the corresponding author), synthesis type (plant species, plant structure and extract types), physicochemical properties of GP-Ag NPs, experimental designs, developmental stages and the toxic effects on mosquitoes, ticks and gastropods were summarized and discussed. Revised data showed that GP-Ag NPs synthesis and toxicity in mosquitoes, ticks and snails depend on plant species, plant part, extract types, exposure condition and on the analyzed species. GP-Ag NPs induced mortality, tissue damage, biochemical and behavioral changes in mosquitoes and reduced their fecundity, oviposition, egg hatching and longevity. Ticks exposed to GP-Ag NPs presented increased mortality and reduced oviposition, while on snails, studies demonstrated mortality, oxidative stress, and DNA damage. Immune responses were also observed in snails after their exposure to GP-Ag NPs. GP-Ag NPs reduced the reproduction and population of several vectors and intermediate hosts. This finding confirms their potential to be used in gastropod control programs. Future studies about current gaps in knowledge are recommended.


Assuntos
Culicidae , Nanopartículas Metálicas , Carrapatos , Animais , Feminino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Mosquitos Vetores , Extratos Vegetais/química , Plantas , Prata/química
19.
J Nematol ; 542022.
Artigo em Inglês | MEDLINE | ID: mdl-35386746

RESUMO

The many decades during which the cultivation of Cannabis sativa (hemp) was strongly restricted by law resulted in little research on potential pathogenic nematodes of this increasingly important crop. The primary literature was searched for hemp-nematode papers, resulting in citations from 1890 through 2021. Reports were grouped into two categories: (i) nematodes as phytoparasites of hemp, and (ii) hemp and hemp products and extracts for managing nematode pests. Those genera with the most citations as phytoparasites were Meloidogyne (root-knot nematodes, 20 papers), Pratylenchus (lesion nematodes, 7) and Ditylenchus (stem nematodes, 7). Several Meloidogyne spp. were shown to reproduce on hemp and some field damage has been reported. Experiments with Heterodera humuli (hop cyst nematode) were contradictory. Twenty-three papers have been published on the effects of hemp and hemp products on plant-parasitic, animal-parasitic and microbivorous species. The effects of hemp tissue soil incorporation were studied in five papers; laboratory or glasshouse experiments with aqueous or ethanol extracts of hemp leaves accounted for most of the remainder. Many of these treatments had promising results but no evidence was found of large-scale implementation. The primary literature was also searched for chemistry of C. sativa roots. The most abundant chemicals were classified as phytosterols and triterpenoids. Cannabinoid concentration was frequently reported due to the interest in medicinal C. sativa. Literature on the impact of root-associated chemicals on plant parasitic nematodes was also searched; in cases where there were no reports, impacts on free-living or animal parasitic nematodes were discussed.

20.
Genetica ; 150(2): 129-144, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35419766

RESUMO

Meloidogyne incognita (Root-knot nematode) and Alternaria alternata (fungus) were among the dominant parasites of the medicinal plant Withania somnifera. Despite the fatal nature of their infection, a comprehensive study to explore their evolution and adaptation is lacking. The present study elucidates evolutionary and codon usage bias analysis of W. somnifera (host plant), M. incognita (root-knot nematode) and A. alternata (fungal parasite). The results of the present study revealed a weak codon usage bias prevalent in all the three organisms. Based on the nucleotide analysis, genome of W. somnifera and M. incognita was found to be A-T biased while A. alternata had GC biased genome. We found high similarity of CUB pattern between host and its nematode pathogen as compared to the fungal pathogen. Inclusively, both the evolutionary forces influenced the CUB in host and its associated pathogens. However, neutrality plot indicated the pervasiveness of natural selection on CUB of the host and its pathogens. Correspondence analysis revealed the dominant effect of mutation on CUB of W. somnifera and M. incognita while natural selection was the main force affecting CUB of A. alternata. Taken together the present study would provide some prolific insight into the role of codon usage bias in the adaptability of pathogens to the host's environment for establishing parasitic relationship.


Assuntos
Tylenchoidea , Withania , Alternaria/genética , Animais , Uso do Códon , Tylenchoidea/genética , Withania/genética , Withania/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA