Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Curr Drug Metab ; 24(1): 28-69, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36650621

RESUMO

Herb medicine has a long history of application and is still used worldwide. With the development of complementary and alternative medicine, the interaction between herb and drugs has attracted more and more attention. Herb-drug interactions (HDI) could cause decreased efficiency, increased toxicity, and affect the drug absorption and disposition processes due to the interference of their pharmacological or pharmacokinetic effects. Hence, the mechanisms and results of herb-pharmacokinetic interactions should be comprehensively summarized. Here, we have summarized the mechanisms of HDI and pharmacokinetic interactions in the last ten years based on searching on PubMed, Science Direct, and Web of Science with different keywords. Besides, the pharmacokinetic interactions were related to nine commonly used herbs and drugs, including Ginseng, Salvia miltiorrhiza, Ginkgo biloba, Garlic, Coptis chinensis, St. John's wort, Ginger, Licorice, Silythistle and Fructus Schisandrae. This review provides an overview of HDI to provide a reference for the rational and safe clinical use of herbs and drugs.


Assuntos
Produtos Biológicos , Plantas Medicinais , Humanos , Interações Ervas-Drogas
2.
J Ethnopharmacol ; 303: 115945, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435407

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Polygoni Multiflori Radix Praeparata (Zhiheshouwu) has been a Wudang Taoist medicine for tonifying the liver and kidney, resolving turbidity and reducing lipid. Emodin is one of the active anthraquinones in Zhiheshouwu. Our previous studies showed that emodin (EM) and the other anthraquinones in Zhiheshouwu extract (HSWE) exerted similar inhibitory effects on liver cancer cells in vitro. However, it is still unknown if the other anthraquinones enhance pharmacokinetics (PK) of EM in HSWE in vivo. AIM OF THE STUDY: In this study, we compared the PK characteristics of EM alone with that in Zhiheshouwu aiming to explore which anthraquinones in HSWE contribute to the changed PK of EM in rats. MATERIALS AND METHODS: Quality control of HSWE was determined using high performance liquid chromatography (HPLC). The ratios of emodin to other anthraquinones, physcion (PH), chrysophanol (CH), rhein (RH), aloe-emodin (AE), emodin-8-O-ß-D-glycoside (EMG), physcion-1-O-ß-D-glycoside (PHG) and chrysophanol-8-O-ß-D-glycoside (CHG) in HSWE were determined and analyzed using UPLC combined with tandem mass spectrometry (UPLC/MS). The PK parameters and intestinal tissue concentration of EM alone, EM in HSWE, or with other anthraquinones in SD rats were analyzed using UPLC/MS. RESULTS: The quality of the Zhiheshouwu samples met the quality standard of the Chinese Pharmacopoeia (Version 2020). The PK results showed that compared with EM alone, Cmax (239.90 ± 146.71 vs. 898.46 ± 291.62, P < 0.001), Tmax (0.26 ± 0.15 vs. 12.55 ± 1.33, P < 0.001), AUC0-t (1575.09 ± 570.46 vs. 12154.96 ± 5394.25, P < 0.001), and AUC0-∞ (4742.51 ± 1837.62 vs. 37131.34 ± 21647.39, P < 0.001) of EM in HSWE were decreased due to PH and EMG, while the values of Vd (380.75 ± 217.74 vs. 11.75 ± 7.35, P < 0.001), T1/2 (10.81 ± 1.99 vs. 6.65 ± 2.76, P < 0.05) and CL (19.30 ± 7.82 vs. 2.78 ± 1.88, P < 0.001) of EM in HSWE were increased due to PH and AE. In addition, the intestinal tissue concentration of emodin in HSWE was decreased compared with that of EM alone in 20 and 780 min (25.37 ± 5.98 vs. 43.29 ± 4.16 and 26.72 ± 4.03 vs. 43.40 ± 14.19, respectively. P < 0.05) dominantly due to RH and PH. CONCLUSION: In conclusion, compared with treatment of EM alone, the AUC0-t value of EM in HSWE was decreased with different ways in rats. PH shortened Tmax, and increased Vd and CL. While AE prolonged T1/2 of EM. This indicated that the other anthraquinones in HSWE changed the PK of EM in rats and participated in the complex effects of EM on liver cancer. Besides the other anthraquinones, other components (e.g., 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucoside) in Zhiheshouwu may contribute in the pharmacokinetic and pharmacodynamic interactions with EM for anti-liver cancer.


Assuntos
Emodina , Polygonum , Ratos , Animais , Emodina/farmacocinética , Polygonum/química , Ratos Sprague-Dawley , Antraquinonas , Glicosídeos , Cromatografia Líquida de Alta Pressão
3.
Nat Prod Res ; 37(22): 3758-3765, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36469694

RESUMO

Acute respiratory distress syndrome (ARDS) is a critical form of acute lung injury (ALI). Here, we investigated the effect of a defined combination of ten pure phytochemicals in equal proportions of weight (NPM) from plants, recommended by Ayurveda for any protective action against lipopolysaccharide (LPS)-induced ALI. Results indicate that NPM markedly improved protein and neutrophil contents, myeloperoxidase and hydroxyproline levels, oxidative stress markers (glutathione and malonaldehyde), inflammatory cytokines, and genes (IL-6, TNF-α, TGF-ß, and NF-κB/IκBα) in BALF/lung tissue. The histopathological examination of the lung revealed the shielding effect of NPM against ALI. NPM exhibited a protective effect on the lung by reducing oxidative stress and inhibiting inflammation. A substantial drop in favipiravir's oral exposure was observed in ALI-state compared to normal-state, but oral exposure upon NPM treatment in ALI-state followed similar behaviour of favipiravir alike normal-state without NPM treatment. Overall, results offer potential insight into Ayurvedic recommendations for immunity boosting during ALI situations.

4.
Biomed Pharmacother ; 156: 113938, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411625

RESUMO

Valproic acid (VPA) is a widely used antiepileptic drug, and the herbal extract of Gastrodia elata exerts an anticonvulsant effect. However, few studies have investigated the pharmacokinetic and pharmacodynamic interactions between G. elata extract and VPA. We hypothesize that G. elata extract increases the VPA levels in the brain and enhances the antiepileptic effects of VPA, and this synergistic effect is mediated by transporters at the bloodbrain barrier (BBB). We performed microdialysis on pilocarpine-induced epileptic model rats in vivo to investigate this hypothesis. The results demonstrated that cotreatment with G. elata extract and VPA ameliorated drug-resistant epilepsy by increasing the VPA levels in the brain. In addition, G. elata extract and VPA exerted synergistic anticonvulsive effects to decrease the seizure severity by protecting neurons in the hippocampus and altering the DOPAC and 5-HT levels. However, these phenomena were partially blocked by the organic anion transporter peptide (OATP) inhibitor cyclosporine A (CsA; 20 mg/kg, i.p.), which demonstrated that the increase in the VPA level in the brain was modulated by the transporter OATP. This study provides a comprehensive strategy for assessing the interaction between traditional medicines and conventional antiepileptic drugs in a status epilepticus animal model.


Assuntos
Gastrodia , Fármacos Neuroprotetores , Transportadores de Ânions Orgânicos , Animais , Ratos , Ácido Valproico/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
5.
Toxicol Appl Pharmacol ; 449: 116113, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35691369

RESUMO

Hydroxyurea (HU) is the key drug to treat Sickle cell anemia (SCA). However, its treatment is associated with the liability of myelosuppression. The present study aimed to investigate the potential of epicatechin as a supplementation therapy for the symptomatic management of SCA under HU therapy. A panel of experiments were performed at first to observe epicatechin's effect on sickling and hemolytic behaviour using SCA patient's blood (ex vivo). Thereafter, the effect of HU in the presence or absence of epicatechin was investigated on cytokine inhibition in rat splenocytes (ex vivo) as well as alterations in hematological parameters and kidney function tests in rats (in vivo). Then, any effect of epicatechin on pharmacokinetic modulation of HU in rats was elucidated along with the underlying mechanism using a battery of in vitro and in vivo models. Epicatechin exhibited potent action on anti-sickling, polymerization inhibition, and erythrocyte membrane stability. It did not show any inherent hemolytic activity and reduced TNF-α level during concomitant administration with HU. Based on hematological changes in rats, epicatechin treatment aided to the beneficial effect of HU and prevented the treatment-linked disadvantageous effects of HU like neutropenia. The plasma exposure of HU was significantly augmented in rats upon simultaneous oral administration of epicatechin with HU. Down-regulation of Oatp1b2 and catalase possibly contributed to the pharmacokinetic interaction of HU. Epicatechin is found to be a promising candidate and should be explored at a reduced dose level of HU towards offsetting the dose-dependent myelosuppressive effect of HU under the frame of supplementation therapy in SCA.


Assuntos
Anemia Falciforme , Catequina , Anemia Falciforme/complicações , Anemia Falciforme/tratamento farmacológico , Animais , Catequina/farmacologia , Catequina/uso terapêutico , Citocinas , Membrana Eritrocítica , Hidroxiureia/farmacocinética , Hidroxiureia/toxicidade , Ratos
6.
Biomed Pharmacother ; 145: 112466, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34839255

RESUMO

Tamoxifen, a widely prescribed medication in premenopausal women diagnosed with hormone-dependent breast cancer, is potentially co-prescribed with Hedyotis diffusa (H. diffusa), particularly in Taiwan. However, no related report has investigated the drug-herb interaction of H. diffusa on the pharmacokinetics of tamoxifen and its metabolites. In the present study, male Sprague-Dawley rats were administered different doses of H. diffusa extract for 5 consecutive days prior to the administration of tamoxifen (10 mg/kg). A validated ultra-liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) system was developed to monitor tamoxifen, 4-hydroxytamoxifen, N-desmethyltamoxifen, and endoxifen in rat plasma. Pharmacokinetic results demonstrated that the area under curves (AUCs) of tamoxifen and the relative bioavailability (%) of tamoxifen were dose-dependently decreased (31-68%) by pre-treatment with H. diffusa extract (3 g/kg and 6 g/kg). In addition, the conversion ratio of 4-hydroxytamoxifen was downregulated (0.5-fold change) and the N-desmethyltamoxifen conversion ratio was upregulated (2-fold change) by high-dose H. diffusa extract. As a result, the relative bioavailability and biotransformation changes affect the clinical efficacy of tamoxifen treatment. These preclinical findings reveal a hitherto unreported interaction between tamoxifen and H. diffusa extract that has implications for their therapeutic efficacy in treating breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Hedyotis , Interações Ervas-Drogas , Extratos Vegetais/farmacologia , Tamoxifeno/farmacocinética , Animais , Disponibilidade Biológica , Biotransformação , Cromatografia Líquida/métodos , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/farmacologia , Ratos , Ratos Sprague-Dawley , Tamoxifeno/análogos & derivados , Espectrometria de Massas em Tandem/métodos
7.
J Pharm Biomed Anal ; 204: 114276, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34325247

RESUMO

Bromelain, the aqueous extract of pineapple, has been used as a food supplement with reported nutritional and therapeutic benefits. Bromelain has anti-cancer, anti-inflammatory, antithrombotic, and fibrinolytic effects. Anaplastic lymphoma kinase (ALK) inhibitors, including alectinib (ALC), ceritinib (CER), and crizotinib (CRZ), have been efficiently used in the management of non-small cell lung cancer (NSCLC). The solubility of ALC, CER, and CRZ is much higher at low acidic pH (pH 1) and it decreases as the pH increases affecting their absorption with a subsequent decrease in their bioavailability. It was thought that the intake of bromelain could result in a decrease in the bioavailability of ALC, CER, and CRZ due to bromelain-induced alkalizing effect following digestion. On the contrary, bromelain could possibly increase plasma exposure of the cited drugs due to its known muco-permeation enhancing effect. The therapeutic-anticancer effect of bromelain can be possibly increased/enhanced with concomitant intake of other anticancer medications or it can add to the value of food supplements for its known nutritional benefits. Thus, this work aims at studying the possibility of any PK interaction when bromelain was taken while on ALC/CER/CRZ therapy. In this work, a new UPLC-MS/MS method was developed and validated for the simultaneous determination of ALC, CER, and CRZ in rat plasma. Further application of the proposed method was performed to test the possibility of the PK interaction between bromelain and the selected ALK inhibitors in Wistar rats. Simple protein precipitation with acetonitrile was used for sample preparation. Chromatographic analysis was performed on Waters BEH™ C18 column with a mixture of acetonitrile/water containing 0.1 % formic acid (70: 30, v/v) as the mobile phase. The method permitted the analysis of ALC, CER, and CRZ in concentration ranges of 2-200, 0.4-200, and 4.0-200 ng/mL, respectively. Bromelain administration caused a significant decrease in plasma levels of CER and CRZ with lowered Cmax, AUC0-t and AUC0-∞, along with an increase in the apparent clearance. However, no significant effect was noticed with ALC. Thus, attention should be paid to avoid the intake of bromelain with CER or CRZ.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Preparações Farmacêuticas , Quinase do Linfoma Anaplásico , Animais , Bromelaínas , Carbazóis , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Crizotinibe , Piperidinas , Inibidores de Proteínas Quinases , Pirimidinas , Ratos , Ratos Wistar , Sulfonas , Espectrometria de Massas em Tandem
8.
Biomed Pharmacother ; 138: 111459, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33706132

RESUMO

Silymarin is a mixture of flavonolignans isolated from the fruit of milk thistle (Silybum marianum (L.) Gaertner). Milk thistle extract is the active ingredient of several medications and dietary supplements to treat liver injury/diseases. After the oral administration, flavonolignans are extensively biotransformed, resulting in the formation of sulfate and/or glucuronide metabolites. Previous studies demonstrated that silymarin components form stable complexes with serum albumin and can inhibit certain cytochrome P450 (CYP) enzymes. Nevertheless, in most of these investigations, silybin was tested; while no or only limited information is available regarding other silymarin components and metabolites. In this study, the interactions of five silymarin components (silybin A, silybin B, isosilybin A, silychristin, and 2,3-dehydrosilychristin) and their sulfate metabolites were examined with human serum albumin and CYP (2C9, 2C19, 2D6, and 3A4) enzymes. Our results demonstrate that each compound tested forms stable complexes with albumin, and certain silymarin components/metabolites can inhibit CYP enzymes. Most of the sulfate conjugates were less potent inhibitors of CYP enzymes, but 2,3-dehydrosilychristin-19-O-sulfate showed the strongest inhibitory effect on CYP3A4. Based on these observations, the simultaneous administration of high dose silymarin with medications should be carefully considered, because milk thistle flavonolignans and/or their sulfate metabolites may interfere with drug therapy.


Assuntos
Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Albumina Sérica Humana/metabolismo , Silimarina/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas/fisiologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Ligação Proteica/fisiologia , Silimarina/química , Silimarina/farmacologia , Sulfatos/química , Sulfatos/metabolismo , Sulfatos/farmacologia
9.
Xenobiotica ; 51(6): 625-635, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33539218

RESUMO

CYP2E1 is directly or indirectly involved in the metabolism of ethanol and endogenous fatty acids but it plays a major role in the bio-activation of toxic substances that produce reactive metabolites leading to hepatotoxicity. Therefore, identification of CYP2E1 inhibitor from bioflavonoids class having useful pharmacological properties has dual benefit regarding avoidance of severe food-drug/nutraceutical-drug interaction and scope to develop a phytotherapeutics through an intended pharmacokinetic interaction.In the present study, we aimed to identify CYP2E1 inhibitor from experimental bioflavonoids which are unexplored for CYP2E1 inhibition till date using in-silico, in-vitro and in-vivo approaches.Results of in-vitro CYP2E1 inhibitory studies using CYP2E1-mediated chlorzoxazone 6-hydroxylation in human liver microsomes showed that glabridin have the highest potential than fisetin, epicatechin, nobiletin, and chrysin to inhibit CYP2E1 enzyme. Mechanistic investigations indicate that glabridin is a competitive CYP2E1 inhibitor. Molecular docking study results demonstrate that glabridin strongly interacted with the active site of human CYP2E1 enzyme. Pharmacokinetics of a CYP2E1 substrate in mice model indicates a significant alteration of chlorzoxazone and 6-hydroxychlorzoxazone plasma levels in the presence of glabridin. Further studies are needed to confirm the results at clinical level.Overall, glabridin is found to be a potential CYP2E1 inhibitor.


Assuntos
Citocromo P-450 CYP2E1 , Isoflavonas , Clorzoxazona , Isoflavonas/farmacologia , Microssomos Hepáticos , Simulação de Acoplamento Molecular , Fenóis
10.
J Oncol Pharm Pract ; 27(4): 1000-1004, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32878553

RESUMO

INTRODUCTION: Pharmacokinetic interaction of high-dose methotrexate (MTX) and other concomitantly administered renally secreted medicinal products may lead to insufficient methotrexate serum level decrease and significant MTX toxicity. CASE REPORT: We report the case of an 18-year-old male patient treated with high-dose MTX for an osteosarcoma and with high-dose piperacillin-tazobactam at the same time. MTX serum levels were severely elevated 24 hours after the MTX infusion and did not decrease in accordance with the specific calcium folinate rescue protocol. The patient experienced renal failure accompanied by neurological symptoms, most consistent with MTX-related renal and CNS toxicity.Management and outcome: After discontinuation of piperacillin-tazobactam, intensified calcium folinate rescue therapy, and IV hydration, the MTX serum levels decreased appropriately, and toxicity symptoms resolved. DISCUSSION: Severe MTX-related toxicity, caused by drug-drug interaction, suggests that the concomitant use of high-dose MTX and high-dose piperacillin-tazobactam should be avoided generally.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Metotrexato/efeitos adversos , Síndromes Neurotóxicas , Osteossarcoma/tratamento farmacológico , Piperacilina/efeitos adversos , Insuficiência Renal/induzido quimicamente , Adolescente , Antibacterianos/administração & dosagem , Antibacterianos/efeitos adversos , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/efeitos adversos , Neoplasias Ósseas/diagnóstico , Interações Medicamentosas , Humanos , Masculino , Metotrexato/administração & dosagem , Síndromes Neurotóxicas/diagnóstico , Osteossarcoma/diagnóstico , Piperacilina/administração & dosagem , Insuficiência Renal/diagnóstico
11.
J Ethnopharmacol ; 269: 113711, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33352242

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: EGb 761 is a standardized dry extract of Ginkgo biloba L. leaves traditionally used by Eastern Asia and has been associated with beneficial effects on neurodegeneration disorders, including Alzheimer's disease. AIM OF THE STUDY: Since beneficial interactions between EGb 761 and donepezil have been observed in previous clinical studies, the current study was proposed aiming to further explore related mechanisms from both pharmacokinetics and pharmacodynamics aspects. MATERIALS AND METHODS: Pharmacodynamic interactions were studied in scopolamine-induced cognitive impairment rats received two-weeks treatment of vehicle, EGb 761 and/or donepezil by the Morris water maze test and ex vivo evaluation of biomarkers of cholinergic transmission and oxidative stress in rat brain. In the meantime, pharmacokinetic profiles of donepezil and bilobalide were obtained and compared among all treatment groups. In addition, impact of the bioavailable EGb 761 components on donepezil brain penetration was evaluated with the hCMEC/D3 cell monolayer model. RESULTS: Scopolamine-induced rats with co-treatment of EGb 761 and donepezil had significantly improved cognitive function in the Morris water maze test with increased brain levels of superoxide dismutase and decreased brain levels of acetylcholinesterase and malondialdehyde than that with treatment of only EGb 761 or donepezil. Despite such beneficial pharmacodynamics outcomes, the two-week co-treatment of EGb 761 and donepezil did not alter the plasma pharmacokinetics and brain uptake of donepezil or bilobalide, which was further verified in the hCMEC/D3 monolayer model. CONCLUSION: Co-administration of EGb 761 and donepezil exerted better anti-amnestic effect via further enhanced pro-cholinergic and antioxidative effects of EGb 761 or donepezil in scopolamine-induced cognitive impairment rat without alteration in their systemic/brain exposure.


Assuntos
Amnésia/tratamento farmacológico , Antioxidantes/farmacologia , Colinérgicos/farmacologia , Donepezila/farmacologia , Nootrópicos/farmacologia , Extratos Vegetais/farmacologia , Acetilcolinesterase/efeitos dos fármacos , Animais , Antioxidantes/farmacocinética , Antioxidantes/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular , Colinérgicos/sangue , Colinérgicos/farmacocinética , Colinérgicos/uso terapêutico , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Ciclopentanos/sangue , Ciclopentanos/farmacocinética , Ciclopentanos/farmacologia , Ciclopentanos/uso terapêutico , Modelos Animais de Doenças , Donepezila/sangue , Donepezila/farmacocinética , Donepezila/uso terapêutico , Quimioterapia Combinada , Furanos/sangue , Furanos/farmacocinética , Furanos/farmacologia , Furanos/uso terapêutico , Ginkgo biloba , Ginkgolídeos/sangue , Ginkgolídeos/farmacocinética , Ginkgolídeos/farmacologia , Ginkgolídeos/uso terapêutico , Humanos , Masculino , Malondialdeído/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Nootrópicos/sangue , Nootrópicos/farmacocinética , Nootrópicos/uso terapêutico , Extratos Vegetais/sangue , Extratos Vegetais/farmacocinética , Extratos Vegetais/uso terapêutico , Ratos Wistar , Superóxido Dismutase/metabolismo
12.
J Ethnopharmacol ; 262: 113151, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32736050

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Radix Salvia Miltiorrhiza (Danshen) and Radix Pueraria Lobate (Gegen) are officially listed in the Chinese Pharmacopoeia and have long been used together as a Compound Chinese Traditional Medicine (CCTM) for treatment of coronary heart diseases, which are often co-administered with aspirin or warfarin to patients suffering from cardiovascular diseases. AIM OF STUDY: Since significant pharmacokinetic and pharmacodynamic interactions between Danshen-Gegen (DG) formula and aspirin/warfarin have been observed in our previous rat studies, the current study was proposed aiming to further verify such pharmacokinetic and pharmacodynamic interactions in healthy human subjects and explore related mechanisms. MATERIALS AND METHODS: A 5-day, multiple dose, five-session clinical trial has been carried out (n = 14) with 2-week washout periods between sessions, during which the subjects would receive different combinations of the medications. Plasma samples were collected for pharmacokinetic evaluation, and whole blood samples were collected for pharmacodynamic evaluation. In addition, an in-vitro mechanistic study is conducted to investigate the role of danshensu on the anti-thrombotic and anti-platelet aggregation effects of warfarin and aspirin respectively. RESULTS: Significant pharmacokinetic and pharmacodynamic herb-drug interactions were observed in healthy human subjects. pharmacokinetically, co-administration of DG with aspirin or warfarin could lead to a moderately increased AUC0→t of aspirin and a decreased AUC0→t of 7-hydroxyl warfarin respectively. The systemic exposure of danshensu (DSS, the marker component of DG) would be significantly increased after co-administration with warfarin. Pharmacodynamically, a reduction in systemic thromboxane B2 concentration was noticed after administration of DG with aspirin, which could be associated with the increased systemic exposure of aspirin and the synergistic effect of danshensu, aspirin and salicylic acid on cyclooxygenase (COX) inhibition. An offset on the warfarin induced soluble thrombomodulin induction was observed after its co-administration with DG, which could be partially attributed to the COX-2 inhibition effect of danshensu. CONCLUSION: Our results indicated that co-administration of DG with aspirin/warfarin would lead to significant pharmacokinetic and pharmacodynamic herb-drug interactions in healthy human subjects.


Assuntos
Aspirina/sangue , Medicamentos de Ervas Chinesas/metabolismo , Interações Ervas-Drogas/fisiologia , Pueraria , Salvia miltiorrhiza , Varfarina/sangue , Adulto , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/sangue , Anticoagulantes/administração & dosagem , Anticoagulantes/sangue , Aspirina/administração & dosagem , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/isolamento & purificação , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Varfarina/administração & dosagem , Adulto Jovem
13.
Artigo em Inglês | MEDLINE | ID: mdl-32862024

RESUMO

Hydroxyurea (HU) is the first-ever approved drug by the United States Food and Drug Administration (USFDA) for the management of sickle cell anemia (SCA). However, its treatment is associated with severe liabilities like myelosuppression. Therefore, the aim of the present investigation was to identify phytotherapeutics through assessment of the pharmacokinetic interaction of HU with dietary bioflavonoids followed by elucidation of the same phytoconstituents for their ability to protect HU-induced toxicity in hematological profile. In this direction, we developed a sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to estimate HU in rat plasma at first and then validated as per USFDA guidelines as there is no such precedent in the literature. A simple plasma protein precipitation method was employed for plasma sample processing. The separation was achieved in gradient mode using Syncronis HILIC column (100 × 4.6 mm, 3 µm) with a mobile phase composition of water containing 0.1% (v/v) formic acid and acetonitrile. Ionization was carried out in positive heated-electrospray ionization (H-ESI) mode. Detection was done in selected reaction monitoring (SRM) mode with m/z 77.1 > 44.4 and m/z 75.1 > 58.2 for HU and methylurea (internal standard), respectively. All the validation parameters were within the acceptable criteria. This bioanalytical method was found to be useful in assessing the preclinical pharmacokinetic interaction of HU. Concomitant administration of chrysin or quercetin with HU in rats significantly enhanced the oral exposure of HU. Lowering of total red blood cells (RBC) and hemoglobin (Hb) level by HU in rats was significantly improved in the presence of chrysin, quercetin, and naringenin. Overall, both chrysin and quercetin showed potential to be a promising phytotherapeutics for concomitant therapy with HU to combat its dose-dependent side effects.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Hidroxiureia/sangue , Hidroxiureia/farmacocinética , Espectrometria de Massas em Tandem/métodos , Animais , Interações Medicamentosas , Flavonoides/sangue , Flavonoides/farmacocinética , Hidroxiureia/química , Modelos Lineares , Masculino , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
J Pharm Pharmacol ; 72(7): 979-989, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32285478

RESUMO

OBJECTIVES: This study aimed to evaluate the inhibitory effects of Huosu Yangwei oral liquid (HSYW) on cytochrome P450 enzymes (CYPs) and to investigate whether this herbal medicine could modulate the pharmacokinetic behaviour of the co-administered CYP-substrate drug apatinib. METHODS: Cytochrome P450 enzymes inhibition assays were conducted in human liver microsomes (HLM) by a LC-MS/MS method for simultaneous determination of the oxidative metabolites of eight probe substrates for hepatic CYPs. The modulatory effects of HSYW on the oxidative metabolism of apatinib were investigated in both HLM and rat liver microsomes (RLM). The influences of HSYW on the pharmacokinetic behaviour of apatinib were investigated in rats. KEY FINDINGS: Huosu Yangwei oral liquid inhibited all tested CYPs in human liver preparations, with the IC50 values ranged from 0.3148 to 2.642 mg/ml. HSYW could also inhibit the formation of two major oxidative metabolites of apatinib in liver microsomes from both human and rat. In-vivo assays demonstrated that HSYW could significantly prolong the plasma half-life of apatinib by 7.4-fold and increase the AUC0-inf (nm·h) of apatinib by 43%, when HSYW (10 ml/kg) was co-administered with apatinib (10 mg/kg) in rats. CONCLUSIONS: Huosu Yangwei oral liquid could inhibit mammalian CYPs and modulated the metabolic half-life of apatinib both in vitro and in vivo.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacocinética , Medicamentos de Ervas Chinesas/farmacocinética , Microssomos Hepáticos , Piridinas/farmacocinética , Animais , Antineoplásicos/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Ervas-Drogas , Humanos , Desintoxicação Metabólica Fase I , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Oxigenases de Função Mista/metabolismo , Ratos
15.
Chin J Nat Med ; 18(3): 234-240, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32245594

RESUMO

Azithromycin and Chinese medicine forsythia are often used together to treat pediatric mycoplasma infections in China. We aimed to investigate the pharmacokinetic interaction of Forsythia suspensa extract and azithromycin after single and co-intravenous administration in rats. Male Sprague-Dawley rats received single (Forsythia suspensa extract or azithromycin) treatment or co-administration of Forsythia suspensa extract and azithromycin. Blood samples were collected at scheduled times, and drug concentrations were determined by HPLC-UV or HPLC-MS/MS methods. Both non-compartmental analyses and nonlinear mixed-effects modeling approaches were applied to fit pharmacokinetic data and evaluate the impact of co-administration. Pharmacokinetic analysis showed that the area under the curve of azithromycin and forsythiaside increased, and clearance decreased significantly (P < 0.05), after co-administration. The in vivo behavior of both azithromycin and forsythiaside could be appropriately described by the two-compartmental model. The final population pharmacokinetic model indicated that co-administration decreased the central volume of azithromycin and forsythiaside clearance significantly. Co-administration of Forsythia suspensa extract and azithromycin significantly decreased the clearance and increased exposure for both drugs. Pharmacokinetic data suggest that drug co-administration may increase efficiency.


Assuntos
Azitromicina/farmacocinética , Glicosídeos/farmacocinética , Extratos Vegetais/farmacocinética , Administração Intravenosa , Animais , Área Sob a Curva , Quimioterapia Combinada , Forsythia/química , Masculino , Ratos Sprague-Dawley
16.
BMC Complement Med Ther ; 20(1): 61, 2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32087732

RESUMO

BACKGROUND: Pharmacokinetic interaction is one of the most important indices for the evaluation of the compatibility of herbal medicines. Both Gancao (Glycyrrhizae Radix et Rhizoma) and Huanglian (Coptidis Rhizoma) are commonly used traditional Chinese medicines (TCMs). In this study, the influence of Gancao on the pharmacokinetics of Huanglian was systematically studied by using berberine as a pharmacokinetic marker. METHODS: Extracts of the herbal pieces of Huanglian and the herb pair (Huanglian plus Gancao) were prepared with boiling water. The concentration of berberine in the samples was analyzed using liquid chromatography-mass spectrometry. The total amounts of berberine in all extract samples were compared. Comparative pharmacokinetic studies of Huanglian and the herb pair were conducted in ICR mice. In vitro berberine absorption and efflux were studied using mice gut sacs. The equilibrium solubility of berberine in the extracts was determined. The in vitro dissolution of berberine was comparatively studied using a rotating basket method. RESULTS: Gancao significantly reduced berberine exposure in the portal circulation (425.8 ng·h/mL vs. 270.4 ng·h/mL) and the liver (29,500.8 ng·h/mL vs. 15,422.4 ng·h/mL) of the mice. In addition, Gancao decreased the peak concentration (Cmax) of berberine in the portal circulation (104.3 ng·h/mL vs. 76.5 ng·h/mL) and liver (4926.1 ng·h/mL vs. 2642.8 ng·h/mL) of mice. Significant influences of Gancao on the amount of berberine extracted (32% reduction), the solubility of berberine (34.7% compared with the control group), and dissolution (88.7% vs. 66.1% at 15 min in acid buffer and 68% vs. 51.8% at 15 min in phosphate buffer) were also revealed. Comparative pharmacokinetic studies in ICR mice indicated that the formation of sediment was unfavorable in terms of berberine absorption (345.3 ng·h/mL vs. 119.8 ng·h/mL). CONCLUSIONS: Gancao was able to reduce intestinal absorption and in vivo exposure of berberine in Huanglian via the formation of sediment, which caused reductions in the extracted amount, solubility, and dissolution of berberine.


Assuntos
Berberina/farmacocinética , Medicamentos de Ervas Chinesas/farmacocinética , Extratos Vegetais/farmacocinética , Animais , Cromatografia Líquida , Quimioterapia Combinada , Feminino , Glycyrrhiza , Masculino , Espectrometria de Massas , Medicina Tradicional Chinesa , Camundongos Endogâmicos ICR , Raízes de Plantas
17.
Complement Ther Med ; 46: 87-94, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31519293

RESUMO

BACKGROUND: caffeine is a major constituent in numerous foods, beverages, dietary supplements and medications.Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav, and Salvia miltiorrhiza Bunge are traditional medicines commonly used in Asia. OBJECTIVES: to compare the pharmacokinetics of caffeine in humans before and after consuming an aqueous extract of A. dahurica or S. miltiorrhiza, and to propose a mechanistic explanation for in vivo caffeine metabolism inhibition based on in vitro data obtained with human liver microsomes. METHODS: Each of the four human volunteers was given a single oral dose of caffeine before and after consuming an A. dahurica or S. miltiorrhiza extract. Saliva samples were collected from the volunteers at pre-determined time points after receiving caffeine. The saliva samples were analyzed for unchanged caffeine using liquid chromatography. RESULTS: A. dahurica and S. miltiorrhiza extracts were capable of inhibiting caffeine metabolism in the human volunteers. In a separate study, cytochrome (CYP) 1A2-mediated caffeine demethylase activity was studied in incubation containing human liver microsomes, ß-nicotinamide adenine dinucleotide phosphate, and an herbal extract (or a pure bioactive chemical from the herbs). In all cases, CYP1A2 activity was decreased with an increasing inhibitor concentration, confirming the inhibition of caffeine metabolism in vivo. Caffeine metabolism inhibition most likely involved the competitive and/or non-competitive mechanism. CONCLUSION: Because a high level of caffeine in the plasma may result in adverse health effects in humans, care must be exercised when caffeine is consumed together with A. dahurica or S. miltiorrhiza.


Assuntos
Angelica/química , Cafeína/metabolismo , Medicamentos de Ervas Chinesas/farmacocinética , Extratos Vegetais/farmacocinética , Salvia miltiorrhiza/química , Adulto , Citocromo P-450 CYP1A2/metabolismo , Medicamentos de Ervas Chinesas/química , Feminino , Humanos , Masculino , Extratos Vegetais/química , Adulto Jovem
18.
J Pharm Biomed Anal ; 174: 367-375, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31202879

RESUMO

Fufang Danshen Dripping Pill (FDDP) and Clopidogrel Bisulfate Tablet (CBT) are usually combined for treatment of coronary artery diseases in clinical. To investigate the pharmacokinetic interaction between FDDP and CBT after oral administration of FDDP, CBT and their combination in rats, a novel LC-MS method with segmented scan modes (multiple reaction monitoring and selected ion monitoring) and polarity (positive and negative ionization) was developed. Clopidogrel and the main active ingredients of FDDP, with different chemical and ionization properties, were simultaneously quantified in plasma in a single run. The method was validated in terms of specificity, linearity, precision, accuracy, recovery, matrix effect and stability. As a result, co-administration of FDDP and CBT significantly altered the pharmacokinetic parameters of danshensu, ginsenoside Rb1, dihydrotanshinone I, tanshinone I and tanshinone IIA of FDDP, as well as clopidogrel. Mechanism studies suggested that induction of liver cytochrome P450 isozymes CYP2C11 and CYP3A1 by co-administration, as well as inhibition of carboxyl esterase 1, was partly responsible for FDDP-CBT pharmacokinetic interactions. The developed LC-MS method could be used to simultaneously quantify different types of in vivo analytes in a single run, and the results could be used for clinical medication guidance of FDDP and CBT.


Assuntos
Clopidogrel/farmacocinética , Medicamentos de Ervas Chinesas/farmacocinética , Abietanos/farmacocinética , Administração Oral , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Canfanos , Cromatografia Líquida , Citocromo P-450 CYP3A/metabolismo , Família 2 do Citocromo P450/metabolismo , Ginsenosídeos/farmacocinética , Lactatos/farmacocinética , Modelos Lineares , Masculino , Panax notoginseng , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Salvia miltiorrhiza , Esteroide 16-alfa-Hidroxilase/metabolismo , Espectrometria de Massas em Tandem
19.
Expert Opin Drug Metab Toxicol ; 15(2): 167-177, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30582378

RESUMO

INTRODUCTION: Glycyrrhizae Radix et Rhizoma (Gancao in Chinese) is the most frequently used traditional Chinese medicine (TCM) owing to its various pharmacological effects and, more importantly, the synergistic effects that enhance the efficacy and reduce the toxicity of other TCMs. Areas covered: We reviewed publications, predominantly between 1990 and 2018, that examined pharmacokinetic interactions between Gancao and other TCMs, or the bioactive constituents of these TCMs. This review focuses on the underlying mechanisms and the components responsible for the pharmacokinetic modulation by Gancao. Expert opinion: In general, the pharmacokinetic effects of Gancao are a result of its constituents such as macromolecules, like proteins, and small molecules, such as saponins and flavonoids. The mechanisms are related to formation of complexes and the influence of these on drug solubility, permeability, distribution, and metabolism. The detoxification effect of a single dose of Gancao is mainly mediated by the suppression of the intestinal absorption of toxic constituents of the co-administered TCMs and is attributable to constituents that form complexes with the toxic compounds and cause them to sediment. In contrast, the detoxification effects of repeated doses of Gancao are mediated mainly via the induction of drug metabolizing enzymes and efflux transporters.


Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Glycyrrhiza/química , Extratos Vegetais/administração & dosagem , Animais , Interações Medicamentosas , Sinergismo Farmacológico , Medicamentos de Ervas Chinesas/efeitos adversos , Medicamentos de Ervas Chinesas/farmacologia , Enzimas/efeitos dos fármacos , Enzimas/metabolismo , Humanos , Absorção Intestinal , Medicina Tradicional Chinesa/efeitos adversos , Medicina Tradicional Chinesa/métodos , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Extratos Vegetais/efeitos adversos , Extratos Vegetais/farmacologia
20.
Br J Clin Pharmacol ; 84(12): 2903-2913, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30192025

RESUMO

AIMS: We assessed the potential mutual interaction of oral macitentan (cytochrome P450 (CYP) 3A4 substrate) at steady-state with single-dose oral rivaroxaban (CYP3A4 and P-glycoprotein substrate) and evaluated the effect of the CYP3A and P-glycoprotein inducer St John's wort (SJW) on the pharmacokinetics of these drugs in healthy volunteers. METHODS: Twelve healthy volunteers completed this open-label, monocentre, two-period, one-sequence phase I clinical trial. The pharmacokinetics of macitentan (10 mg) was assessed on study days 3 (single dose), 15 (steady-state), 16 (impact of rivaroxaban) and 29 (after induction by oral SJW), and of rivaroxaban on days 2 (single dose), 16 (impact of macitentan at steady-state) and 29 (after induction by SJW). Concurrently, we quantified changes of CYP3A activity using oral microdoses of midazolam (30 µg). RESULTS: Rivaroxaban and macitentan did not significantly change the pharmacokinetics of each other. After induction with SJW, CYP3A activity increased by 272% and geometric mean ratios of macitentan AUC decreased by 48% and of Cmax by 45%. Concurrently, also geometric mean ratios of rivaroxaban AUC and Cmax decreased by 25%. CONCLUSIONS: There is no evidence for a relevant pharmacokinetic interaction between macitentan and rivaroxaban suggesting that these two drugs can be combined without dose adjustment. SJW strongly increased CYP3A activity and substantially reduced rivaroxaban and macitentan exposure while estimated net endothelin antagonism only decreased by 20%, which is considered clinically irrelevant. The combination of SJW with rivaroxaban should be avoided.


Assuntos
Hypericum , Pirimidinas/administração & dosagem , Rivaroxabana/administração & dosagem , Sulfonamidas/administração & dosagem , Adulto , Área Sob a Curva , Citocromo P-450 CYP3A/fisiologia , Interações Medicamentosas , Quimioterapia Combinada , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cooperação do Paciente , Pirimidinas/farmacocinética , Rivaroxabana/farmacocinética , Sulfonamidas/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA