Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 703: 149637, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38354464

RESUMO

The normal development of pollen grains and the completion of double fertilization in embryos are crucial for both the sexual reproduction of angiosperms and grain production. Actin depolymerizing factor (ADF) regulates growth, development, and responses to biotic and abiotic stress by binding to actin in plants. In this study, the function of the ZmADF1 gene was validated through bioinformatic analysis, subcellular localization, overexpression in maize and Arabidopsis, and knockout via CRISPR/Cas9. The amino acid sequence of ZmADF1 exhibited high conservation and a similar tertiary structure to that of ADF homologs. Subcellular localization analysis revealed that ZmADF1 is localized mainly to the nucleus and cytoplasm. The ZmADF1 gene was specifically expressed in maize pollen, and overexpression of the ZmADF1 gene decreased the number of pollen grains in the anthers of transgenic Arabidopsis plants. The germination rate of pollen and the empty seed shell rate in the fruit pods of the overexpressing plants were significantly greater than those in the wild-type (WT) plants. In maize, the pollen viability of the knockout lines was significantly greater than that of both the WT and the overexpressing lines. Our results confirmed that the ZmADF1 gene was specifically expressed in pollen and negatively regulated pollen quantity, vigor, germination rate, and seed setting rate. This study provides insights into ADF gene function and possible pathways for improving high-yield maize breeding.


Assuntos
Arabidopsis , Destrina , Pólen , Zea mays , Sequência de Aminoácidos , Arabidopsis/metabolismo , Destrina/genética , Destrina/metabolismo , Gelsolina/metabolismo , Regulação da Expressão Gênica de Plantas , Pólen/genética , Pólen/crescimento & desenvolvimento , Zea mays/metabolismo
2.
Planta ; 259(3): 64, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329576

RESUMO

MAIN CONCLUSION: The loss of TaMYB305 function down-regulated the expression of jasmonic acid synthesis pathway genes, which may disturb the jasmonic acid synthesis, resulting in abnormal pollen development and reduced fertility. The MYB family, as one of the largest transcription factor families found in plants, regulates plant development, especially the development of anthers. Therefore, it is important to identify potential MYB transcription factors associated with pollen development and to study its role in pollen development. Here, the transcripts of an R2R3 MYB gene TaMYB305 from KTM3315A, a thermo-sensitive cytoplasmic male-sterility line with Aegilops kotschyi cytoplasm (K-TCMS) wheat, was isolated. Quantitative real-time PCR (qRT-PCR) and promoter activity analysis revealed that TaMYB305 was primarily expressed in anthers. The TaMYB305 protein was localized in the nucleus, as determined by subcellular localization analysis. Our data demonstrated that silencing of TaMYB305 was related to abnormal development of stamen, including anther indehiscence and pollen abortion in KAM3315A plants. In addition, TaMYB305-silenced plants exhibited alterations in the transcriptional levels of genes involved in the synthesis of jasmonic acid (JA), indicating that TaMYB305 may regulate the expression of genes related to JA synthesis and play an important role during anther and pollen development of KTM3315A. These results provide novel insight into the function and molecular mechanism of R2R3-MYB genes in pollen development.


Assuntos
Aegilops , Infertilidade , Oxilipinas , Ciclopentanos , Citoplasma/genética , Genes myb , Pólen/genética , Triticum
3.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279332

RESUMO

Pollen cells require large amounts of sugars from the anther to support their development, which is critical for plant sexual reproduction and crop yield. Sugars Will Eventually be Exported Transporters (SWEETs) have been shown to play an important role in the apoplasmic unloading of sugars from anther tissues into symplasmically isolated developing pollen cells and thereby affect the sugar supply for pollen development. However, among the 17 CsSWEET genes identified in the cucumber (Cucumis sativus L.) genome, the CsSWEET gene involved in this process has not been identified. Here, a member of the SWEET gene family, CsSWEET5a, was identified and characterized. The quantitative real-time PCR and ß-glucuronidase expression analysis revealed that CsSWEET5a is highly expressed in the anthers and pollen cells of male cucumber flowers from the microsporocyte stage (stage 9) to the mature pollen stage (stage 12). Its subcellular localization indicated that the CsSWEET5a protein is localized to the plasma membrane. The heterologous expression assays in yeast demonstrated that CsSWEET5a encodes a hexose transporter that can complement both glucose and fructose transport deficiencies. CsSWEET5a can significantly rescue the pollen viability and fertility of atsweet8 mutant Arabidopsis plants. The possible role of CsSWEET5a in supplying hexose to developing pollen cells via the apoplast is also discussed.


Assuntos
Arabidopsis , Cucumis sativus , Arabidopsis/genética , Arabidopsis/metabolismo , Cucumis sativus/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hexoses/metabolismo , Pólen/genética , Pólen/metabolismo , Saccharomyces cerevisiae/metabolismo , Fertilidade/genética , Regulação da Expressão Gênica de Plantas
4.
Plant Biotechnol J ; 22(1): 216-232, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37792967

RESUMO

Lipid biosynthesis and transport are essential for plant male reproduction. Compared with Arabidopsis and rice, relatively fewer maize lipid metabolic genic male-sterility (GMS) genes have been identified, and the sporopollenin metabolon in maize anther remains unknown. Here, we identified two maize GMS genes, ZmTKPR1-1 and ZmTKPR1-2, by CRISPR/Cas9 mutagenesis of 14 lipid metabolic genes with anther stage-specific expression patterns. Among them, tkpr1-1/-2 double mutants displayed complete male sterility with delayed tapetum degradation and abortive pollen. ZmTKPR1-1 and ZmTKPR1-2 encode tetraketide α-pyrone reductases and have catalytic activities in reducing tetraketide α-pyrone produced by ZmPKSB (polyketide synthase B). Several conserved catalytic sites (S128/130, Y164/166 and K168/170 in ZmTKPR1-1/-2) are essential for their enzymatic activities. Both ZmTKPR1-1 and ZmTKPR1-2 are directly activated by ZmMYB84, and their encoded proteins are localized in both the endoplasmic reticulum and nuclei. Based on protein structure prediction, molecular docking, site-directed mutagenesis and biochemical assays, the sporopollenin biosynthetic metabolon ZmPKSB-ZmTKPR1-1/-2 was identified to control pollen exine formation in maize anther. Although ZmTKPR1-1/-2 and ZmPKSB formed a protein complex, their mutants showed different, even opposite, defective phenotypes of anther cuticle and pollen exine. Our findings discover new maize GMS genes that can contribute to male-sterility line-assisted maize breeding and also provide new insights into the metabolon-regulated sporopollenin biosynthesis in maize anther.


Assuntos
Arabidopsis , Infertilidade , Zea mays/genética , Zea mays/metabolismo , Edição de Genes , Sistemas CRISPR-Cas/genética , Simulação de Acoplamento Molecular , Pironas/metabolismo , Melhoramento Vegetal , Arabidopsis/genética , Lipídeos , Pólen/genética , Pólen/metabolismo , Infertilidade/genética , Infertilidade/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069184

RESUMO

The membrane-less organelles in cytoplasm that are presented as cytoplasmic foci were successively identified. Although multiple CCCH zinc-finger proteins have been found to be localized in cytoplasmic foci, the relationship between their specific localization and functions still needs further clarification. Here, we report that the heterologous expression of two Brassica campestris CCCH zinc-finger protein genes (BcMF30a and BcMF30c) in Arabidopsis thaliana can affect microgametogenesis by involving the formation of cytoplasmic foci. By monitoring the distribution of proteins and observing pollen phenotypes, we found that, when these two proteins were moderately expressed in pollen, they were mainly dispersed in the cytoplasm, and the pollen developed normally. However, high expression induced the assembly of cytoplasmic foci, leading to pollen abortion. These findings suggested that the continuous formation of BcMF30a/BcMF30c-associated cytoplasmic foci due to high expression was the inducement of male sterility. A co-localization analysis further showed that these two proteins can be recruited into two well-studied cytoplasmic foci, processing bodies (PBs), and stress granules (SGs), which were confirmed to function in mRNA metabolism. Together, our data suggested that BcMF30a and BcMF30c play component roles in the assembly of pollen cytoplasmic foci. Combined with our previous study on the homologous gene of BcMF30a/c in Arabidopsis, we concluded that the function of these homologous genes is conserved and that cytoplasmic foci containing BcMF30a/c may participate in the regulation of gene expression in pollen by regulating mRNA metabolism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassica , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica/genética , Brassica/metabolismo , Proteínas de Arabidopsis/genética , Pólen/genética , Pólen/metabolismo , RNA Mensageiro/metabolismo , Zinco/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Dedos de Zinco/genética
6.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958553

RESUMO

The biosynthesis of C27-29 sterols from their C30 precursor squalene involves C24-alkylation and the removal of three methyl groups, including two at the C4 position. The two C4 demethylation reactions require a bifunctional enzyme known as 3ß-hydroxysteroid dehydrogenase/C4-decarboxylase (3ßHSD/D), which removes an oxidized methyl (carboxylic) group at C4 while simultaneously catalyzing the 3ß-hydroxyl→3-keto oxidation. Its loss-of-function mutations cause ergosterol-dependent growth in yeast and congenital hemidysplasia with ichthyosiform erythroderma and limb defect (CHILD) syndrome in humans. Although plant 3ßHSD/D enzymes were well studied enzymatically, their developmental functions remain unknown. Here we employed a CRISPR/Cas9-based genome-editing approach to generate knockout mutants for two Arabidopsis 3ßHSD/D genes, HSD1 and HSD2, and discovered the male gametophytic lethality for the hsd1 hsd2 double mutation. Pollen-specific expression of HSD2 in the heterozygous hsd1 hsd2/+ mutant not only rescued the pollen lethality but also revealed the critical roles of the two HSD genes in embryogenesis. Our study thus demonstrated the essential functions of the two Arabidopsis 3ßHSD/D genes in male gametogenesis and embryogenesis.


Assuntos
Arabidopsis , Carboxiliases , Humanos , Arabidopsis/metabolismo , 3-Hidroxiesteroide Desidrogenases/genética , Pólen/genética , Pólen/metabolismo , Carboxiliases/genética , Desenvolvimento Embrionário
7.
Int J Mol Sci ; 24(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38003663

RESUMO

Transcription factor IIB (TFIIB) is a general transcription factor for RNA polymerase II, exerting its influence across various biological contexts. In the majority of eukaryotes, TFIIB typically has two homologs, serving as general transcription factors for RNA polymerase I and III. In plants, however, the TFIIB-related protein family has expanded greatly, with 14 and 9 members in Arabidopsis and rice, respectively. BRP5/pollen-expressed transcription factor 2 (PTF2) proteins belong to a subfamily of TFIIB-related proteins found only in plants and algae. The prior analysis of an Arabidopsis atbrp5 mutant, characterized by a T-DNA insertion at the 5' untranslated region, demonstrated the essential role of BRP5/PTF2 during the process of pollen germination and embryogenesis in Arabidopsis. Using a rice transformation system based on CRISPR/Cas9 technology, we have generated transgenic rice plants containing loss-of-function frameshift mutations in the BRP5/PTF2 gene. Unlike in the Arabidopsis atbrp5 mutant, the brp5/ptf2 frameshift mutations were not transmitted to progeny in rice, indicating an essential role of BRP5/PTF2 in both male and female gamete development or viability. The silencing of rice BRP5/PTF2 expression through RNA interference (RNAi) had little effect on vegetative growth and panicle formation but strongly affected pollen development and grain formation. Genetic analysis revealed that strong RNAi silencing of rice BRP5/PTF2 was still transmissible to progeny almost exclusively through female gametes, as found in the Arabidopsis atbrp5 knockdown mutant. Thus, reduced rice BRP5/PTF2 expression impacted pollen preferentially by interfering with male gamete development or viability. Drawing upon these findings, we posit that BRP5/PTF2 assumes a distinct and imperative function in the realm of plant sexual reproduction.


Assuntos
Oryza , Proteínas de Plantas , Fator de Transcrição TFIIB , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Gametogênese , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Plantas/metabolismo , Pólen/metabolismo , Fator de Transcrição TFIIB/metabolismo , Proteínas de Plantas/metabolismo
8.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446349

RESUMO

The microspore can follow two different developmental pathways. In vivo microspores follow the gametophytic program to produce pollen grains. In vitro, isolated microspores can be reprogrammed by stress treatments and follow the embryogenic program, producing doubled-haploid embryos. In the present study, we analyzed the dynamics and role of endogenous auxin in microspore development during these two different scenarios, in Brassica napus. We analyzed auxin concentration, cellular accumulation, the expression of the TAA1 auxin biosynthesis gene, and the PIN1-like efflux carrier gene, as well as the effects of inhibiting auxin biosynthesis by kynurenine on microspore embryogenesis. During the gametophytic pathway, auxin levels and TAA1 and PIN1-like expression were high at early stages, in tetrads and tapetum, while they progressively decreased during gametogenesis in both pollen and tapetum cells. In contrast, in microspore embryogenesis, TAA1 and PIN1-like genes were upregulated, and auxin concentration increased from the first embryogenic divisions. Kynurenine treatment decreased both embryogenesis induction and embryo production, indicating that auxin biosynthesis is required for microspore embryogenesis initiation and progression. The findings indicate that auxin exhibits two opposite profiles during these two microspore developmental pathways, which determine the different cell fates of the microspore.


Assuntos
Ácidos Indolacéticos , Cinurenina , Ácidos Indolacéticos/metabolismo , Cinurenina/metabolismo , Proteínas de Plantas/genética , Pólen/genética , Pólen/metabolismo , Desenvolvimento Embrionário
9.
Cells ; 12(12)2023 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-37371126

RESUMO

Drought stress inducing pollen sterility can reduce crop yield worldwide. The regulatory crosstalk associated with the effects of drought on pollen formation at the cellular level has not been explored in detail so far. In this study, we performed morphological and cytoembryological analysis of anther perturbations and examined pollen development in two spring barley genotypes that differ in earliness and drought tolerance. The Syrian breeding line CamB (drought-tolerant) and the European cultivar Lubuski (drought-sensitive) were used as experimental materials to analyze the drought-induced changes in yield performance, chlorophyll fluorescence kinetics, the pollen grain micromorphology and ultrastructure during critical stages of plant development. In addition, fluctuations in HvGAMYB expression were studied, as this transcription factor is closely associated with the development of the anther. In the experiments, the studied plants were affected by drought, as was confirmed by the analyses of yield performance and chlorophyll fluorescence kinetics. However, contrary to our expectations, the pollen development of plants grown under specific conditions was not severely affected. The results also suggest that growth modification, as well as the perturbation in light distribution, can affect the HvGAMYB expression. This study demonstrated that the duration of the vegetation period can influence plant drought responses and, as a consequence, the processes associated with pollen development as every growth modification changes the dynamics of drought effects as well as the duration of plant exposition to drought.


Assuntos
Hordeum , Hordeum/genética , Resistência à Seca , Melhoramento Vegetal , Genótipo , Pólen/genética , Clorofila
10.
Plant J ; 115(1): 37-51, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36970846

RESUMO

Pollen development is critical to plant reproduction, but the underlying regulatory molecular mechanisms have not been fully elucidated. The Arabidopsis (Arabidopsis thaliana) EFR3 OF PLANT 3 (EFOP3) and EFR3 OF PLANT 4 (EFOP4) genes encode members of the Armadillo (ARM) repeat superfamily that play key roles in pollen development. Herein, we demonstrate that EFOP3 and EFOP4 are co-expressed in pollen at anther stages 10-12, but loss-of-function of both EFOP3 and EFOP4 leads to male gametophyte sterility, irregular intine, and shriveled pollen grains at anther stage 12. We further established that full-length EFOP3 and EFOP4 specifically localize to the plasma membrane, and the integrity of these proteins is essential for pollen development. We observed uneven intine, less organized cellulose and reduced pectin content in mutant pollen compared with the wild-type. These, together with the misexpression of several genes related to cell wall metabolism in efop3-/- efop4+/- mutants, suggest that EFOP3 and EFOP4 may indirectly regulate the expression of these genes to affect intine formation, thus controlling Arabidopsis pollen fertility in a functionally redundant manner. Moreover, transcriptome analysis showed that the absence of EFOP3 and EFOP4 function affects multiple pollen development pathways. These results enhance our understanding of EFOPs proteins and their role in pollen development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pólen , Fertilidade , Reprodução/genética , Regulação da Expressão Gênica de Plantas
11.
Cells ; 12(2)2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36672181

RESUMO

In flowering plants, pollen development is a key process that is essential for sexual reproduction and seed set. Molecular and genetic studies indicate that pollen development is coordinatedly regulated by both gametophytic and sporophytic factors. Tapetum, the somatic cell layer adjacent to the developing male meiocytes, plays an essential role during pollen development. In the early anther development stage, the tapetal cells secrete nutrients, proteins, lipids, and enzymes for microsporocytes and microspore development, while initiating programmed cell death to provide critical materials for pollen wall formation in the late stage. Therefore, disrupting tapetum specification, development, or function usually leads to serious defects in pollen development. In this review, we aim to summarize the current understanding of tapetum-mediated pollen development and illuminate the underlying molecular mechanism in Arabidopsis thaliana.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Apoptose , Pólen/genética , Reprodução
12.
Plant Cell Rep ; 42(2): 337-354, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36653661

RESUMO

KEY MESSAGE: The genomic location and stage-specific expression pattern of many long non-coding RNAs reveal their critical role in regulating protein-coding genes crucial in pollen developmental progression and male germ line specification. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 bp with no apparent protein-coding potential. Multiple investigations have revealed high expression of lncRNAs in plant reproductive organs in a cell and tissue-specific manner. However, their potential role as essential regulators of molecular processes involved in sexual reproduction remains largely unexplored. We have used developing field mustard (Brassica rapa) pollen as a model system for investigating the potential role of lncRNAs in reproductive development. Reference-based transcriptome assembly performed to update the existing genome annotation identified novel expressed protein-coding genes and long non-coding RNAs (lncRNAs), including 4347 long intergenic non-coding RNAs (lincRNAs, 1058 expressed) and 2,045 lncRNAs overlapping protein-coding genes on the opposite strand (lncNATs, 780 expressed). The analysis of expression profiles reveals that lncRNAs are significant and stage-specific contributors to the gene expression profile of developing pollen. Gene co-expression networks accompanied by genome location analysis identified 38 cis-acting lincRNA, 31 cis-acting lncNAT, 7 trans-acting lincRNA and 14 trans-acting lncNAT to be substantially co-expressed with target protein-coding genes involved in biological processes regulating pollen development and male lineage specification. These findings provide a foundation for future research aiming at developing strategies to employ lncRNAs as regulatory tools for gene expression control during reproductive development.


Assuntos
Brassica rapa , RNA Longo não Codificante , RNA Longo não Codificante/genética , Transcriptoma/genética , Genômica , Brassica rapa/genética , Pólen/genética , Pólen/metabolismo , Perfilação da Expressão Gênica
13.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614198

RESUMO

Nitrate Transporter 1/Peptide Transporter Family (NPF) genes encode membrane transporters involved in the transport of diverse substrates. However, little is known about the diversity and functions of NPFs in Brassica rapa. In this study, 85 NPFs were identified in B. rapa (BrNPFs) which comprised eight subfamilies. Gene structure and conserved motif analysis suggested that BrNFPs were conserved throughout the genus. Stress and hormone-responsive cis-acting elements and transcription factor binding sites were identified in BrNPF promoters. Syntenic analysis suggested that tandem duplication contributed to the expansion of BrNPFs in B. rapa. Transcriptomic profiling analysis indicated that BrNPF2.6, BrNPF2.15, BrNPF7.6, and BrNPF8.9 were expressed in fertile floral buds, suggesting important roles in pollen development. Thirty-nine BrNPFs were responsive to low nitrate availability in shoots or roots. BrNPF2.10, BrNPF2.19, BrNPF2.3, BrNPF5.12, BrNPF5.16, BrNPF5.8, and BrNPF6.3 were only up-regulated in roots under low nitrate conditions, indicating that they play positive roles in nitrate absorption. Furthermore, many genes were identified in contrasting genotypes that responded to vernalization and clubroot disease. Our results increase understanding of BrNPFs as candidate genes for genetic improvement studies of B. rapa to promote low nitrate availability tolerance and for generating sterile male lines based on gene editing methods.


Assuntos
Brassica rapa , Brassica rapa/metabolismo , Nitratos/metabolismo , Perfilação da Expressão Gênica , Transportadores de Nitrato , Pólen/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/metabolismo
14.
J Adv Res ; 49: 15-30, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36130683

RESUMO

INTRODUCTION: ATP Binding Cassette G (ABCG) transporters are associated with plant male reproduction, while their regulatory mechanisms underlying anther and pollen development remain largely unknown. OBJECTIVES: Identify and characterize a male-sterility gene ZmMs13 encoding an ABCG transporter in modulating anther and pollen development in maize. METHODS: Phenotypic, cytological observations, and histochemistry staining were performed to characterize the ms13-6060 mutant. Map-based cloning and CRISPR/Cas9 gene editing were used to identify ZmMs13 gene. RNA-seq data and qPCR analyses, phylogenetic and microsynteny analyses, transient dual-luciferase reporter and EMSA assays, subcellular localization, and ATPase activity and lipidomic analyses were carried out to determine the regulatory mechanisms of ZmMs13 gene. RESULTS: Maize ms13-6060 mutant displays complete male sterility with delayed callose degradation, premature tapetal programmed cell death (PCD), and defective pollen exine and anther cuticle formation. ZmMs13 encodes a plasm membrane (PM)- and endoplasmic reticulum (ER)-localized half-size ABCG transporter (ZmABCG2a). The allele of ZmMs13 in ms13-6060 mutant has one amino acid (I311) deletion due to a 3-bp deletion in its fourth exon. The I311 and other conserved amino acid K99 are essential for the ATPase and lipid binding activities of ZmMS13. ZmMs13 is specifically expressed in anthers with three peaks at stages S5, S8b, and S10, which are successively regulated by transcription factors ZmbHLH122, ZmMYB84, and ZmMYB33-1/-2 at these three stages. The triphasic regulation of ZmMs13 is sequentially required for callose dissolution, tapetal PCD and pollen exine development, and anther cuticle formation, corresponding to transcription alterations of callose-, ROS-, PCD-, sporopollenin-, and anther cuticle-related genes in ms13-6060 anthers. CONCLUSION: ms13-6060 mutation with one key amino acid (I311) deletion greatly reduces ZmMS13 ATPase and lipid binding activities and displays multiple effects during maize male reproduction. Our findings provide new insights into molecular mechanisms of ABCG transporters controlling anther and pollen development and male fertility in plants.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Zea mays , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Solubilidade , Pólen/genética , Pólen/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Lipídeos
15.
BMC Plant Biol ; 22(1): 508, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36316635

RESUMO

BACKGROUND: Cytoplasmic male sterility (CMS) is a maternally inherited failure to produce functional pollen that most commonly results from expression of novel, chimeric mitochondrial genes. In Zea mays, cytoplasmic male sterility type S (CMS-S) is characterized by the collapse of immature, bi-cellular pollen. Molecular and cellular features of developing CMS-S and normal (N) cytoplasm pollen were compared to determine the role of mitochondria in these differing developmental fates. RESULTS: Terminal deoxynucleotidyl transferase dUTP nick end labeling revealed both chromatin and nuclear fragmentation in the collapsed CMS-S pollen, demonstrating a programmed cell death (PCD) event sharing morphological features with mitochondria-signaled apoptosis in animals. Maize plants expressing mitochondria-targeted green fluorescent protein (GFP) demonstrated dynamic changes in mitochondrial morphology and association with actin filaments through the course of N-cytoplasm pollen development, whereas mitochondrial targeting of GFP was lost and actin filaments were disorganized in developing CMS-S pollen. Immunoblotting revealed significant developmental regulation of mitochondrial biogenesis in both CMS-S and N mito-types. Nuclear and mitochondrial genome encoded components of the cytochrome respiratory pathway and ATP synthase were of low abundance at the microspore stage, but microspores accumulated abundant nuclear-encoded alternative oxidase (AOX). Cytochrome pathway and ATP synthase components accumulated whereas AOX levels declined during the maturation of N bi-cellular pollen. Increased abundance of cytochrome pathway components and declining AOX also characterized collapsed CMS-S pollen. The accumulation and robust RNA editing of mitochondrial transcripts implicated translational or post-translational control for the developmentally regulated accumulation of mitochondria-encoded proteins in both mito-types. CONCLUSIONS: CMS-S pollen collapse is a PCD event coincident with developmentally programmed mitochondrial events including the accumulation of mitochondrial respiratory proteins and declining protection against mitochondrial generation of reactive oxygen species.


Assuntos
Biogênese de Organelas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Pólen/metabolismo , Apoptose/genética , Citocromos/metabolismo , Trifosfato de Adenosina , Infertilidade das Plantas/genética
16.
Plant Sci ; 324: 111447, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36041563

RESUMO

Male reproductive development in higher plants experienced a series of complex biological processes, which can be regulated by Gibberellins (GA). The transcriptional factor GAMYB is a crucial component of GA signaling in anther development. However, the mechanism of GAMYB in wheat male reproduction is less understood. Here, we found that the thermo-sensitive genic male sterilitywheat line YanZhan 4110S displayed delayed tapetum programmed cell death and pollen abortive under the hot temperature stress. Combined with RNA-Sequencing data analysis, TaGAMYB associated with fertility conversion was isolated, which was located in the nucleus and highly expressed in fertility anthers. The silencing of TaGAMYB in wheat displayed fertility decline, defects in tapetum, pollen and exine formation, where the abortion characteristics were the same as YanZhan 4110S. In addition, either hot temperature or GA3 treatment in YanZhan 4110S caused the downregulation of TaGAMYB at binucleate stage and trinucleate stage, as well as fertility decrease. Further, the transcription factor TaWRKY2 significantly changed under GA3-treatment and directly interacted with the TaGAMYB promoter by W-box cis-element. Therefore, we suggested that TaGAMYB may be essential for anther development and male fertility, and GA3 activates TaGAMYB by TaWRKY2 to regulate fertility in wheat.


Assuntos
Fenômenos Biológicos , Oryza , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Oryza/genética , Pólen , RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/genética , Triticum/metabolismo
17.
Cells ; 11(15)2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35954161

RESUMO

In plants, oxidative stress and metabolic reprogramming frequently induce male sterility, however our knowledge of the underlying molecular mechanism is far from complete. Here, a maize genic male-sterility (GMS) mutant (ms33-6038) with a loss-of-function of the ZmMs33 gene encoding glycerol-3-phosphate acyltransferase 6 (GPAT6) displayed severe deficiencies in the development of a four-layer anther wall and microspores and excessive reactive oxygen species (ROS) content in anthers. In ms33-6038 anthers, transcriptome analysis identified thousands of differentially expressed genes that were functionally enriched in stress response and primary metabolism pathways. Further investigation revealed that 64 genes involved in ROS production, scavenging, and signaling were specifically changed in expression levels in ms33-6038 anthers compared to the other five investigated GMS lines. The severe oxidative stress triggered premature tapetal autophagy and metabolic reprogramming mediated mainly by the activated SnRK1-bZIP pathway, as well as the TOR and PP2AC pathways, proven by transcriptome analysis. Furthermore, 20 reported maize GMS genes were altered in expression levels in ms33-6038 anthers. The excessive oxidative stress and the metabolic reprogramming resulted in severe phenotypic deficiencies in ms33-6038 anthers. These findings enrich our understanding of the molecular mechanisms by which ROS and metabolic homeostasis impair anther and pollen development in plants.


Assuntos
Infertilidade , Zea mays , Estresse Oxidativo/genética , Infertilidade das Plantas/genética , Pólen/genética , Espécies Reativas de Oxigênio , Zea mays/genética
18.
Front Plant Sci ; 13: 925754, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898227

RESUMO

Crop reproductive success is significantly challenged by heatwaves, which are increasing in frequency and severity globally. Heat-induced male sterility is mainly due to aborted pollen development, but it is not clear whether this is through direct or systemic effects. Here, long-term mild heat (LTMH) treatment, mimicking a heatwave, was applied locally to tomato flowers or whole plants and followed up by cytological, transcriptomic, and biochemical analyses. By analyzing pollen viability, LTMH was shown to act directly on the flowers and not via effects on other plant tissue. The meiosis to early microspore stage of pollen development was the most sensitive to LTMH and 3 days of exposure around this period was sufficient to significantly reduce pollen viability at the flower anthesis stage. Extensive cytological analysis showed that abnormalities in pollen development could first be observed after pollen mitosis I, while no deviations in tapetum development were observed. Transcriptomic and biochemical analyses suggested that pollen development suffered from tapetal ER stress and that there was a limited role for oxidative stress. Our results provide the first evidence that heat acts directly on flowers to induce pollen sterility, and that the molecular-physiological responses of developing anthers to the LTMH are different from those to severe heat shock.

19.
Plant Sci ; 321: 111297, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35696904

RESUMO

Pollen development and its germination are obligatory for the reproductive success of flowering plants. Calcium-dependent protein kinases (CPKs, also known as CDPKs) regulate diverse signaling pathways controlling plant growth and development. Here, we report the functional characterization of a novel OsCPK29 from rice, which is mainly expressed during pollen maturation stages of the anther. OsCPK29 exclusively localizes in the nucleus, and its N-terminal variable domain is responsible for retaining it in the nucleus. OsCPK29 knockdown rice plants exhibit reduced fertility, set fewer seeds, and produce collapsed non-viable pollen grains that do not germinate. Cytological analysis of anther semi-thin sections during different developmental stages suggested that pollen abnormalities appear after the vacuolated pollen stage. Detailed microscopic study of pollen grains further revealed that they were lacking the functional intine layer although exine layer was present. Consistent with that, downregulation of known intine development-related rice genes was also observed in OsCPK29 silenced anthers. Furthermore, it has been demonstrated that OsCPK29 interacts in vitro as well as in vivo with the MADS68 transcription factor which is a known regulator of pollen development. Therefore, phenotypic observations and molecular studies suggest that OsCPK29 is an important regulator of pollen development in rice.


Assuntos
Oryza , Regulação da Expressão Gênica de Plantas , Germinação , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen
20.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682638

RESUMO

Fertilization is a key event for sexually reproducing plants. Pollen-stigma adhesion, which is the first step in male-female interaction during fertilization, requires proper pollen wall patterning. Callose, which is a ß-1.3-glucan, is an essential polysaccharide that is required for pollen development and pollen wall formation. Mutations in CALLOSE SYNTHASE 5 (CalS5) disrupt male meiotic callose accumulation; however, how CalS5 activity and callose synthesis are regulated is not fully understood. In this paper, we report the isolation of a kompeito-1 (kom-1) mutant defective in pollen wall patterning and pollen-stigma adhesion in Arabidopsis thaliana. Callose was not accumulated in kom-1 meiocytes or microspores, which was very similar to the cals5 mutant. The KOM gene encoded a member of a subclass of Rhomboid serine protease proteins that lacked active site residues. KOM was localized to the Golgi apparatus, and both KOM and CalS5 genes were highly expressed in meiocytes. A 220 kDa CalS5 protein was detected in wild-type (Col-0) floral buds but was dramatically reduced in kom-1. These results suggested that KOM was required for CalS5 protein accumulation, leading to the regulation of meiocyte-specific callose accumulation and pollen wall formation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Mutação , Pólen/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA