Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 344: 140371, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37820874

RESUMO

Unsaturated polyester resins (UPR) are composed of prepolymers and styrene diluents, while the former are produced by co-polycondensation between diol, unsaturated diacid and saturated diacid. In this work, bio-based UPR prepolymers were synthesized from bio-based oxalic acid, itaconic acid, and ethylene glycol, which were then diluted with bio-based isosorbide methacrylate (MI). Meanwhile, the phenylphosphonate were introduced into the molecular chains of prepolymers to achieve intrinsic flame retardancy of bio-based UPR. The potential of the reactive MI diluents as substitutes of volatile styrene, was also assessed through the volatility test, curing kinetics and gel contents analysis. For UPR materials with styrene diluents, the UPR materials can achieve UL-94 V0 level and the 28% of limiting oxygen index (LOI) with 2.63 wt% of phosphorus contents. By contrast, the UPR materials with MI diluents can reach UL-94 V0 level with only 2.14 wt% of phosphorus contents. As the phosphorus contents were further increased to 2.63 wt%, UPR materials can achieve highest 29%, while the peak of heat release rate (PHRR) and total heat release (THR) were decreased by 68.01% and 48.62%, respectively. The Flame Retardancy Index (FRI) was also used to comprehensively evaluate the flame retardant performance of UPR composites. Compared with neat UPR, the composites with MI diluents and phosphorus containing structures increased from 1.00 to 6.46. The mechanism for improved flame retardancy was analyzed from gaseous and condensed phase. Additionally, the tensile strengths of bio-based UPR materials with styrene and MI diluents were studied. This work provides an effective method to prepared high-performance and fully bio-based UPR materials with improved flame retardant properties and safety application of reactive diluents.


Assuntos
Retardadores de Chama , Poliésteres , Excipientes , Isossorbida , Ácido Oxálico , Fósforo , Estirenos
2.
Chin J Nat Med ; 21(3): 233-240, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37003645

RESUMO

The stem and branch extract of Tripterygium wilfordii (Celastraceae) afforded seven new dihydroagarofuran sesquiterpene polyesters [tripterysines A-G (1-7)] and eight known ones (8-15). The chemical structures of these new compounds were established based on combinational analysis of HR-ESI-MS and NMR techniques. The absolute configurations of tripterysines A-C (1-3) and E-G (5-7) were determined by X-ray crystallographic analysis and circular dichroism spectra. All the compounds were screened for their inhibitory effect on inflammation through determining their inhibitory effect on nitric oxide production in LPS-induced RAW 264.7 cells and the secretion of inflammatory cytokines TNF-α and IL-6 in LPS-induced BV2 macrophages. Compound 9 exhibited significant inhibitory activity on NO production with an IC50 value of 8.77 µmol·L-1. Moreover, compound 7 showed the strongest inhibitory effect with the secretion of IL-6 at 27.36%.


Assuntos
Sesquiterpenos , Tripterygium , Tripterygium/química , Ésteres/farmacologia , Interleucina-6 , Lipopolissacarídeos/farmacologia , Folhas de Planta/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Óxido Nítrico/análise , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Estrutura Molecular
3.
Int J Biol Macromol ; 220: 1133-1145, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35988724

RESUMO

Efficient drug loading, tumor targeting, intratumoral penetration, and cellular uptake are the main factors affecting the effectiveness of drug delivery systems in oncotherapy. Based on the tumor microenvironment, we proposed to develop Curcumin (Cur)-loaded matrix metalloproteinase (MMP)-responsive nanoparticles (Cur-P-NPs) by static electricity, to enhance tumor targeting, cellular uptake, and drug loading efficiency. These nanoparticles combine the properties of both PEG-peptides (cleaved peptide + penetrating peptide) and star-shaped polyester (DPE-PCL) nanoparticles. Cur-P-NPs displayed good entrapment efficiency, drug loading and biocompatibility. Additionally, they showed an enhanced release rate, cellular uptake, and anti-proliferative activity by activating peptides under the simulated tumor microenvironment. Furthermore, intraperitoneal injection of losartan (LST) successfully enhanced intratumoral drug penetration by collagen I degradation. In vivo studies based on the systematic administration of the synergistic LST + Cur-P-NPs combination to mice confirmed that combined antitumor therapy with LST and Cur-P-NPs could further improve intratumor distribution, enhance anticancer efficacy, and reduce the toxicity and side effects. Therefore, LST + Cur-P-NPs represent a new and efficient system for clinical oncotherapy.


Assuntos
Curcumina , Nanopartículas , Neoplasias , Animais , Linhagem Celular Tumoral , Colágeno , Curcumina/química , Sistemas de Liberação de Medicamentos , Losartan , Metaloproteinases da Matriz/metabolismo , Camundongos , Sistemas de Liberação de Fármacos por Nanopartículas , Nanopartículas/química , Neoplasias/tratamento farmacológico , Tamanho da Partícula , Poliésteres/química , Microambiente Tumoral
4.
Polymers (Basel) ; 14(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335412

RESUMO

Thymoquinone (TQ), the main active constituent of Nigella sativa, has demonstrated broad-spectrum antimicrobial, antioxidant, and anti-inflammatory effects, which suggest its potential use in secondary infections caused by COVID-19. However, clinical deployment has been hindered due to its limited aqueous solubility and poor bioavailability. Therefore, a targeted delivery system to the lungs using nanotechnology is needed to overcome limitations encountered with TQ. In this project, a novel TQ-loaded poly(ester amide) based on L-arginine nanoparticles was prepared using the interfacial polycondensation method for a dry powder inhaler targeting delivery of TQ to the lungs. The nanoparticles were characterized by FTIR and NMR to confirm the structure. Transmission electron microscopy and Zetasizer results confirmed the particle diameter of 52 nm. The high-dose formulation showed the entrapment efficiency and loading capacity values of TQ to be 99.77% and 35.56%, respectively. An XRD study proved that TQ did not change its crystallinity, which was further confirmed by the DSC study. Optimized nanoparticles were evaluated for their in vitro aerodynamic performance, which demonstrated an effective delivery of 22.7-23.7% of the nominal dose into the lower parts of the lungs. The high drug-targeting potential and efficiency demonstrates the significant role of the TQ nanoparticles for potential application in COVID-19 and other respiratory conditions.

5.
Mater Today Bio ; 13: 100187, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34977526

RESUMO

Osteogenic differentiation of stem cells is one of the essential steps in bone regeneration. While supplementing exogenous factors using differentiation media is the established method to differentiate stem cells into osteoblasts on biomaterials, designing biomaterials that can act as a stand-alone differentiation inducer and promote bone regeneration is preferred for clinical translation. In this work, we report dexamethasone-loaded organic-inorganic hybrid microparticles synthesized from an intrinsically fluorescent poly (ester amide) and tertiary bioactive glass (PEA-BG) as a stand-alone osteogenic differentiation inducer. The mechanical properties data indicated that the compressive modulus of fluorescent hybrid microparticles could be modulated by its composition. The hybrid fluorescent microparticles supported the adhesion and proliferation of 10T1/2 â€‹cells in culture for up to seven days. Both pristine and dexamethasone-loaded PEA-BG microparticles were able to induce osteogenic differentiation of 10T1/2 â€‹cells in the absence of any media supplement, to a level even higher than standard osteogenic media, as evidenced by the expression of osteogenic markers on gene and protein levels and matrix mineralization. Taken together, the fluorescent PEA-BG hybrid microparticles have the potential to be used as a stand-alone biomaterial for osteogenic differentiation and bone regeneration.

6.
Blood Purif ; 51(10): 831-839, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35021168

RESUMO

INTRODUCTION: Ultrapurification of dialysis fluid has enabled highly efficient dialysis treatments. Online hemodiafiltration is one such treatment that uses a purified dialysis fluid as a supplemental fluid. In this method, an endotoxin retentive filter (ETRF) is used in the final step of dialysis fluid purification, with the aim of preventing leakage of endotoxins. Sodium hypochlorite and peracetic acid are used as disinfecting agents for the dialysis fluid pipes containing the ETRF; however, the effects of these agents on ETRF membrane pores have not been fully clarified. METHODS: Water permeability (flux) and endotoxin permeability were assessed in 3 types of ETRFs made with different membrane materials: polyester polymer alloy (PEPA), polyether sulfone (PES), and polysulfone (PS). High-concentration sodium hypochlorite and 2 types of peracetic acid were used as disinfecting agents, and the changes in flux and the endotoxin sieving coefficient (SC) were measured. RESULTS: After repeated use of high concentrations of sodium hypochlorite and peracetic acid, the PEPA and PES ETRFs did not permit passage of endotoxins, regardless of their flux. However, in the PS ETRF, the flux and endotoxin SC increased with the number of cleaning cycles. No differences were observed according to the concentration of peracetic acid disinfecting agents. CONCLUSION: PEPA and PES ETRFs completely prevent endotoxin leakage and can be disinfected at concentrations higher than the conventionally recommended concentration without affecting pore expansion. Even new PS ETRFs have low levels of endotoxin leakage, which increase after disinfection cycles using sodium hypochlorite and peracetic acid.


Assuntos
Endotoxinas , Hipoclorito de Sódio , Ligas , Soluções para Diálise , Humanos , Membranas Artificiais , Ácido Peracético , Poliésteres , Polímeros , Diálise Renal , Sulfonas , Água
7.
J Colloid Interface Sci ; 608(Pt 1): 142-157, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624762

RESUMO

Owing to the lack of research on structure-activity relationship and interaction mechanism between unsaturated polyester resins (UPR) and flame retardants, it has been a big challenge to prepare high-efficiency flame retardants for UPR in industry. In this research, to explore structural rules of high-efficiency flame retardants, several polymeric flame retardants were synthesized with varied main-chain, side-chain, phosphorus valence states and contents of flame retardant elements. The thermal stabilities of flame retardants and UPR composites were firstly assessed. It has been found the interaction existed between flame retardants and UPR, through transesterification reaction and ß scission pathway in polyester and polystyrene chains. With only 15 wt% of PCH3-S, UPR composites can reach V0 rating in UL-94. The PHRR and THR values can be maximumly decreased by 71.66 % and 77.67 %, with 20 wt% of PB-S. It has been found flame retardants with sulfone group and + 3 valence state of phosphorus in molecular backbone can release SO2 and phosphorus containing compounds in gaseous phase, which diluted fuel fragments and catalyzed H⋅ and HO⋅ radical removal. The mechanism for improved flame retardancy of UPR composites with various polymeric flame retardants were discussed in detail. Some general rules for highly efficient flame retardant UPR can be summarized: First, gaseous phase flame retardant mechanism plays the major role in improvement of flame retardant performance of UPR composites; Second, the combination of + 3 valence state of phosphorus structures, higher phosphorus contents and sulfone groups effectively improves the flame retardant efficiency of flame retardants.


Assuntos
Retardadores de Chama , Fósforo , Poliésteres , Polímeros
8.
Pharmaceutics ; 13(11)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34834390

RESUMO

Ursolic acid (UA), a pentacyclic triterpenoid acid found in many medicinal plants and aromas, is known for its antibacterial effects against multi-drug-resistant (MDR) Gram-positive bacteria, which seriously threaten human health. Unfortunately, UA water-insolubility, low bioavailability, and systemic toxicity limit the possibilities of its application in vivo. Consequently, the beneficial activities of UA observed in vitro lose their potential clinical relevance unless water-soluble, not cytotoxic UA formulations are developed. With a nano-technologic approach, we have recently prepared water-soluble UA-loaded dendrimer nanoparticles (UA-G4K NPs) non-cytotoxic on HeLa cells, with promising physicochemical properties for their clinical applications. In this work, with the aim of developing a new antibacterial agent based on UA, UA-G4K has been tested on different strains of the Enterococcus genus, including marine isolates, toward which UA-G4K has shown minimum inhibitory concentrations (MICs) very low (0.5-4.3 µM), regardless of their resistance to antibiotics. Time-kill experiments, in addition to confirming the previously reported bactericidal activity of UA against E. faecium, also established it for UA-G4K. Furthermore, cytotoxicity experiments on human keratinocytes revealed that nanomanipulation of UA significantly reduced the cytotoxicity of UA, providing UA-G4K NPs with very high LD50 (96.4 µM) and selectivity indices, which were in the range 22.4-192.8, depending on the enterococcal strain tested. Due to its physicochemical and biological properties, UA-G4K could be seriously evaluated as a novel oral-administrable therapeutic option for tackling difficult-to-treat enterococcal infections.

9.
Nanomaterials (Basel) ; 11(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34578512

RESUMO

Ursolic acid (UA) is a pentacyclic triterpenoid found in many medicinal plants and aromas endowed with numerous in vitro pharmacological activities, including antibacterial effects. Unfortunately, UA is poorly administered in vivo, due to its water insolubility, low bioavailability, and residual systemic toxicity, thus making urgent the development of water-soluble UA formulations. Dendrimers are nonpareil macromolecules possessing highly controlled size, shape, and architecture. In dendrimers with cationic surface, the contemporary presence of inner cavities and of hydrophilic peripheral functions, allows to encapsulate hydrophobic non-water-soluble drugs as UA, to enhance their water-solubility and stability, and to promote their protracted release, thus decreasing their systemic toxicity. In this paper, aiming at developing a new UA-based antibacterial agent administrable in vivo, we reported the physical entrapment of UA in a biodegradable not cytotoxic cationic dendrimer (G4K). UA-loaded dendrimer nanoparticles (UA-G4K) were obtained, which showed a drug loading (DL%) much higher than those previously reported, a protracted release profile governed by diffusion mechanisms, and no cytotoxicity. Also, UA-G4K was characterized by principal components analysis (PCA)-processed FTIR spectroscopy, by NMR and elemental analyses, and by dynamic light scattering experiments (DLS). The water solubility of UA-G4K was found to be 1868-fold times higher than that of pristine UA, thus making its clinical application feasible.

10.
J Hazard Mater ; 420: 126671, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34329074

RESUMO

Soilborne microplastics can persist for decades and their consequences are of growing concern. Therefore, it is important to explore the feasible approaches for eliminating microplastic effects on soil properties. Through an incubation experiment, we evaluate the effects of thermal treatment on physical properties, enzymatic activities and microbial communities in polyester-microfibers contaminated soils. The effects of polyester-microfiber levels (0%, 0.1%, 0.3% and 1.0% of soil dry weight) on soil properties were detected under not heated (PMF), heated (mPMF) and added with natural-organic-matters (OM) following heated (mPMF+OM) conditions. Our results showed that 1.0% mPMF soil had lower bulk density and higher mean weight diameter than 0% mPMF soil, akin to PMF soils. Meanwhile, great volumes of < 30 µm pores in 0.3% and 1.0% mPMF soils were observed than that in 0% mPMF soil. Additionally, the dose-effects of melted polyester-microfiber on soil enzymatic activities and bacterial communities were still observed following thermal treatment, even under the OM added condition. Furthermore, our results demonstrated that polyester microfibers influenced soil microbial communities and functioning via altering specific soil physical properties, regardless of thermal treatment or not. Results of this study should be useful to guide further develop viable methods for remediating soils contaminated with microplastics.


Assuntos
Poluentes do Solo , Solo , Plásticos , Poliésteres , Microbiologia do Solo , Poluentes do Solo/análise
11.
Polymers (Basel) ; 13(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067496

RESUMO

Biologically derived polymers are a very attractive subject for investigation, due to the strict pro-ecological requirements imposed by developed countries, including zero-waste and zero-carbon policies as well as volatile organic compound (VOC) limits. Synthesis of biologically-derived polyesters from natural rosin and bio-diols, showing softening temperatures suitable for application in VOC-free paints and varnishes, was performed to create a desired, future commercial product, that meet the aforementioned requirements regarding VOC and elimination of petroleum-based raw materials. Prepared polymers were used in the formulation of coating materials whose properties: cross-linking behavior, glass transition temperature, thermal stability, storage modulus, hardness, cupping resistance, adhesion, chemical resistance, gloss, haze, color, and anti-corrosive behavior in the salt chamber were investigated and discussed. As a result, coatings with prepared bio-polyesters contained over 80 wt.% of natural resources and showed competitive/better properties than petroleum-based references. They can be applied in the prototyping of "green" powder paints for the protection of steel substrates from corrosion and aggressive solvents.

12.
Molecules ; 26(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499387

RESUMO

Two novel amphiphilic polyethylene amine terephthalate have been prepared via the glycolsis of polyethylene terephthalate (PET). The product, bis (2-hydroxyethyl terephthalate) (BHET), was converted to the corresponding dialkyl halide, bis(2-chloroethyl) terephthalate (BCET), using thionyl chloride (TC). This dialkyl compound was used for alkylation of dodecyl amine (DOA) and tetraethylenepentamine (TEPA) or pentaethylenehexamine (PEHA) to form the corresponding polyethylene amine terephthalate, i.e., DOAT and DOAP, respectively. Their chemical structure, surface tension, interfacial tension (IFT), and dynamic light scattering (DLS) were determined using different techniques. The efficiency of the prepared polyethylene amine terephthalate to demulsify water in heavy crude (W/O) emulsions was also determined and found to increase as their concentrations increased. Moreover, DOAT showed faster and higher efficiency, and cleaner separation than DOAP.


Assuntos
Petróleo/análise , Polietilenotereftalatos/química , Aminas/síntese química , Aminas/química , Difusão Dinâmica da Luz , Emulsões/química , Espectroscopia de Ressonância Magnética , Micelas , Estrutura Molecular , Polietilenotereftalatos/síntese química , Eliminação de Resíduos/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Tensão Superficial , Tensoativos/síntese química , Tensoativos/química , Águas Residuárias/química
13.
Food Chem ; 347: 129040, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33484960

RESUMO

An Ultra High-Performance Liquid chromatography method quadruple time-of-flight mass spectrometry has been developed for the analysis of 11 cyclic polyesters oligomers, following a modified QuEChERS clean-up with alumina/primary secondary amine, in pasta. Target analytes were polyethylene terephthalate (PET) 1st series cyclic dimer to heptamer, polybutylene terephthalate (PBT) dimer to pentamer and a polyurethane oligomer. Standard addition method was applied for the calibration, and the limits of quantification ranged from 3.2 to 17.2 ng g-1. Recoveries ranged from 86.4 to 109.8%, RSDs were lower than 12% for all analytes, and matrix effect never exceeded ± 2.5%. The method was successfully applied to real commercial pasta samples, where the PET 1st series cyclic trimer was the most abundant oligomer, being found in all tested samples. The 1st series PET cyclic dimer and tetramer, as well as 1,4,7-trioxacyclotridecane-8,13-dione, were found in considerable amounts. Traces of the 2nd and 3rd series PET cyclic dimers were also found.


Assuntos
Análise de Alimentos/métodos , Espectrometria de Massas/métodos , Poliésteres/química , Polietilenotereftalatos/química , Óxido de Alumínio/química , Cromatografia Líquida de Alta Pressão , Dimerização , Farinha/análise , Poliésteres/análise , Polietilenotereftalatos/análise , Polimerização , Dióxido de Silício/química
14.
Sci Total Environ ; 726: 138580, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32315857

RESUMO

Investigating wide range of food products of direct human consumption for microplastics is critical to understand the routes of contamination and assess the risks in microplastics uptake by humans. However, microplastics knowledge for many beverage products excluding beers is still lacking. Here, common beverages (n = 57; 27 brands) such as soft drinks (n = 19), energy drinks (n = 8), cold tea (n = 4) and beer (n = 26) were targeted for microplastics occurrences in Mexico and their shape, size, surface morphology and polymer composition were analyzed. Microplastics were detected in 48 out of 57 samples tested. The results identified microplastics of various forms (fibers and fragments) and sizes (0.1-3 mm) of colors (blue, red, brown, black and green), in amounts ranging from not detected to 28 ± 5.29 particles/L. Micro-Raman spectroscopy identified particles as polyamide, poly(ester-amide), acrylonitrile-butadiene-styrene and poly(ethylene-terephthalate) indicating microplastics contamination of synthetic textiles and packaging origin in the beverage products. Finally, this paper discusses that human excreta could act as a vehicle for the dispersion and accumulation of microplastics into terrestrial and aquatic environments. Combined, it is the first study to investigate microplastics contamination on soft drinks, energy drinks and cold tea and to document the material composition of microplastics from beverage products.


Assuntos
Bebidas Energéticas , Poluentes Químicos da Água/análise , Bebidas Gaseificadas , Monitoramento Ambiental , Humanos , México , Microplásticos , Plásticos , Chá
15.
J Biomed Mater Res A ; 108(4): 1006-1015, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31925896

RESUMO

Various types of biodegradable polymers containing lactide, glycolide, caprolactone, and trimethylene carbonate units have been used to obtain ciprofloxacin (CFX)-enriched coatings developed on the Ti6Al7Nb alloy, intended for short-term therapy. In the first step, the surface of the Ti6Al7Nb alloy was modified, mostly according to sandblasting and anodic oxidation to obtain the TiO2 layer. Anodizing can be an effective method for preparing TiO2 coatings with osteoconductive properties. The polymer containing CFX molecules was deposited on the modified alloy, and Polymer + CFX/TiO 2 /Ti6Al7Nb systems were developed. CFX-enriched coatings adhered well to the surface of the previously modified alloy. Polymer layers maintain the topography of the alloy due to the development of the surface during the sandblasting method. As polymers intended for the study possess degradation ability, they are capable of releasing the incorporated drug. Antibacterial activity of CFX-enriched coatings was examined to verify the functionality of designed Polymer + CFX/TiO 2 /Ti6Al7Nb systems, and the bactericidal effect was confirmed for all cases. The presented study is an extension of previous, initial research and creates an overview of polyester or polyestercarbonate CFX-eluting coatings.


Assuntos
Antibacterianos/uso terapêutico , Ciprofloxacina/uso terapêutico , Materiais Revestidos Biocompatíveis/química , Próteses e Implantes , Infecções Relacionadas à Prótese/tratamento farmacológico , Infecções Relacionadas à Prótese/prevenção & controle , Titânio/química , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Polímeros/química
16.
Mater Sci Eng C Mater Biol Appl ; 107: 110285, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31761245

RESUMO

Polyester nanomaterials have been widely used in drug delivey application from a longer period of time. This study reports the synthesis of metal-free semi-aromatic polyester (SAP) nanomaterial for drug delivery and evaluate its in vivo acute and systemic toxicity for potential clinical application. The ring opening coplymerization of commercially available cyclohexene oxide (CHO) and phthalic anhydride (PA) monomers was carried out to synthesize fully alternating poly(CHO-co-PA) copolymer using metal-free activators. The obtained low Mn SAP was found to be biocompatible, hemocompataible and biodegradable nature. This copolymer was first-time used to fabricate curcumin (CUR) loaded nanoparticles (NPs). These NPs were physicochemically characterized by thermogravimetric analyzer (TGA), X-ray diffraction (XRD), and UV/visible spectrophotometer analysis. Further, these negatively charged core-shell spherical NPs exhibited slow sustained release behavior of CUR with anomalous transport and further displayed its higher intracellular uptake in SiHa cells at different time-periods compared to free CUR. In vitro anti-cancer therapeutic effects of free CUR and poly(CHO-alt-PA)-CUR NPs were evaluated on different cancer cells. We observed the increased cytotoxicity of CUR NPs with low IC50 values compared to free CUR. These results were further substantiated with ex vivo data where, a significant reduction was observed in CUR NPs treated tumor spheroid's size as compared to free CUR. Furthermore, the different doses of metal-free poly(CHO-alt-PA) nanomaterial were tested for its acute and systemic toxicity in BALB/c mice. We did not observe any significant toxicity of tested nanomaterial on vital organs, blood cells and the body weight of mice. Our study suggest that this metal-free SAP nanomaterial can be used for potential clinical application.


Assuntos
Antineoplásicos , Portadores de Fármacos , Nanopartículas , Poliésteres/química , Células A549 , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Curcumina/química , Curcumina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Feminino , Hemólise/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/toxicidade , Ratos , Ratos Wistar
17.
Front Oncol ; 10: 600298, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552972

RESUMO

Triple negative breast cancer (TNBC) has the worst overall survival among all breast cancer subtypes; 80% of TNBC harbors TP53 mutation. Gambogic acid (GA) is an herbal compound isolated from the dry brownish gamboge resin of Garcinia hanburyi. A new family of biodegradable polymer, the folate (FA)-conjugated arginine-based poly(ester urea urethane)s nanoparticles (FA-Arg-PEUU NP), was developed as nano-carrier for GA. Its anti-TNBC effects and the underlying mechanism of action were examined. The average diameters of FA-Arg-PEUU NP and GA-loaded FA-Arg-PEUU NP (NP-GA) in water are around 165 and 220nm, respectively. Rhodamine-tagged FA-Arg-PEUU NP shows that the conjugation of FA onto Arg-PEUU NPs facilitates the internalization of FA-Arg-PEUU-NP into TNBC. Compared to free-GA at the same GA concentrations, NP-GA exhibits higher cytotoxicity in both TP53-mutated and non-TP53 expressed TNBC cells by increasing intrinsic and extrinsic apoptosis. In HCC1806-bearing xenograft mouse model, the targeted delivery of GA by the FA-Arg-PEUU-NP nano-carriers to the tumor sites results in a more potent anti-TNBC effect and lower toxicity towards normal tissues and organs when compared to free GA. Furthermore, NP-GA also reduces the tumor-associated macrophage (TAM) M1/M2 ratio, suggesting that the use of Arg-based nanoparticles as carriers for GA not only makes the surface of the nanoparticles positively charged, but also confers on to the nanoparticles an ability to modulate TAM polarization. Our data clearly demonstrate that NP-GA exhibits potent anti-TNBC effects with reduced off-target toxicity, which represents novel alternative targeted therapeutics for TNBC treatment.

18.
Molecules ; 24(20)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627395

RESUMO

Phosphorus-containing flame retardants synthesized from renewable resources have had a lot of impact in recent years. This article outlines the synthesis, characterization and evaluation of these compounds in polyesters and epoxy resins. The different approaches used in producing biobased flame retardant polyesters and epoxy resins are reported. While for the polyesters biomass derived compounds usually are phosphorylated and melt blended with the polymer, biobased flame retardants for epoxy resins are directly incorporated into the polymer structure by a using a phosphorylated biobased monomer or curing agent. Evaluating the efficiency of the flame retardant composites is done by discussing results obtained from UL94 vertical burning, limiting oxygen index (LOI) and cone calorimetry tests. The review ends with an outlook on future development trends of biobased flame retardant systems for polyesters and epoxy resins.


Assuntos
Resinas Epóxi/síntese química , Retardadores de Chama/síntese química , Lignina/química , Fósforo/química , Poliésteres/síntese química , Benzaldeídos/química , Biomassa , Resinas Epóxi/química , Fermentação , Humanos , Poliésteres/química , Propilenoglicol/química
19.
Mater Sci Eng C Mater Biol Appl ; 104: 109920, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31500039

RESUMO

HYPOTHESIS: Superparamagnetic iron oxide nanoparticles (SPIONs) are extensively used as building block of colloidal nanocomposites for biomedical applications. Strategies employed to embed them in a biodegradable and biocompatible polymer matrix often fail to achieve a high density of loading which would greatly benefit to applications such as imaging and hyperthermia. In this study, poly(acrylic acid) coated SPION (γ-Fe2O3-PAA) are self-assembled with hydrolysable poly(serine ester) by electrostatic complexation, leading to perfectly defined spherical particles with ultra-high density of magnetic material and an ability to auto-degrade into individual SPION and biocompatible byproducts. EXPERIMENTS: Self-assembly and auto-degradation of γ-Fe2O3-PAA/poly(serine ester) and γ-Fe2O3-PAA/poly(serine ester)-b-PEG colloidal particles are studied by light scattering and microscopy. Colloidal stability in bio-fluids, hyperthermia under alternating magnetic field, cellular uptake, cytotoxicity and degradation of γ-Fe2O3-PAA/poly(serine ester)-b-PEG in living cells are investigated. FINDINGS: A remarkably slow electrostatic complexation leads to dense superparamagnetic γ-Fe2O3-PAA/poly(serine ester)-b-PEG polyion complexes (PICs) with controlled sizes (150-500 nm) and times of degradation in aqueous solvents (700-5000 h). The material shows good sustainability during hyperthermia, is well taken up by MC3T3 cells and non-cytotoxic. TEM images reveal a mechanism of degradation by "peeling" and fragmentation. In cells, PICs are reduced into individual SPIONs within 72 h.


Assuntos
Materiais Biocompatíveis/química , Coloides/química , Fenômenos Magnéticos , Nanopartículas de Magnetita/química , Peptídeos/química , Polímeros/química , Resinas Acrílicas/síntese química , Resinas Acrílicas/química , Animais , Difusão Dinâmica da Luz , Células Hep G2 , Humanos , Hipertermia Induzida , Camundongos , Peptídeos/síntese química , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Polímeros/síntese química , Testes de Toxicidade
20.
J Sep Sci ; 42(8): 1610-1619, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30770622

RESUMO

In this work, a method for the analysis of benzoylurea insecticides, including hexaflumuron, flufenoxuron, lufenuron and chlorfluazuron, in tea samples by high-performance liquid chromatography with Fe3 O4 -hyperbranched polyester nanocomposite as the adsorbent for magnetic solid-phase extraction was developed. The magnetic nanocomposite was prepared and characterized by infrared spectroscopy, vibrating sample magnetometry, and scanning electron microscopy. The as-prepared nanocomposite was used as a sorbent for the extraction and preconcentration of pesticide residues in tea samples. The extraction and desorption conditions, including mass ratios of raw materials, amount of sorbent, pH value, extraction time, and desorption time, were investigated. Under the final conditions chosen for the analysis, good linearity was obtained for all the tested compounds, with R2 values of at least 0.9979. The limits of detection were determined in the range of 0.15-0.3 µg/L. The recovery obtained from the analysis of tea samples with various spiked concentrations was between 90.7 and 98.4%, with relative standard deviations (n = 4) lower than 4.1%. Furthermore, the present approach was successfully applied to the quantitative determination of residues of benzoylurea insecticides in real samples.


Assuntos
Benzamidas/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Contaminação de Alimentos/análise , Inseticidas/isolamento & purificação , Compostos de Fenilureia/isolamento & purificação , Piridinas/isolamento & purificação , Extração em Fase Sólida/métodos , Chá/química , Adsorção , Benzamidas/análise , Inseticidas/análise , Magnetismo , Nanopartículas de Magnetita/química , Nanocompostos/química , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/isolamento & purificação , Compostos de Fenilureia/análise , Poliésteres/química , Piridinas/análise , Extração em Fase Sólida/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA