Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Theor Biol ; 522: 110701, 2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-33794290

RESUMO

Potato cyst nematodes (PCN) are responsible for large losses in potato yields in many of the world's potato-growing regions. As soil temperatures increase due to climate change, there is potential for faster growth rates of PCN, allowing development of multiple generations in a growing season. We develop a process-based temperature-dependent model representing the life cycle of Globodera pallida, comprising juvenile, adult and cyst/diapause stages. To incorporate variability in the amount of time spent in each stage caused by genetic/environmental variation, the model is based on a mix of ordinary differential equations (ODEs) with sub-stages, and delay differential equations (DDEs). The effect of climate change is incorporated through the influence of soil temperature on the rate of development and survival in the hatching and juvenile stages. The level of the plant resistance to PCN is incorporated via the proportion of juveniles which become adults. After comparing the model with field data we run simulations to explore the effects of temperature and resistance on PCN populations. We find that with higher temperatures and longer growing seasons multiple generations of PCN can develop within a season, provided any required diapause period is short. Despite this, we show that growing resistant potatoes is a very effective control strategy and planting potatoes with even moderate levels of resistance can counter the effects of climate change.


Assuntos
Solanum tuberosum , Tylenchoidea , Animais , Dinâmica Populacional , Solo , Temperatura
2.
Mol Plant Pathol ; 22(5): 495-507, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33709540

RESUMO

TAXONOMY: Phylum Nematoda; class Chromadorea; order Rhabditida; suborder Tylenchina; infraorder Tylenchomorpha; superfamily Tylenchoidea; family Heteroderidae; subfamily Heteroderinae; Genus Globodera. BIOLOGY: Potato cyst nematodes (PCN) are biotrophic, sedentary endoparasitic nematodes. Invasive (second) stage juveniles (J2) hatch from eggs in response to the presence of host root exudates and subsequently locate and invade the host. The nematodes induce the formation of a large, multinucleate syncytium in host roots, formed by fusion of up to 300 root cell protoplasts. The nematodes rely on this single syncytium for the nutrients required to develop through a further three moults to the adult male or female stage. This extended period of biotrophy-between 4 and 6 weeks in total-is almost unparalleled in plant-pathogen interactions. Females remain at the root while adult males revert to the vermiform body plan of the J2 and leave the root to locate and fertilize the female nematodes. The female body forms a cyst that contains the next generation of eggs. HOST RANGE: The host range of PCN is limited to plants of the Solanaceae family. While the most economically important hosts are potato (Solanum tuberosum), tomato (Solanum lycopersicum), and aubergine (Solanum melongena), over 170 species of Solanaceae are thought to be potential hosts for PCN (Sullivan et al., 2007). DISEASE SYMPTOMS: Symptoms are similar to those associated with nutrient deficiency, such as stunted growth, yellowing of leaves and reduced yields. This absence of specific symptoms reduces awareness of the disease among growers. DISEASE CONTROL: Resistance genes (where available in suitable cultivars), application of nematicides, crop rotation. Great effort is put into reducing the spread of PCN through quarantine measures and use of certified seed stocks. USEFUL WEBSITES: Genomic information for PCN is accessible through WormBase ParaSite.


Assuntos
Genoma Helmíntico/genética , Interações Hospedeiro-Parasita , Doenças das Plantas/parasitologia , Solanum lycopersicum/parasitologia , Solanum tuberosum/parasitologia , Tylenchoidea/fisiologia , Animais , Resistência à Doença/genética , Feminino , Genômica , Especificidade de Hospedeiro/genética , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Masculino , Doenças das Plantas/prevenção & controle , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/parasitologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/parasitologia , Solanum tuberosum/genética , Solanum tuberosum/imunologia , Tylenchoidea/genética
3.
Plant Dis ; 105(10): 2975-2980, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33754862

RESUMO

Steroidal glycoalkaloids (SGAs) are phytoanticipins found in solanaceous crops that act as the first line of chemical defense against pathogen attacks. Solanum sisymbriifolium, a trap crop for potato cyst nematodes, has been shown to effectively reduce populations of Globodera pallida. S. sisymbriifolium contains α-solamargine and other solasodine-type glycoalkaloids that may contribute to plant defenses. This study evaluated the influence of solanaceous SGAs on G. pallida hatch, development, and reproduction. Exposure to α-solamargine and α-solamarine reduced G. pallida hatch by 65 and 87%, respectively. Exposure of G. pallida cysts with the glycoalkaloids α-solamargine and solasodine significantly reduced infection in susceptible potato 'Russet Burbank' by 98 and 94% compared with the control. Exposure of cysts to either solasodine or solamargine significantly reduced reproduction of G. pallida on 'Russet Burbank' by 99% compared with the control. The study demonstrated the deleterious effect of SGAs on G. pallida hatch, infection, and reproduction.


Assuntos
Solanum tuberosum , Solanum , Tylenchoidea , Animais , Produtos Agrícolas , Reprodução
4.
Genes (Basel) ; 11(12)2020 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260722

RESUMO

Although the use of natural resistance is the most effective management approach against the potato cyst nematode (PCN) Globodera pallida, the existence of pathotypes with different virulence characteristics constitutes a constraint towards this goal. Two resistance sources, GpaV (from Solanum vernei) and H3 from S. tuberosum ssp. andigena CPC2802 (from the Commonwealth Potato Collection) are widely used in potato breeding programmes in European potato industry. However, the use of resistant cultivars may drive strong selection towards virulence, which allows the increase in frequency of virulent alleles in the population and therefore, the emergence of highly virulent nematode lineages. This study aimed to identify Avirulence (Avr) genes in G. pallida populations selected for virulence on the above resistance sources, and the genomic impact of selection processes on the nematode. The selection drive in the populations was found to be specific to their genetic background. At the genomic level, 11 genes were found that represent candidate Avr genes. Most of the variant calls determining selection were associated with H3-selected populations, while many of them seem to be organised in genomic islands facilitating selection evolution. These phenotypic and genomic findings combined with histological studies performed revealed potential mechanisms underlying selection in G. pallida.


Assuntos
Nematoides , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Solanum tuberosum/parasitologia , Animais , Resistência à Doença , Nematoides/genética , Nematoides/patogenicidade , Virulência
5.
Phytopathology ; 110(2): 379-392, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31573395

RESUMO

The potato cyst nematode Globodera pallida is a globally regulated potato pest. It was detected for the first time in the United States in the state of Idaho in 2006, and as of February 2019, the infestation is limited to 1,326 hectares. G. pallida is a specialized obligate sedentary endoparasite that can survive in the soil for up to 30 years in the absence of its potato host. In highly infested fields, the nematode can reduce tuber yields up to 80% and is spread mainly through the movement of soil, tubers, or farm equipment. The objectives of this study were to describe the spatiotemporal pattern of G. pallida in infested fields and model its dispersal patterns in southeastern Idaho. We used geostatistical tools and simulation models for precise mapping and to describe the relationships between G. pallida incidence and the spatial configurations. We found that the nematode is spatially clustered and prevalent around edges of fields, and its dispersal pattern followed the direction of cultivation. We found that the absence of potato in an infested field significantly reduced the number of cysts sampled each year subsequent to the initial delimitation sampling in 2007. Phytosanitary measures prohibiting the growth of potato contributed to stopping nematode reproduction, and the use of chemical fumigants and biofumigant cover crops contributed to a significant reduction in egg viability. We observed a process of a nonlinear decline in the prevalence of cysts as the distance separation from the primary infestation focus increased. A power law model was used to fit G. pallida dispersal capabilities. This study contributed to describing G. pallida infestation for Idaho. The goal of this study is to provide information on the spatial pattern and landscape ecology of G. pallida in Idaho for policy makers, industry, and researchers as well as facilitate common understandings on the challenges and opportunities for controlling this pest in Idaho.


Assuntos
Solanum tuberosum , Tylenchoidea , Animais , Idaho , Doenças das Plantas , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA