RESUMO
Zoonotic diseases are major public health concerns and undeniable threats to human health. Among Zoonotic diseases, zoonotic viruses and prions are much more difficult to eradicate, as they result in higher infections and mortality rates. Several investigations have shown curcumin, the active ingredient of turmeric, to have wide spectrum properties such as anti-microbial, anti-vascular, anti-inflammatory, anti-tumor, anti-neoplastic, anti-oxidant, and immune system modulator properties. In the present study, we performed a comprehensive review of existing in silico, in vitro, and in vivo evidence on the antiviral (54 important zoonotic viruses) and anti-prion properties of curcumin and curcuminoids in PubMed, Google Scholar, Science Direct, Scopus, and Web of Science databases. Database searches yielded 13,380 results, out of which 216 studies were eligible according to inclusion criteria. Of 216 studies, 135 (62.5%), 24 (11.1%), and 19 (8.8%) were conducted on the effect of curcumin and curcuminoids against SARS-CoV-2, Influenza A virus, and dengue virus, respectively. This review suggests curcumin and curcuminoids as promising therapeutic agents against a wide range of viral zoonoses by targeting different proteins and signaling pathways.
Assuntos
Antivirais , Curcumina , Curcumina/farmacologia , Animais , Humanos , Antivirais/farmacologia , Zoonoses/tratamento farmacológico , Zoonoses/virologia , SARS-CoV-2/efeitos dos fármacos , Príons/efeitos dos fármacos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Dengue/efeitos dos fármacos , Tratamento Farmacológico da COVID-19 , COVID-19/virologiaRESUMO
OBJECTIVE: To investigate brain MRI abnormalities in a cohort of patients with rapidly progressive dementia (RPD) with and without a diagnosis of Creutzfeldt-Jakob disease (CJD). METHODS: One hundred and seven patients with diagnosis of prion disease (60 with definite sCJD, 33 with probable sCJD and 14 with genetic prion disease) and 40 non-prion related RPD patients (npRPD) underwent brain MRI including DWI and FLAIR. MRIs were evaluated with a semiquantitative rating score, which separately considered abnormal signal extent and intensity in 22 brain regions. Clinical findings at onset, disease duration, cerebrospinal-fluid 14-3-3 and t-tau protein levels, and EEG data were recorded. RESULTS: Among patients with definite/probable diagnosis of CJD or genetic prion disease, 2/107 had normal DWI-MRI: in one patient a 2-months follow-up DWI-MRI showed CJD-related changes while the other had autopsy-proven CJD despite no DWI abnormalities 282 days after clinical onset. CJD-related cortical changes were detected in all lobes and involvement of thalamus was common. In the npRPD groups, 6/40 patients showed DWI alterations that clustered in three different patterns: (1) minimal/doubtful signal alterations (limbic encephalitis, dementia with Lewy bodies); (2) clearly suggestive of alternative diagnoses (status epilepticus, Wernicke or metabolic encephalopathy); (3) highly suggestive of CJD (mitochondrial disease), though cortical swelling let exclude CJD. CONCLUSIONS: In the diagnostic work-up of RPD, negative/doubtful DWI makes CJD diagnosis rather unlikely, while specific DWI patterns help differentiating CJD from alternative diagnoses. The pulvinar sign is not exclusive of the variant form.
Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Humanos , Síndrome de Creutzfeldt-Jakob/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , TálamoRESUMO
A prion-derived copper(II)-binding peptide was assembled onto a gold electrode for the building of a voltammetric biosensor for measuring the Cu2+ metal ion in biological samples. The chosen sequence was H-CVNITKQHTVTTTT-NH2, with an appended cysteine residue for binding to the gold surface as a self-assembled monolayer and a histidine residue as the anchorage point for copper(II) complexation. The biosensor showed a linear range of 10-7 to 10-6 M with an 8.0 × 10-8 M detection limit and a 1.0 × 10-7 M quantification limit, with good precision, trueness, and absence of matrix effect. The quantification of Cu2+ was performed in the presence of other transition metal ions, such as Zn2+, Cd2+, Fe2+, or Ni2+, which indicates the excellent selectivity of the biosensor. When the modified electrode was applied for measuring copper(II) in calcined coffee seeds, a difference in copper amount was observed between two Coffea arabica cultivars that were submitted to a treatment with a copper-based antifungal, showing the applicability of the biosensor in the agricultural field.
Assuntos
Técnicas Biossensoriais , Cobre , Cobre/química , Café , Peptídeos/química , Ouro/química , ÍonsRESUMO
BACKGROUND: Prion diseases involve the conversion of a normal, cell-surface glycoprotein (PrPC) into a misfolded pathogenic form (PrPSc). One possible strategy to inhibit PrPSc formation is to stabilize the native conformation of PrPC and interfere with the conversion of PrPC to PrPSc. Many compounds have been shown to inhibit the conversion process, however, no promising drugs have been identified to cure prion diseases. OBJECTIVE: This study aims to identify potential anti-prion compounds from plant phytochemicals by integrating traditional ethnobotanical knowledge with modern in silico drug design approaches. MATERIALS AND METHODS: In the current study medicinal phytochemicals were docked with swapped and non-swapped crystal structures of PrPCin silico to identify potential anti-prions to determine their binding modes and interactions. RESULTS: Eleven new phytochemicals were identified based on their binding energies and pharmacokinetic properties. The binding sites and interactions of the known and new anti-prion compounds are similar, and differences in binding modes occur in structures with very subtle differences in side chain conformations. Binding of these compounds poses steric hindrance to neighbouring molecules. Residues shown to be associated with the inhibition of PrPC to PrPSc conversion form interactions with most of the compounds. CONCLUSION: Identified compounds might act as potent inhibitors of PrPC to PrPSc conversion. These might be attractive candidates for the development of novel anti-prion therapy although further tests in vitro cell cultures and in vivo mouse models are needed to confirm these findings.
RESUMO
Some of the greatest challenges in medicine are the neurodegenerative diseases (NDs), which remain without a cure and mostly progress to death. A companion study employed a toolkit methodology to document 2001 plant species with ethnomedicinal uses for alleviating pathologies relevant to NDs, focusing on its relevance to Alzheimer's disease (AD). This study aimed to find plants with therapeutic bioactivities for a range of NDs. 1339 of the 2001 plant species were found to have a bioactivity from the literature of therapeutic relevance to NDs such as Parkinson's disease, Huntington's disease, AD, motor neurone diseases, multiple sclerosis, prion diseases, Neimann-Pick disease, glaucoma, Friedreich's ataxia and Batten disease. 43 types of bioactivities were found, such as reducing protein misfolding, neuroinflammation, oxidative stress and cell death, and promoting neurogenesis, mitochondrial biogenesis, autophagy, longevity, and anti-microbial activity. Ethno-led plant selection was more effective than random selection of plant species. Our findings indicate that ethnomedicinal plants provide a large resource of ND therapeutic potential. The extensive range of bioactivities validate the usefulness of the toolkit methodology in the mining of this data. We found that a number of the documented plants are able to modulate molecular mechanisms underlying various key ND pathologies, revealing a promising and even profound capacity to halt and reverse the processes of neurodegeneration.
RESUMO
Transmissible spongiform encephalopathies (TSEs) or prion diseases are fatal neurodegenerative diseases with no approved therapeutics. TSE pathology is characterized by abnormal accumulation of amyloidogenic and infectious prion protein conformers (PrPSc) in the central nervous system. Herein, we examined the role of gallate group in green tea catechins in modulating the aggregation of human prion protein (HuPrP) using two green tea constituents i.e., epicatechin 3-gallate (EC3G; with intact gallate ring) and epigallocatechin (EGC; without gallate ring). Molecular docking indicated distinct differences in hydrogen bonding and hydrophobic interactions of EC3G and EGC at the ß2-α2 loop of HuPrP. These differences were substantiated by 44-fold higher KD for EC3G as compared to EGC with the former significantly reducing Thioflavin T (ThT) binding aggregates of HuPrP. Conformational alterations in HuPrP aggregates were validated by particle sizing, AFM analysis and A11 and OC conformational antibodies. As compared to EGC, EC3G showed relatively higher reduction in toxicity and cellular internalization of HuPrP oligomers in Neuro-2a cells. Additionally, EC3G also displayed higher fibril disaggregating properties as observed by ThT kinetics and electron microscopy. Our observations were supported by molecular dynamics (MD) simulations that showed markedly reduced α2-α3 and ß2-α2 loop mobilities in presence of EC3G that may lead to constriction of HuPrP conformational space with lowered ß-sheet conversion. In totality, gallate moiety of catechins play key role in modulating HuPrP aggregation, and toxicity and could be a new structural motif for designing therapeutics against prion diseases and other neurodegenerative disorders.
Assuntos
Catequina , Doenças Priônicas , Príons , Humanos , Príons/química , Proteínas Priônicas/química , Chá , Simulação de Acoplamento Molecular , Catequina/farmacologiaRESUMO
INTRODUCTION: Prion diseases are a group of rare and lethal, rapidly progressive neurodegenerative diseases arising due to conversion of the physiological cellular prion protein into its pathological counterparts, denoted as 'prions.' These agents are resistant to inactivation by standard decontamination procedures and can be transmitted between individuals, consequently driving the irreversible brain damage typical of the diseases. AREAS COVERED: Since its infancy, prion research has mainly depended on animal models for untangling the pathogenesis of the disease as well as for the drug development studies. With the advent of prion-infected cell lines, relevant animal models have been complemented by a variety of cell-based models presenting a much faster, ethically acceptable alternative. EXPERT OPINION: To date, there are still either no effective prophylactic regimens or therapies for human prion diseases. Therefore, there is an urgent need for more relevant cellular models that best approximate in vivo models. Each cellular model presented and discussed in detail in this review has its own benefits and limitations. Once embarking in a drug screening campaign for the identification of molecules that could interfere with prion conversion and replication, one should carefully consider the ideal cellular model.
Assuntos
Doenças Priônicas , Príons , Animais , Desenvolvimento de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Humanos , Doenças Priônicas/tratamento farmacológico , Proteínas Priônicas , Príons/metabolismoRESUMO
Although sporadic Creutzfeldt-Jakob disease is a rare neurodegenerative disease and often difficult to diagnose at the earliest onset, meticulous clinical examination, electroencephalography, and neuroimaging findings will help in diagnosis.
RESUMO
Advanced age is the main risk factor for the manifestation of late onset neurodegenerative diseases. Metformin, an anti-diabetic drug, was shown to extend longevity, and to ameliorate the activity of recognized aging hallmarks. Here, we compared the clinical, pathologic and biochemical effects of Metformin to those of Nano-PSO (Granagard), a brain targeted anti-oxidant shown by us to delay disease advance in transgenic mice mimicking for genetic Creutzfeldt Jacob disease (CJD) linked to the E200KPrP mutation. We demonstrate that both Metformin and Nano-PSO reduced aging hallmarks activities such as activated AMPK, the main energy sensor of cells as well as Nrf2 and COX IV1, regulators of oxidation, and mitochondrial activity. Both compounds reduced inflammation and increased stem cells production, however did not decrease PrP accumulation. As opposed to Nano-PSO, Metformin neither delayed clinical disease advance in these mice nor reduced the accumulation of sulfated glycosaminoglycans, a pathologic feature of prion disease. We conclude that elevation of anti-aging markers may not be sufficient to delay the fatal advance of genetic CJD.
Assuntos
Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/prevenção & controle , Metformina/farmacologia , Metformina/uso terapêutico , Óleos de Plantas/farmacologia , Óleos de Plantas/uso terapêutico , Adenilato Quinase/metabolismo , Animais , Antioxidantes , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismoRESUMO
Acquiring the recommended daily allowance of vitamins is crucial for maintaining homeostatic balance in humans and other animals. A deficiency in or dysregulation of vitamins adversely affects the neuronal metabolism, which may lead to neurodegenerative diseases. In this article, we discuss how novel vitamin-based approaches aid in attenuating abnormal neuronal functioning in neurodegeneration-based brain diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and Prion disease. Vitamins show their therapeutic activity in Parkinson's disease by antioxidative and anti-inflammatory activity. In addition, different water- and lipid-soluble vitamins have also prevented amyloid beta and tau pathology. On the other hand, some results also show no correlation between vitamin action and the prevention of neurodegenerative diseases. Some vitamins also exhibit toxic activity too. This review discusses both the beneficial and null effects of vitamin supplementation for neurological disorders. The detailed mechanism of action of both water- and lipid-soluble vitamins is addressed in the manuscript. Hormesis is also an essential factor that is very helpful to determine the effective dose of vitamins. PubMed, Google Scholar, Web of Science, and Scopus were employed to conduct the literature search of original articles, review articles, and meta-analyses.
RESUMO
The understandings of pathogenic processes in major neurodegenerative diseases has significantly advanced in recent years, with evidence showing pathological spread of intraneuronal proteinaceous inclusions as a fundamental factor. In Parkinson's disease (PD), the culprit protein has been identified as α-synuclein as the main component for mediating progressive neurodegeneration. With severe pathology evident in the autonomic nervous system prior to clinical manifestations of PD, pathogenic spread can occur from the peripheral nervous system through key nuclei, such as the anterior olfactory nucleus and dorsal motor nucleus of the glossopharyngeal and vagal nerves, gradually reaching the brainstem, midbrain and cerebral cortex. With this understanding and the proposed involvement of the vagus nerve in disease progression in PD, notably occurring prior to characterized clinical motor features, it raises intriguing questions as to whether vagal nerve pathology can be accurately detected, and importantly used as a reliable marker for determining early neurodegeneration. Along with this is the potential use of vagus nerve neuromodulation for treatment of early disease symptoms like dysautonomia, for modulating sympatho-vagal imbalances and easing severe comorbidities of the disease. In this article, we take a closer look at the pathogenic transmission processes in neurodegenerative disorders that impact the vagus nerve, and how vagus nerve neuromodulation can be potentially applied as a therapeutic approach for major neurodegenerative disorders.
Assuntos
Doença de Parkinson , Disautonomias Primárias , Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Humanos , Doença de Parkinson/terapia , Disautonomias Primárias/terapia , Nervo Vago , alfa-SinucleínaRESUMO
Genetic Creutzfeldt-Jakob disease (gCJD) with a methionine to arginine substitution at codon 232 of the prion protein gene (gCJD-M232R) is rare and has only been reported in Japan. We report an autopsy case of gCJD-M232R showing alleles of codon 129 that were homozygous for methionine and the presence of multiple strains of the protease-resistant, abnormal isoform of prion protein (PrPSc ), M1 + M2C + M2T. The patient, a 54-year-old Japanese man, died after a clinical course of 21 months characterized by slowly progressive dementia and sleep disturbance. At autopsy, the neuropil of the cerebral neocortex showed a widespread and severe spongiform change. Grape-like clusters of large confluent vacuoles were admixed with fine vacuoles. Neuronal loss was moderate, but reactive astrocytosis was mild. The dorsomedial nucleus of the thalamus and the inferior olivary nucleus showed moderate and severe neuronal loss, respectively. Many amyloid plaques were present in the cerebellar molecular layer. PrPSc deposition pattern was predominantly the synaptic type in the cerebrum and corresponded to the plaques in the cerebellum. Perivacuolar deposition was also seen. Western blot analysis of PrPSc revealed the predominance of type 2. Moreover, by employing Western blot analysis in combination with the protein misfolding cyclic amplification (PMCA) method, which selectively amplifies the minor M2T prion strain, we demonstrated the presence of M2T, in addition to M1 and M2C strains, in the brain of the patient. PMCA was a powerful method for demonstrating the presence of the M2T strain, although the amount is often small and the transmission is difficult.
Assuntos
Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patologia , Metionina/genética , Proteínas PrPSc/genética , Atrofia/genética , Atrofia/patologia , Autopsia , Western Blotting , Cerebelo/patologia , Cérebro/patologia , Humanos , Japão , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação , Miocárdio/patologia , Tálamo/patologiaRESUMO
The prion protein (PrP) misfolding to its infectious form is critical to the development of prion diseases, whereby various ligands are suggested to participate, such as copper and nucleic acids (NA). The PrP globular domain was shown to undergo NA-driven liquid-liquid phase separation (LLPS); this latter may precede pathological aggregation. Since Cu(II) is a physiological ligand of PrP, we argue whether it modulates phase separation altogether with nucleic acids. Using recombinant PrP, we investigate the effects of Cu(II) (at 6 M equivalents) and a previously described PrP-binding GC-rich DNA (equimolarly to protein) on PrP conformation, oligomerization, and phase transitions using a range of biophysical techniques. Raman spectroscopy data reveals the formation of the ternary complex. Microscopy suggests that phase separation is mainly driven by DNA, whereas Cu(II) has no influence. Our results show that DNA can be an adjuvant, leading to the structural conversion of PrP, even in the presence of an endogenous ligand, copper. These results provide new insights into the role of Cu(II) and NA on the phase separation, structural conversion, and aggregation of PrP, which are critical events leading to neurodegeneration.
Assuntos
Cobre/química , Oligonucleotídeos/química , Proteínas da Gravidez/química , Agregados Proteicos , Animais , Cátions Bivalentes , Clonagem Molecular , Cobre/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Camundongos , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Proteínas da Gravidez/genética , Proteínas da Gravidez/metabolismo , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
Endoplasmic reticulum (ER) stress is a common threat to photoreceptors during the pathogenesis of chronic retinopathies and often results in irreversible visual impairment. 2,3,5,6-Tetramethylpyrazine (TMP), which possesses many beneficial pharmacological activities, is a potential drug that could be used to protect photoreceptors. In the present study, we found that the cellular growth rate of 661 W cells cultured under low glucose conditions was lower than that of control cells, while the G2/M phase of the cell cycle was longer. We further found that the mitochondrial membrane potential (ΔΨm) was lower and that ER stress factor expression was increased in 661 W cells cultured under low glucose conditions. TMP reversed these trends. Visual function and cell counts in the outer nuclear layer (ONL) were low and the TUNEL-positive rate in the ONL was high in a C3H mouse model of spontaneous retinal degeneration. Similarly, visual function was decreased, and the TUNEL-positive rate in the ONL was increased in fasted C57/BL6j mice compared with control mice. On the other hand, ER stress factor expression was found to be increased in the retinas of both mouse models, as shown by reverse transcription real-time PCR (RT-qPCR) and western blotting. TMP reversed the physiological and molecular biological variations observed in both mouse models, and ATF4 expression was enhanced again. Further investigation by using western blotting illustrated that the proportion of insoluble prion protein (PRP) versus soluble PRP was reduced both in vitro and in vivo. Taken together, these results suggest that TMP increased the functions of photoreceptors by alleviating ER stress in vitro and in vivo, and the intrinsic mechanism was the ATF4-mediated inhibition of PRP aggregation. TMP may potentially be used clinically as a therapeutic agent to attenuate the functional loss of photoreceptors during the pathogenesis of chronic retinopathies. KEY MESSAGES: ⢠Already known: TMP is a beneficial drug mainly used in clinic to enhance organ functions, and the intrinsic mechanism is still worthy of exploring. ⢠New in the study: We discovered that TMP ameliorated retinal photoreceptors function via ER stress alleviation, which was promoted by ATF4-mediated inhibition of PRP aggregation. ⢠Application prospect: In prospective clinical practices, TMP may potentially be used in the clinic as a therapeutic agent to attenuate the photoreceptors functional reduction in chronic retinopathies.
Assuntos
Fator 4 Ativador da Transcrição/fisiologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas Priônicas/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/prevenção & controle , Pirazinas/farmacologia , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Degeneração Retiniana/prevenção & controle , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Eletrorretinografia , Proteínas do Olho/biossíntese , Proteínas do Olho/genética , Jejum , Feminino , Glucose/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Proteínas Priônicas/química , Agregação Patológica de Proteínas/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/fisiopatologia , Método Simples-Cego , Solubilidade , Organismos Livres de Patógenos Específicos , Transcrição Gênica/efeitos dos fármacosRESUMO
Prions are misfolded proteins involved in neurodegenerative diseases of high interest in veterinary and public health. In this work, we report the chemical space exploration around the anti-prion compound BB 0300674 in order to gain an understanding of its Structure Activity Relationships (SARs). A series of 43 novel analogues, based on four different chemical clusters, were synthetized and tested against PrPSc and mutant PrP toxicity assays. From this biological screening, two compounds (59 and 65) emerged with a 10-fold improvement in anti-prion activity compared with the initial lead compound, presenting at the same time interesting cell viability.
Assuntos
Benzilaminas/química , Proteínas PrPSc/metabolismo , Animais , Benzilaminas/síntese química , Benzilaminas/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Camundongos , Mutagênese , Proteínas PrPSc/antagonistas & inibidores , Proteínas PrPSc/genética , Relação Estrutura-AtividadeRESUMO
The accumulation of abnormal prion protein (PrPSc) produced by the structure conversion of PrP (PrPC) in the brain induces prion disease. Although the conversion process of the protein is still not fully elucidated, it has been known that the intramolecular chemical bridging in the most fragile pocket of PrP, known as the "hot spot," stabilizes the structure of PrPC and inhibits the conversion process. Using our original structure-based drug discovery algorithm, we identified the low molecular weight compounds that predicted binding to the hot spot. NPR-130 and NPR-162 strongly bound to recombinant PrP in vitro, and fragment molecular orbital (FMO) analysis indicated that the high affinity of those candidates to the PrP is largely dependent on nonpolar interactions, such as van der Waals interactions. Those NPRs showed not only significant reduction of the PrPSc levels but also remarkable decrease of the number of aggresomes in persistently prion-infected cells. Intriguingly, treatment with those candidate compounds significantly prolonged the survival period of prion-infected mice and suppressed prion disease-specific pathological damage, such as vacuole degeneration, PrPSc accumulation, microgliosis, and astrogliosis in the brain, suggesting their possible clinical use. Our results indicate that in silico drug discovery using NUDE/DEGIMA may be widely useful to identify candidate compounds that effectively stabilize the protein.
Assuntos
Simulação por Computador , Progressão da Doença , Descoberta de Drogas/métodos , Doenças Priônicas/diagnóstico , Doenças Priônicas/tratamento farmacológico , Proteínas Priônicas/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Doenças Priônicas/genética , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Ligação Proteica/fisiologia , Relação Estrutura-AtividadeRESUMO
gCJD is a fatal late-onset neurodegenerative disease linked to mutations in the PRNP gene. We have previously shown that transplantation of neural precursor cells (NPCs), or administration of a nanoformulation of pomegranate seed oil (Nano-PSO, GranaGard), into newborn asymptomatic TgMHu2ME199K mice modeling for E200K gCJD significantly delayed the advance of clinical disease. In the present study, we tested the individual and combined effects of both treatments in older and sick TgMHu2ME199K mice. We show that while transplantation of NPCs at both initial (140 days) and advance clinical states (230 days) arrested disease progression for about 30 days, after which scores rapidly climbed to those of untreated Tgs, administration of Nano-PSO to transplanted TgMHu2ME199K mice resulted in detention of disease advance for 60-80 days, followed by a slower disease progression thereafter. Pathological examinations demonstrated the combined treatment extended the survival of the transplanted NPCs, and also increased the generation of endogenous stem cells. Our results suggest that administration of Nano-PSO may increase the beneficial effects of NPCs transplantation.
Assuntos
Síndrome de Creutzfeldt-Jakob/terapia , Nanoestruturas/administração & dosagem , Células-Tronco Neurais/transplante , Óleos de Plantas/administração & dosagem , Punica granatum/química , Animais , Síndrome de Creutzfeldt-Jakob/prevenção & controle , Modelos Animais de Doenças , Progressão da Doença , Camundongos Transgênicos , Óleos de Plantas/isolamento & purificação , Fatores de TempoRESUMO
Prion disease is a rapidly progressive neurodegenerative disorder caused by misfolding and aggregation of the prion protein (PrP), and there are currently no therapeutic options. PrP ligands could theoretically antagonize prion formation by protecting the native protein from misfolding or by targeting it for degradation, but no validated small-molecule binders have been discovered to date. We deployed a variety of screening methods in an effort to discover binders of PrP, including 19F-observed and saturation transfer difference (STD) NMR spectroscopy, differential scanning fluorimetry (DSF), DNA-encoded library selection, and in silico screening. A single benzimidazole compound was confirmed in concentration-response, but affinity was very weak (Kd > 1 mm), and it could not be advanced further. The exceptionally low hit rate observed here suggests that PrP is a difficult target for small-molecule binders. Whereas orthogonal binder discovery methods could yield high-affinity compounds, non-small-molecule modalities may offer independent paths forward against prion disease.
Assuntos
Benzimidazóis/farmacologia , Doenças Priônicas/tratamento farmacológico , Proteínas Priônicas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Benzimidazóis/química , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos , Espectroscopia de Ressonância Magnética , Doenças Priônicas/metabolismo , Proteínas Priônicas/metabolismo , Bibliotecas de Moléculas Pequenas/químicaRESUMO
Prion diseases are fatal, transmissible neurodegenerative disorders whose pathogenesis is driven by the misfolding, self-templating and cell-to-cell spread of the prion protein. Other neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease, share some of these prion-like features, with different aggregation-prone proteins. Consequently, researchers have begun to apply prion-specific techniques, like the prion organotypic slice culture assay (POSCA), to these disorders. In this review we explore the ways in which the prion phenomenon has been used in organotypic cultures to study neurodegenerative diseases from the perspective of protein aggregation and spreading, strain propagation, the role of glia in pathogenesis, and efficacy of drug treatments. We also present an overview of the advantages and disadvantages of this culture system compared to in vivo and in vitro models and provide suggestions for new directions.
Assuntos
Doenças Neurodegenerativas/patologia , Técnicas de Cultura de Órgãos/métodos , Doenças Priônicas/patologia , Príons/análise , Animais , Pesquisa Biomédica/métodos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/metabolismo , Príons/metabolismo , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologiaRESUMO
We describe a man whose first manifestations of Creutzfeldt-Jakob disease occurred in tandem with symptomatic onset of coronavirus disease 2019 (COVID-19). Drawing from recent data on prion disease pathogenesis and immune responses to SARS-CoV-2, we hypothesize that the cascade of systemic inflammatory mediators in response to the virus accelerated the pathogenesis of our patient's prion disease. This hypothesis introduces the potential relationship between immune responses to the novel coronavirus and the hastening of preclinical or manifest neurodegenerative disorders. The global prevalence of both COVID-19 and neurodegenerative disorders adds urgency to the study of this potential relationship.