Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
ACS Nano ; 18(3): 2195-2209, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38194222

RESUMO

Nanocarrier-based cytoplasmic protein delivery offers opportunities to develop protein therapeutics; however, many delivery systems are positively charged, causing severe toxic effects. For enhanced therapeutics, it is also of great importance to design nanocarriers with intrinsic bioactivity that can be integrated with protein drugs due to the limited bioactivity of proteins alone for disease treatment. We report here a protein delivery system based on anionic phosphite-terminated phosphorus dendrimers with intrinsic anti-inflammatory activity. A phosphorus dendrimer termed AK-137 with optimized anti-inflammatory activity was selected to complex proteins through various physical interactions. Model proteins such as bovine serum albumin, ribonuclease A, ovalbumin, and fibronectin (FN) can be transfected into cells to exert their respective functions, including cancer cell apoptosis, dendritic cell maturation, or macrophage immunomodulation. Particularly, the constructed AK-137@FN nanocomplexes display powerful therapeutic effects in acute lung injury and acute gout arthritis models by integrating the anti-inflammatory activity of both the carrier and protein. The developed anionic phosphite-terminated phosphorus dendrimers may be employed as a universal carrier for protein delivery and particularly utilized to deliver proteins and fight different inflammatory diseases with enhanced therapeutic efficacy.


Assuntos
Dendrímeros , Fosfitos , Dendrímeros/farmacologia , Fósforo , Proteínas , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
2.
Cell Mol Life Sci ; 80(12): 371, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38001384

RESUMO

Inherited retinal dystrophies are often associated with mutations in the genes involved in the phototransduction cascade in photoreceptors, a paradigmatic signaling pathway mediated by G protein-coupled receptors. Photoreceptor viability is strictly dependent on the levels of the second messengers cGMP and Ca2+. Here we explored the possibility of modulating the phototransduction cascade in mouse rods using direct or liposome-mediated administration of a recombinant protein crucial for regulating the interplay of the second messengers in photoreceptor outer segments. The effects of administration of the free and liposome-encapsulated human guanylate cyclase-activating protein 1 (GCAP1) were compared in biological systems of increasing complexity (in cyto, ex vivo, and in vivo). The analysis of protein biodistribution and the direct measurement of functional alteration in rod photoresponses show that the exogenous GCAP1 protein is fully incorporated into the mouse retina and photoreceptor outer segments. Furthermore, only in the presence of a point mutation associated with cone-rod dystrophy in humans p.(E111V), protein delivery induces a disease-like electrophysiological phenotype, consistent with constitutive activation of the retinal guanylate cyclase. Our study demonstrates that both direct and liposome-mediated protein delivery are powerful complementary tools for targeting signaling cascades in neuronal cells, which could be particularly important for the treatment of autosomal dominant genetic diseases.


Assuntos
Lipossomos , Retina , Camundongos , Humanos , Animais , Distribuição Tecidual , Retina/metabolismo , Transdução de Sinal Luminoso , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ativadoras de Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Cálcio/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-36757908

RESUMO

To date, plant medicine research has focused mainly on the chemical compositions of plant extracts and their medicinal effects. However, the therapeutic or toxic effects of nanoparticles in plant extracts remain unclear. In this study, large numbers of spherical nanoparticles were discovered in some plant extracts. Nanoparticles in Turkish galls extracts were used as an example to examine their pH responsiveness, free radical scavenging, and antibacterial capabilities. By utilizing the underlying formation mechanism of these nanoparticles, a general platform to produce spherical nanoparticles via direct self-assembly of Turkish gall extracts and various functional proteins was developed. The results showed that the nanoparticles retained both the antibacterial ability and intracellular carrier ability of the original protein or catechol. This work introduces a new member of the plant-derived edible nanoparticle (PDEN) family, establishes a simple and versatile platform for mass production nanoparticles, and provides new insight into the formation mechanism of nanoparticles during plant extraction.

4.
Eur J Pharm Biopharm ; 170: 70-76, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34879228

RESUMO

The decades-long effort to deliver peptide drugs orally has resulted in several clinically successful formulations. These formulations are enabled by the inclusion of permeation enhancers that facilitate the intestinal absorption of peptides. Thus far, these oral peptide drugs have been limited to peptides less than 5 kDa, and it is unclear whether there is an upper bound of protein size that can be delivered with permeation enhancers. In this work, we examined two permeation enhancers, 1-phenylpiperazine (PPZ) and sodium deoxycholate (SDC), for their ability to increase intestinal transport of a model macromolecule (FITC-Dextran) as a function of its size. Specifically, the permeability of dextrans with molecular weights of 4, 10, 40, and 70 kDa was assessed in an in vitro and in vivo model of the intestine. In Caco-2 monolayers, both PPZ and SDC significantly increased the permeability of only FD4 and FD10. However, in mice, PPZ and SDC behaved differently. While SDC improved the absorption of all tested sizes of dextrans, PPZ was effective only for FD4 and FD10. This work is the first report of PPZ as a permeation enhancer in vivo, and it highlights the ability of permeation enhancers to improve the absorption of macromolecules across a broad range of sizes relevant for protein drugs.


Assuntos
Adjuvantes Farmacêuticos/farmacologia , Ácido Desoxicólico/farmacologia , Absorção Intestinal/efeitos dos fármacos , Substâncias Macromoleculares/administração & dosagem , Substâncias Macromoleculares/metabolismo , Piperazinas/farmacologia , Administração Oral , Animais , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Humanos , Camundongos , Permeabilidade
5.
Clin Nutr ESPEN ; 46: 459-465, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34857234

RESUMO

BACKGROUND & AIMS: Critically ill patients requiring prolonged intensive care (ICU) treatment are at high risk of malnutrition, which latter contributes to worsening outcome. Having observed that despite the presence of a nutrition protocol and dieticians, the patients with persistent critical illness (PCI) had been underfed during their ICU stay and particularly during the first 10 days, the aim was to analyse the impact of the organisational changes that were proposed to prevent the observed malnutrition. METHODS: Before (Period A) and after (Period B) study enrolling critically ill patients consecutively admitted, requiring >10 days of ICU treatment. The intervention consisted in increasing the early morning interactions between dieticians, nurses, and physicians, while modifying the computer visualisation of the dietician proposals. The primary endpoint was a reduction in the cumulative energy balance in period B. The ICU stay was divided in early ICU stay (first 10 days) and late ICU stay (day 11 to day 30). Other variables: protein, glucose, and prealbumin. RESULTS: Altogether, 205 patients (150 and 55 in period A and B respectively) were enrolled in the PCI program. Patient characteristics were similar over both periods except for lower SAPSII score in period B. There was no difference in nutritional pattern in the first 10 days between periods. The cumulate energy balance was less negative from day 11-30 in period B than in A (-884 vs -1566 kcal; p = 0.033). There was a one-day reduction in the median duration of fasting in period B (p < 0.0001). Overall compliance with nutrition protocol improved in period B with an earlier first indirect calorimetry (p = 0.003) and prealbumin measurement (p < 0.001), the latter increasing significantly more during ICU stay. CONCLUSION: Organizational changes that allowed an early identification of patients at nutritional risk, an increased targeted dieticians intervention and a better inter-disciplinary work was associated with a reduction in undue fasting, and significantly improved energy balances.


Assuntos
Estado Terminal , Terapia Nutricional , Cuidados Críticos , Estado Terminal/terapia , Humanos , Unidades de Terapia Intensiva , Apoio Nutricional
6.
Pharm Res ; 38(7): 1247-1261, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34117588

RESUMO

PURPOSE: Skin and soft tissue infections are increasingly prevalent and often complicated by potentially fatal therapeutic hurdles, such as poor drug perfusion and antibiotic resistance. Delivery vehicles capable of versatile loading may improve local bioavailability and minimize systemic toxicities yet such vehicles are not clinically available. Therefore, we aimed to expand upon the use of glutathione-conjugated poly(ethylene glycol) GSH-PEG hydrogels beyond protein delivery and evaluate the ability to deliver traditional therapeutic molecules. METHODS: PEG and GSH-PEG hydrogels were prepared using ultraviolet light (UV)-polymerization. Hydrogel loading and release of selected drug candidates was examined using UV-visible spectrometry. Therapeutic molecules and GST-fusion protein loading was examined using UV-visible and fluorescent spectrometry. Efficacy of released meropenem was assessed against meropenem-sensitive and -resistant P. aeruginosa in an agar diffusion bioassay. RESULTS: For all tested agents, GSH-PEG hydrogels demonstrated time-dependent loading whereas PEG hydrogels did not. GSH-PEG hydrogels released meropenem over 24 h. Co-loading of biologic and traditional therapeutics into a single vehicle was successfully demonstrated. Meropenem-loaded GSH-PEG hydrogels inhibited the growth of meropenem-sensitive and resistant P. aeruginosa isolates. CONCLUSION: GSH ligands within GSH-PEG hydrogels allow loading and effective delivery of charged therapeutic agents, in addition to biologic therapeutics.


Assuntos
Antibacterianos/administração & dosagem , Produtos Biológicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Hidrogéis/química , Infecções por Pseudomonas/tratamento farmacológico , Antibacterianos/farmacocinética , Disponibilidade Biológica , Produtos Biológicos/farmacocinética , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Liberação Controlada de Fármacos , Farmacorresistência Bacteriana , Quimioterapia Combinada , Glutationa/química , Humanos , Meropeném/administração & dosagem , Meropeném/farmacocinética , Testes de Sensibilidade Microbiana , Polietilenoglicóis/química , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Dermatopatias Bacterianas
7.
Acta Biomater ; 129: 1-17, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34010692

RESUMO

Mesoporous silica-based materials, especially mesoporous bioactive glasses (MBGs), are being highly considered for biomedical applications, including drug delivery and tissue engineering, not only because of their bioactivity and biocompatibility but also due to their tunable composition and potential use as drug delivery carriers owing to their controllable nanoporous structure. Numerous researches have reported that MBGs can be doped with various therapeutic ions (strontium, copper, magnesium, zinc, lithium, silver, etc.) and loaded with specific biomolecules (e.g., therapeutic drugs, antibiotics, growth factors) achieving controllable loading and release kinetics. Therefore, co-delivery of ions and biomolecules using a single MBG carrier is highly interesting as this approach provides synergistic effects toward improved therapeutic outcomes in comparison to the strategy of sole drug or ion delivery. In this review, we discuss the state-of-the-art in the field of mesoporous silica-based materials used for co-delivery of ions and therapeutic drugs with osteogenesis/cementogenesis, angiogenesis, antibacterial and anticancer properties. The analysis of the literature reveals that specially designed mesoporous nanocarriers can release multiple ions and drugs at therapeutically safe and relevant levels, achieving the desired biological effects (in vivo, in vitro) for specific biomedical applications. It is expected that this review on the ion/drug co-delivery concept using MBG carriers will shed light on the advantages of such co-delivery systems for clinical use. Areas for future research directions are identified and discussed. STATEMENT OF SIGNIFICANCE: Many studies in literature focus on the potential of single drug or ion delivery by mesoporous silica-based materials, exploiting the bioactivity, biocompatibility, tunable composition and controllable nanoporosity of these materials. Recenlty, studies have adopted the "dual-delivery" concept, by designing multi-functional mesoporous silica-based systems which are capable to deliver both biologically active ions and biomolecules (growth factors, drugs) simultaneously in order to achieve synergy of their complementary therapeutic activities. This review summarizes the state of the art in the field, with focus on osteogenesis/cementogenesis, angiogenesis, antibacterial and anticancer properties, and discusses the challenges and prospects for further progress in this area, expecting to generate broader interest in the technology for applications in disease treatment and regenerative medicine.


Assuntos
Vidro , Dióxido de Silício , Íons , Porosidade , Engenharia Tecidual
8.
Adv Drug Deliv Rev ; 168: 99-117, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931860

RESUMO

Genome-editing tools such as Cre recombinase (Cre), zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and most recently the clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein system have revolutionized biomedical research, agriculture, microbial engineering, and therapeutic development. Direct delivery of genome editing enzymes, as opposed to their corresponding DNA and mRNA precursors, is advantageous since they do not require transcription and/or translation. In addition, prolonged overexpression is a problem when delivering viral vector or plasmid DNA which is bypassed when delivering whole proteins. This lowers the risk of insertional mutagenesis and makes for relatively easier manufacturing. However, a major limitation of utilizing genome editing proteins in vivo is their low delivery efficiency, and currently the most successful strategy involves using potentially immunogenic viral vectors. This lack of safe and effective non-viral delivery systems is still a big hurdle for the clinical translation of such enzymes. This review discusses the challenges of non-viral delivery strategies of widely used genome editing enzymes, including Cre recombinase, ZFNs and TALENs, CRISPR/Cas9, and Cas12a (Cpf1) in their protein format and highlights recent innovations of non-viral delivery strategies which have the potential to overcome current delivery limitations and advance the clinical translation of genome editing.


Assuntos
Edição de Genes/métodos , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Proteínas de Bactérias/administração & dosagem , Proteínas Associadas a CRISPR/administração & dosagem , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Dendrímeros/química , Endodesoxirribonucleases/administração & dosagem , Ouro/química , Integrases/administração & dosagem , Lipídeos/química , Nanopartículas/química , Fósforo/química , Polietilenoimina/química , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/administração & dosagem , Nucleases de Dedos de Zinco/administração & dosagem
9.
Methods Mol Biol ; 2124: 295-307, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32277461

RESUMO

Intracellular protein delivery in plant tissues is becoming an important tool for addressing both basic and applied research questions by plant biologists, especially in the era of genome editing. The ability to deliver proteins or protein/RNA complexes into cells allows for producing gene-edited plants that are free of transgene integration in the genome. Here we describe a protocol for the delivery of a protein/gold particle mixture in plant cells through biolistics. The key for the delivery is the drying of the protein/gold suspension directly onto the gene-gun cartridge or macrocarrier. The intracellular protein delivery into plant cells is achieved through the bombardment using the Bio-Rad PDS-1000/He particle delivery device. We termed this methodology "proteolistics."


Assuntos
Biolística/métodos , Proteínas/genética , Ouro/química , Espaço Intracelular/metabolismo , Cebolas/genética , Plantas Geneticamente Modificadas , Zea mays/embriologia , Zea mays/genética
10.
Adv Mater ; 31(46): e1904535, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31549776

RESUMO

Osteoarthritis (OA) is a common joint degenerative disease that causes pain, joint damage, and dysfunction. External hyaluronic acid (HA) supplement is a common method for the management of osteoarthritis which requires multi-injections. It is demonstrated that biodegradable mesoporous silica nanoparticles successfully deliver an enzyme, hyaluronan synthase type 2 (HAS2), into synoviocytes from the temporomandibular joint (TMJ) and generate endogenous HA with high molecular weights. In a rat TMJ osteoarthritis inflammation model, this strategy promotes endogenous HA production and inhibits the synovial inflammation of OA for more than 3 weeks with one-shot administration. Such nanotherapy also helps repairing the bone defects in a rat OA bone defect model.


Assuntos
Hialuronan Sintases/farmacologia , Ácido Hialurônico/biossíntese , Articulações/efeitos dos fármacos , Articulações/metabolismo , Nanomedicina/métodos , Osteoartrite/tratamento farmacológico , Animais , Linhagem Celular , Humanos , Hialuronan Sintases/química , Hialuronan Sintases/metabolismo , Hialuronan Sintases/uso terapêutico , Ácido Hialurônico/química , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Peso Molecular , Nanopartículas/química , Osteoartrite/metabolismo , Osteoartrite/patologia , Porosidade , Ratos , Dióxido de Silício/química , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Sinoviócitos/patologia
11.
Int J Pharm ; 552(1-2): 352-359, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30308271

RESUMO

Oral delivery of proteins and peptides is a challenge due to their degradation in the stomach. To overcome this challenge, ragweed (Ambrosia elatior) pollen grains were engineered to serve as protective microcapsules. A matrix comprising of Eudragit L100-55, an enteric polymer was deposited on the inner surfaces of ragweed pollens to protect the encapsulated protein from gastric degradation and to achieve pH-dependent release in the intestine. The Eudragit L100-55 matrix was formed without use of organic solvents so that solvent-induced damage to protein molecules could be prevented. To demonstrate the concept, bovine serum albumin (BSA) a model protein was used. A matrix of Eudragit L100-55 embedded with BSA was prepared in ragweed pollens by optimizing their respective concentrations for maximizing BSA loading in the matrix. The ability of this optimized formulation to protect BSA in simulated gastric acid fluid was evaluated. Release studies in simulated gastric fluid (pH 1.2) showed minimal BSA release from the ragweed-Eudragit L100-55 formulation. Analysis of BSA retained in the formulation after its exposure to gastric fluid confirmed that the residual BSA had not denatured. Release studies in the simulated intestinal fluid (pH 6.8) showed that ragweed pollen offered additional controlled release mechanism within the first few hours of release by virtue of their solid wall. In conclusion, upon use of a protein-friendly solvent for Eudragit L100-55, proteins could be encapsulated in ragweed pollen without denaturing them, and the resulting formulation exhibited selective release of the proteins at intestinal pH suggesting that the ragweed pollen grain-based formulation could be promising for oral delivery of proteins.


Assuntos
Resinas Acrílicas/química , Antígenos de Plantas/química , Portadores de Fármacos/química , Extratos Vegetais/química , Pólen , Soroalbumina Bovina/química , Administração Oral , Liberação Controlada de Fármacos , Suco Gástrico/química , Concentração de Íons de Hidrogênio , Secreções Intestinais/química
12.
Curr Pharm Des ; 23(35): 5261-5271, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28641543

RESUMO

Protein nanocarriers possess unique merits including minimal cytotoxicity, numerous renewable sources, and high drug-binding capability. In opposition to delivery carriers utilizing hydrophilic animal proteins, hydrophobic plant proteins (e.g, zein) have great tendency in fabricating controlled-release particulate carriers without additional chemical modification to stiffen them, which in turn evades the use of toxic chemical crosslinkers. Moreover, zein is related to a class of alcohol-soluble prolamins and generally recognized as safe (GRAS) carrier for drug delivery. Various techniques have been adopted to fabricate zein-based nanoparticulate systems including phase separation coacervation, spray-drying, supercritical anti-solvent approach, electrospinning and self-assembly. This manuscript reviews the recent advances in the zein-based colloidal nano-carrier systems such as nanospheres, nanocapsules, micelles and nanofibers with a special focus on their physicochemical characteristics and drug delivery applications.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos/tendências , Técnicas de Transferência de Genes/tendências , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Zeína/administração & dosagem , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/isolamento & purificação , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Terapia Genética/métodos , Terapia Genética/tendências , Humanos , Nanopartículas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas de Plantas/administração & dosagem , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Zeína/isolamento & purificação , Zeína/metabolismo
13.
Acta Biomater ; 45: 169-181, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27619839

RESUMO

BACKGROUND: Revascularization of the heart after myocardial infarction (MI) using growth factors delivered by hydrogel-based microspheres represents a promising therapeutic approach for cardiac regeneration. Microspheres have tuneable degradation properties and support the prolonged release of soluble factors. Cardiac patches provide mechanical restraint, preventing dilatation associated with ventricular remodelling. METHODS: We combined these approaches and produced a compacted calcium-alginate microsphere patch, restrained by a chitosan sheet, to deliver vascular endothelial growth factor (VEGF) to the heart after myocardial injury in rats. RESULTS: Microspheres had an average diameter of 3.2µm, were nonporous, and characterized by a smooth dimpled surface. Microsphere patches demonstrated prolonged in vitro release characteristics compared to non-compacted microspheres and VEGF supernatants obtained from patches maintained their bioactivity for the 5day duration of the study in vitro. In vivo, patches were assessed with magnetic resonance imaging following MI, and demonstrated 50% degradation 25.6days after implantation. Both VEGF(-) and VEGF(+) microsphere patch-treated hearts had better cardiac function than unpatched (chitosan sheet only) controls. However, VEGF(+) microsphere-patched hearts had thicker scars characterized by higher capillary density in the border zone than did those treated with VEGF(-) patches. VEGF was detected in the patches 4weeks post-implantation. CONCLUSION: The condensed microsphere patch represents a new therapeutic platform for cytokine delivery and could be used as an adjuvant to current biomaterial and cell-based therapies to promote localized angiogenesis in the infarcted heart. STATEMENT OF SIGNIFICANCE: Following a heart attack, a lack of blood flow to the heart results in loss of heart cells. Growth factors may facilitate growth of blood vessels and heart tissue repair and prevent the onset of heart failure. Determining a way to deliver these growth factors directly to the heart is vital. Here, we combined two biomaterial-based approaches to deliver vascular endothelial growth factor (VEGF) to rat hearts after heart attack: a microsphere for prolonged release of VEGF, and a cardiac patch for mechanical restraint to prevent heart dysfunction. The feasibility of this microsphere patch was demonstrated by surgically implanting it over the infarct region of the heart post-injury. VEGF-patched hearts had better blood vessel growth, tissue repair, and heart function.


Assuntos
Sistemas de Liberação de Medicamentos , Microesferas , Isquemia Miocárdica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Alginatos/química , Animais , Materiais Biocompatíveis/química , Cálcio/química , Feminino , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Implantes Experimentais , Isquemia Miocárdica/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Pericárdio/patologia , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/farmacologia
14.
Biomaterials ; 96: 1-10, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27131597

RESUMO

Direct delivery of cytokines using nanocarriers holds great promise for cancer therapy. However, the nanometric scale of the vehicles made them susceptible to size-dependent endocytosis, reducing the plasma membrane-associated apoptosis signaling. Herein, we report a tumor microenvironment-responsive and transformable nanocarrier for cell membrane targeted delivery of cytokine. This formulation is comprised of a phospholipase A2 (PLA2) degradable liposome as a shell, and complementary DNA nanostructures (designated as nanoclews) decorated with cytokines as the cores. Utilizing the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as a model cytokine, we demonstrate that the TRAIL loaded DNA nanoclews are capable of transforming into nanofibers after PLA2 activation. The nanofibers with micro-scaled lengths efficiently present the loaded TRAIL to death receptors on the cancer cell membrane and amplified the apoptotic signaling with reduced TRAIL internalization.


Assuntos
Membrana Celular/metabolismo , Citocinas/administração & dosagem , DNA/metabolismo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Hidrodinâmica , Lipossomos , Nanopartículas/ultraestrutura , Níquel/química , Tamanho da Partícula , Fosfatidilcolinas/química , Fosfolipases A2/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
15.
Proc Natl Acad Sci U S A ; 113(11): 2868-73, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26929348

RESUMO

A central challenge to the development of protein-based therapeutics is the inefficiency of delivery of protein cargo across the mammalian cell membrane, including escape from endosomes. Here we report that combining bioreducible lipid nanoparticles with negatively supercharged Cre recombinase or anionic Cas9:single-guide (sg)RNA complexes drives the electrostatic assembly of nanoparticles that mediate potent protein delivery and genome editing. These bioreducible lipids efficiently deliver protein cargo into cells, facilitate the escape of protein from endosomes in response to the reductive intracellular environment, and direct protein to its intracellular target sites. The delivery of supercharged Cre protein and Cas9:sgRNA complexed with bioreducible lipids into cultured human cells enables gene recombination and genome editing with efficiencies greater than 70%. In addition, we demonstrate that these lipids are effective for functional protein delivery into mouse brain for gene recombination in vivo. Therefore, the integration of this bioreducible lipid platform with protein engineering has the potential to advance the therapeutic relevance of protein-based genome editing.


Assuntos
Técnicas de Inativação de Genes , Genes Sintéticos , Engenharia Genética/métodos , Lipídeos/química , Nanopartículas , Animais , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/genética , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Ceramidas/química , Colesterol/química , Portadores de Fármacos , Endocitose , Endonucleases/administração & dosagem , Endonucleases/genética , Endossomos/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Hipotálamo/metabolismo , Integrases/administração & dosagem , Integrases/genética , Lipídeos/administração & dosagem , Lipídeos/síntese química , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Camundongos , Estrutura Molecular , Nanopartículas/administração & dosagem , Nanopartículas/química , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Fosfatidiletanolaminas/química , RNA/genética , Proteínas Recombinantes/biossíntese , Recombinação Genética , Eletricidade Estática , Relação Estrutura-Atividade , Tálamo/metabolismo
16.
Acta Biomater ; 33: 142-52, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26785145

RESUMO

A novel ternary nanogel based on the self-assembly of hyaluronic acid-epigallocatechin gallate conjugates (HA-EGCG), linear polyethylenimine (PEI) and Granzyme B (GzmB) in an aqueous environment was developed for the targeted intracellular delivery of GzmB into cancer cells. Lysozyme-encapsulated HA-EGCG nanogels were first prepared and characterized. HA-EGCG nanogels exhibited smaller particle sizes and a more homogeneous size distribution than the HA counterpart. Fluorescence quenching and lysozyme activity studies revealed that EGCG moieties facilitated protein binding through physical interactions and led to the formation of stable nanogels. When CD44-overexpressing HCT-116 colon cancer cells were treated with GzmB-encapsulated HA-EGCG nanogels in vitro, a significant cytotoxic effect was observed. Caspase assays and intracellular trafficking studies confirmed that cell death was due to apoptosis triggered by the delivery of GzmB to the cytosol of those cells. In comparison, little cytotoxic effect was observed in CD44-deficient cells treated with GzmB-encapsulated HA-EGCG nanogels. This study highlights the potential utility of HA-EGCG as effective intracellular protein carriers for targeted cancer therapy. STATEMENT OF SIGNIFICANCE: Intracellularly activated cytotoxic proteins can be used to kill cancer cells but viable carriers for such proteins are lacking. In this work, we developed novel nanogels based on selfassembly of hyaluronic acid (HA)-(-)-epigallocatechin-3-gallate (EGCG) conjugates, linear polyethylenemine (PEI) and the cytotoxic protein Granzyme B (GzmB) for the intracellular delivery of GzmB for cancer therapy. HA was exploited for its ability to target CD44 which are overexpressed in many types of cancer cells, while EGCG, the main component of green tea catechins, was chosen for its ability to bind to proteins. Characterization studies showed that EGCG facilitated protein complexation through physical interactions and led to the formation of stable nanogels. HA-EGCG nanogels were able to achieve CD44 targeted killing of HCT-116 cancer cells by delivering GzmB into the cytosol of these cells. We believe that the applications of the HA-EGCG nanogels can be expanded to the intracellular delivery of other cytotoxic protein drugs for cancer therapy.


Assuntos
Catequina/análogos & derivados , Sistemas de Liberação de Medicamentos/métodos , Ácido Hialurônico/química , Espaço Intracelular/metabolismo , Muramidase/metabolismo , Polietilenoglicóis/química , Polietilenoimina/química , Chá/química , Animais , Catequina/síntese química , Catequina/química , Sobrevivência Celular/efeitos dos fármacos , Galinhas , Dimerização , Difusão Dinâmica da Luz , Citometria de Fluxo , Granzimas/metabolismo , Células HCT116 , Células Hep G2 , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/síntese química , Nanogéis , Espectrometria de Fluorescência
17.
J Pharm Sci ; 104(10): 3330-42, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26108574

RESUMO

A 2-compartment in vitro eye flow model has been developed to estimate ocular drug clearance by the anterior aqueous outflow pathway. The model is designed to accelerate the development of longer-acting ophthalmic therapeutics. Dye studies show aqueous flow is necessary for a molecule injected into the vitreous cavity to clear from the model. The clearance times of proteins can be estimated by collecting the aqueous outflow, which was first conducted with bevacizumab using phosphate-buffered saline in the vitreous cavity. A simulated vitreous solution was then used and ranibizumab (0.5 mg) displayed a clearance time of 8.1 ± 3.1 days, which is comparable to that observed in humans. The model can estimate drug release from implants or the dissolution of suspensions as a first step in their clearance mechanism, which will be the rate-limiting step for the overall resident time of a candidate dosage form in the vitreous. A suspension of triamcinolone acetonide (Kenalog®) (4.0 mg) displayed clearance times spanning 26-28 days. These results indicate that the model can be used to determine in vitro-in vivo correlations in preclinical studies to develop long-lasting therapeutics to treat blinding diseases at the back of the eye.


Assuntos
Humor Aquoso/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Farmacocinética , Albuminas/metabolismo , Bevacizumab/farmacocinética , Sistemas de Liberação de Medicamentos , Oftalmopatias/tratamento farmacológico , Humanos , Injeções Intravítreas , Modelos Biológicos , Soluções Oftálmicas , Reprodutibilidade dos Testes , Triancinolona Acetonida/farmacocinética , Viscosidade , Corpo Vítreo/metabolismo
18.
J Pharm Sci ; 104(2): 740-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25448542

RESUMO

The goal of this study is to develop thermostable microneedle patch formulations for influenza vaccine that can be partially or completely removed from the cold chain. During vaccine drying associated with microneedle patch manufacturing, ammonium acetate and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer salts stabilized influenza vaccine, surfactants had little effect during drying, drying temperature had weak effects on vaccine stability, and drying on polydimethylsiloxane (PDMS) led to increased stability compared with drying on stainless steel. A number of excipients, mostly polysaccharides and some amino acids, further stabilized the influenza vaccine during drying. Over longer time scales of storage, combinations of stabilizers preserved the most vaccine activity. Finally, dissolving microneedle patches formulated with arginine and calcium heptagluconate had no significant activity loss for all three strains of seasonal influenza vaccine during storage at room temperature for 6 months. We conclude that appropriately formulated microneedle patches can exhibit remarkable thermostability that could enable storage and distribution of influenza vaccine outside the cold chain.


Assuntos
Vacinas contra Influenza/química , Agulhas , Adesivo Transdérmico , Vacinação , Química Farmacêutica , Estabilidade de Medicamentos , Humanos , Adesivo Transdérmico/tendências , Vacinação/tendências
19.
J Microencapsul ; 31(4): 355-62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24697171

RESUMO

The present study reports the preparation and physicochemical characterization of surface-modified poly(lactide-co-glycolide) (PLGA) microparticles containing interleukin-2 (rhIL-2) for pulmonary delivery. The surface of the microparticles was modified with mucoadhesive polymers such as chitosan and Carbopol 971P. The feasibility of this surface modification was confirmed by measuring the zeta potential. Chitosan-modified PLGA microparticles showed a positive zeta potential, while Carbopol-modified PLGA microparticles were negatively charged. The mucin binding efficiency values have shown that the positively charged chitosan coated microparticles showed a higher adhesive percent to the mucin than the negatively charged un-coated or Carbopol 971P coated microparticles. Furthermore, surface modification of microparticles with chitosan and Carbopol 971P has yielded a slight decrease in the amount of protein initially released. These findings suggest the suitability of surface-modified PLGA microparticles as an efficient carrier system for delivery peptides and proteins to the respiratory tract.


Assuntos
Portadores de Fármacos/química , Interleucina-2 , Poliglactina 910/química , Surfactantes Pulmonares , Acrilatos/química , Acrilatos/farmacocinética , Quitosana/química , Quitosana/farmacologia , Portadores de Fármacos/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Humanos , Interleucina-2/química , Interleucina-2/farmacocinética , Poliglactina 910/farmacocinética , Surfactantes Pulmonares/química , Surfactantes Pulmonares/farmacocinética
20.
J Pharm Sci ; 103(5): 1384-93, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24643773

RESUMO

Prefilled syringes (PFSs) offer improvements in the delivery of drugs to patients compared with traditional vial presentations and are becoming necessities in an increasingly competitive biologics market. However, the development of a product in a PFS must take into account potential incompatibilities between the drug and the components of the syringe. One such component is silicone oil, which has previously been suggested to promote protein aggregation, loss of soluble protein, and an increase in the particulate content of injectable formulations. This study evaluated the particulate content in a model buffer system (polysorbate 80/phosphate-buffered saline) after agitation in glass syringes with a novel cross-linked silicone coating. We also evaluated the compatibility of two monoclonal antibodies with these syringes. We report that syringes with this novel coating, compared with standard siliconized syringes, exhibited reduced particle content and enhanced integrity of the lubricant layer as determined by reflectometry, optical microscopy, and time-of-flight secondary ion mass spectrometry measurements, while maintaining the desired functional properties of the syringe and the antibodies' stability profiles as determined by high-performance size-exclusion chromatography. Enhanced integrity of the lubricant coating led to significantly fewer subvisible particles in the liquid formulations, particularly after agitation stresses introduced by shipping of the syringes.


Assuntos
Produtos Biológicos/química , Silicones/química , Tecnologia Farmacêutica/métodos , Anticorpos Monoclonais/química , Soluções Tampão , Química Farmacêutica/métodos , Incompatibilidade de Medicamentos , Tamanho da Partícula , Preparações Farmacêuticas/química , Polissorbatos/química , Cloreto de Sódio/química , Seringas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA