Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(36): 6306-6319, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37591736

RESUMO

Transcutaneous auricular vagus nerve stimulation (taVNS) has been proposed to activate the locus ceruleus-noradrenaline (LC-NA) system. However, previous studies failed to find consistent modulatory effects of taVNS on LC-NA biomarkers. Previous studies suggest that phasic taVNS may be capable of modulating LC-NA biomarkers such as pupil dilation and alpha oscillations. However, it is unclear whether these effects extend beyond pure sensory vagal nerve responses. Critically, the potential of the pupillary light reflex as an additional taVNS biomarker has not been explored so far. Here, we applied phasic active and sham taVNS in 29 subjects (16 female, 13 male) while they performed an emotional Stroop task (EST) and a passive pupil light reflex task (PLRT). We recorded pupil size and brain activity dynamics using a combined Magnetoencephalography (MEG) and pupillometry design. Our results show that phasic taVNS significantly increased pupil dilation and performance during the EST. During the PLRT, active taVNS reduced and delayed pupil constriction. In the MEG, taVNS increased frontal-midline theta and alpha power during the EST, whereas occipital alpha power was reduced during both the EST and PLRT. Our findings provide evidence that phasic taVNS systematically modulates behavioral, pupillary, and electrophysiological parameters of LC-NA activity during cognitive processing. Moreover, we demonstrate for the first time that the pupillary light reflex can be used as a simple and effective proxy of taVNS efficacy. These findings have important implications for the development of noninvasive neuromodulation interventions for various cognitive and clinical applications.SIGNIFICANCE STATEMENT taVNS has gained increasing attention as a noninvasive neuromodulation technique and is widely used in clinical and nonclinical research. Nevertheless, the exact mechanism of action of taVNS is not yet fully understood. By assessing physiology and behavior in a response conflict task in healthy humans, we demonstrate the first successful application of a phasic, noninvasive vagus nerve stimulation to improve cognitive control and to systematically modulate pupillary and electrophysiological markers of the noradrenergic system. Understanding the mechanisms of action of taVNS could optimize future clinical applications and lead to better treatments for mental disorders associated with noradrenergic dysfunction. In addition, we present a new taVNS-sensitive pupillary measure representing an easy-to-use biomarker for future taVNS studies.


Assuntos
Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Humanos , Feminino , Masculino , Pupila , Nervo Vago , Processos Mentais
2.
Front Neurosci ; 17: 1187619, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456990

RESUMO

Aim: The aim of this study is to evaluate the utility of binocular chromatic pupillometry in detecting impaired pupillary light response (PLR) in patients with primary open-angle glaucoma (POAG) and to assess the feasibility of using binocular chromatic pupillometer in opportunistic POAG diagnosis in community-based or telemedicine-based services. Methods: In this prospective, cross-sectional study, 74 patients with POAG and 23 healthy controls were enrolled. All participants underwent comprehensive ophthalmologic examinations including optical coherence tomography (OCT) and standard automated perimetry (SAP). The PLR tests included sequential tests of full-field chromatic stimuli weighted by rods, intrinsically photosensitive retinal ganglion cells (ipRGCs), and cones (Experiment 1), as well as alternating chromatic light flash-induced relative afferent pupillary defect (RAPD) test (Experiment 2). In Experiment 1, the constricting amplitude, velocity, and time to maximum constriction/dilation were calculated in three cell type-weighted responses, and the post-illumination response of ipRGC-weighted response was evaluated. In Experiment 2, infrared pupillary asymmetry (IPA) amplitude and anisocoria duration induced by intermittent blue or red light flashes were calculated. Results: In Experiment 1, the PLR of POAG patients was significantly reduced in all conditions, reflecting the defect in photoreception through rods, cones, and ipRGCs. The variable with the highest area under the receiver operating characteristic curve (AUC) was time to max dilation under ipRGC-weighted stimulus, followed by the constriction amplitude under cone-weighted stimulus and the constriction amplitude response to ipRGC-weighted stimuli. The impaired PLR features were associated with greater visual field loss, thinner retinal nerve fiber layer (RNFL) thickness, and cupping of the optic disk. In Experiment 2, IPA and anisocoria duration induced by intermittent blue or red light flashes were significantly greater in participants with POAG than in controls. IPA and anisocoria duration had good diagnostic value, correlating with the inter-eye asymmetry of visual field loss. Conclusion: We demonstrate that binocular chromatic pupillometry could potentially serve as an objective clinical tool for opportunistic glaucoma diagnosis in community-based or telemedicine-based services. Binocular chromatic pupillometry allows an accurate, objective, and rapid assessment of retinal structural impairment and functional loss in glaucomatous eyes of different severity levels.

3.
Front Hum Neurosci ; 17: 1177687, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397856

RESUMO

Introduction: Parents provide their children with their first exposures to reciprocal shared experiences, and parental modeling of socio-emotional behaviors and regulatory responses largely influences their child's behavioral and neurological development. Some parental reactions are conscious, while others are non-volitional. This project aimed to explore parent-child pupil dilation change responses during shared interactions, specifically, whether parents' neuro-regulatory responses when sharing experiences with their child are different than responses of children interacting with their parents or children and adult peers sharing with each other. Methods: To test this, four distinct interacting groups were recruited: (1) Parents sharing with their child; (2) Children sharing with their parent; (3) Children sharing with peers; and (4) Adults sharing with peers. All dyads engaged in a computerized shared imagery task, which facilitates communication and mental imagery during a shared experience. During the task, pupil diameter change was recorded as a measure of regulatory response. Results: Findings highlight that parents sharing with their child have lower pupil diameter change than children sharing with their parents (p < 0.01), children sharing with peers (p < 0.01), and adults sharing with peers (p < 0.05), While no differences were seen between children sharing with parents, children sharing with peers or adults sharing with peers. Discussion: Findings deepen the understanding of the neuroscience of parenting, by suggesting that parents, even of older children and adolescents, tend to regulate their arousal when interacting with their child, a response that proves to be unique compared to other dyad types for sharing experiences. Considering this dynamic, findings may direct future parent-led intervention methods to improve the child's socio-emotional development.

4.
J Neurophysiol ; 130(1): 104-116, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37283453

RESUMO

Pupillary responses have been reliably identified for cognitive and motor tasks, but less is known about their relation to mentally simulated movements (known as motor imagery). Previous work found pupil dilations during the execution of simple finger movements, where peak pupillary dilation scaled with the complexity of the finger movement and force required. Recently, pupillary dilations were reported during imagery of grasping and piano playing. Here, we examined whether pupillary responses are sensitive to the dynamics of the underlying motor task for both executed and imagined reach movements. Participants reached or imagined reaching to one of three targets placed at different distances from a start position. Both executed and imagined movement times scaled with target distance, and they were highly correlated, confirming previous work and suggesting that participants did imagine the respective movement. Increased pupillary dilation was evident during motor execution compared with rest, with stronger dilations for larger movements. Pupil dilations also occurred during motor imagery, however, they were generally weaker than those during motor execution and they were not influenced by imagined movement distance. Instead, dilations during motor imagery resembled pupil responses obtained during a nonmotor imagery task (imagining a previously viewed painting). Our results demonstrate that pupillary responses can reliably capture the dynamics of an executed goal-directed reaching movement, but suggest that pupillary responses during imagined reaching movements reflect general cognitive processes, rather than motor-specific components related to the simulated dynamics of the sensorimotor system.NEW & NOTEWORTHY Pupil size is influenced by the performance of cognitive and motor tasks. Here, we demonstrate that pupil size increases not only during execution but also during mental simulation of goal-directed reaching movements. However, pupil dilations scale with movement amplitude of executed but not of imagined movement, whereas they are similar during motor imagery and a nonmotor imagery task.


Assuntos
Imaginação , Pupila , Humanos , Pupila/fisiologia , Imaginação/fisiologia , Movimento/fisiologia , Tempo , Extremidade Superior , Desempenho Psicomotor/fisiologia
5.
Behav Res Ther ; 165: 104311, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37037182

RESUMO

Bilateral eye movement (EM) is a critical component in eye movement desensitization and reprocessing (EMDR), an effective treatment for post-traumatic stress disorder. However, the role of bilateral EM in alleviating trauma-related symptoms is unclear. Here we hypothesize that bilateral EM selectively disrupts the perceptual representation of traumatic memories. We used the trauma film paradigm as an analog for trauma experience. Nonclinical participants viewed trauma films followed by a bilateral EM intervention or a static Fixation period as a control. Perceptual and semantic memories for the film were assessed with different measures. Results showed a significant decrease in perceptual memory recognition shortly after the EM intervention and subsequently in the frequency and vividness of film-related memory intrusions across one week, relative to the Fixation condition. The EM intervention did not affect the explicit recognition of semantic memories, suggesting a dissociation between perceptual and semantic memory disruption. Furthermore, the EM intervention effectively reduced psychophysiological affective responses, including the skin conductance response and pupil size, to film scenes and subjective affective ratings of film-related intrusions. Together, bilateral EMs effectively reduce the perceptual representation and affective response of trauma-related memories. Further theoretical developments are needed to elucidate the mechanism of bilateral EMs in trauma treatment.


Assuntos
Movimentos Oculares , Memória , Trauma Psicológico , Percepção Visual , Movimentos Oculares/fisiologia , Memória/fisiologia , Trauma Psicológico/fisiopatologia , Humanos , Afeto , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Autorrelato , Inquéritos e Questionários , Emoções , Percepção Visual/fisiologia , Reconhecimento Psicológico/fisiologia , Fixação Ocular/fisiologia , Dessensibilização e Reprocessamento através dos Movimentos Oculares , Transtornos de Estresse Pós-Traumáticos/fisiopatologia
6.
Cortex ; 159: 233-253, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36640622

RESUMO

Transcutaneous auricular vagus nerve stimulation (taVNS) is a neurostimulatory technique hypothesised to enhance central noradrenaline. Currently, there is scarce evidence in support of a noradrenergic mechanism of taVNS and limited knowledge on its stimulation parameters (i.e., intensity and pulse width). Therefore, the present study aimed to test whether taVNS enhances pupil dilation, a noradrenergic biomarker, as a function of stimulation parameters. Forty-nine participants received sham (i.e., left ear earlobe) and taVNS (i.e., left ear cymba concha) stimulation in two separate sessions, in a counterbalanced order. We administered short bursts (5s) of seven stimulation settings varying as a function of pulse width and intensity and measured pupil size in parallel. Each stimulation setting was administered sixteen times in separate blocks. We expected short bursts of stimulation to elicit phasic noradrenergic activity as indexed by event-related pupil dilation and event-related temporal derivative. We hypothesised higher stimulation settings, quantified as the total charge per pulse (pulse width x intensity), to drive greater event-related pupil dilation and temporal derivative in the taVNS compared to sham condition. Specifically, we expected stimulation settings in the taVNS condition to be associated with a linear increase in event-related pupil dilation and temporal derivative. We found stimulation settings to linearly increase both pupil measures. In line with our hypothesis, the observed dose-dependent effect was stronger in the taVNS condition. We also found taVNS to elicit more intense and unpleasant sensations than sham stimulation. These results support the hypothesis of a noradrenergic mechanism of taVNS. However, future studies should disentangle whether stimulation elicited sensations mediate the effect of taVNS on evoked pupil dilation.


Assuntos
Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Humanos , Pupila/fisiologia , Estimulação do Nervo Vago/métodos , Estimulação Elétrica Nervosa Transcutânea/métodos , Nervo Vago/fisiologia , Sensação
7.
Front Psychiatry ; 13: 961294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090366

RESUMO

Objective: Recent studies suggest that lower resting heart rate variability (HRV) is associated with elevated vulnerability to depressive rumination. In this study, we tested whether increases in HRV after HRV-biofeedback training are accompanied by reductions in rumination levels. Materials and methods: Sixteen patients suffering from depression completed a 6-week HRV-biofeedback training and fourteen patients completed a control condition in which there was no intervention (waitlist). The training included five sessions per week at home using a smartphone application and an ECG belt. Depressive symptoms and autonomic function at rest and during induced rumination were assessed before and after each of the two conditions. We used a well-established rumination induction task to provoke a state of pervasive rumination while recording various physiological signals simultaneously. Changes in HRV, respiration rate, skin conductance, and pupil diameter were compared between conditions and time points. Results: A significant correlation was found between resting HRV and rumination levels, both assessed at the first laboratory session (r = -0.43, p < 0.05). Induction of rumination led to an acceleration of heart rate and skin conductance increases. After biofeedback training, resting vagal HRV was increased (p < 0.01) and self-ratings of state anxiety (p < 0.05), rumination (p < 0.05), perceived stress (p < 0.05), and depressive symptoms (QIDS, BDI; both p < 0.05) were decreased. In the control condition, there were no changes in autonomic indices or depressive symptomatology. A significant interaction effect group x time on HRV was observed. Conclusion: Our results indicate that a smartphone-based HRV-biofeedback intervention can be applied to improve cardiovagal function and to reduce depressive symptoms including self-rated rumination tendencies.

8.
Neuroimage ; 262: 119516, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35931308

RESUMO

Detection of novel stimuli that violate statistical regularities in the sensory scene is of paramount importance for the survival of biological organisms. Event-related potentials, phasic increases in pupil size, and evoked changes in oscillatory power have been proposed as markers of sensory novelty detection. However, how conscious access to novelty modulates these different brain responses is not well understood. Here, we studied the neural responses to sensory novelty in the auditory modality with and without conscious access. We identified individual thresholds for conscious auditory discrimination and presented to our participants sequences of tones, where the last stimulus could be another standard, a subthreshold target or a suprathreshold target. Participants were instructed to report whether the last tone of each sequence was the same or different from those preceding it. Results indicate that attentional orientation to behaviorally relevant stimuli and overt decision-making mechanisms, indexed by the P3 event-related response and reaction times, best predict whether a novel stimulus will be consciously accessed. Theta power and pupil size do not predict conscious access to novelty, but instead reflect information maintenance and unexpected sensory uncertainty. These results highlight the interplay between bottom-up and top-down mechanisms and how the brain weights neural responses to novelty and uncertainty during perception and goal-directed behavior.


Assuntos
Estado de Consciência , Eletroencefalografia , Estimulação Acústica , Atenção/fisiologia , Percepção Auditiva/fisiologia , Estado de Consciência/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Humanos
9.
Elife ; 112022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35315775

RESUMO

Neurons in the dorsolateral geniculate nucleus (dLGN) of the thalamus receive a substantial proportion of modulatory inputs from corticothalamic (CT) feedback and brain stem nuclei. Hypothesizing that these modulatory influences might be differentially engaged depending on the visual stimulus and behavioral state, we performed in vivo extracellular recordings from mouse dLGN while optogenetically suppressing CT feedback and monitoring behavioral state by locomotion and pupil dilation. For naturalistic movie clips, we found CT feedback to consistently increase dLGN response gain and promote tonic firing. In contrast, for gratings, CT feedback effects on firing rates were mixed. For both stimulus types, the neural signatures of CT feedback closely resembled those of behavioral state, yet effects of behavioral state on responses to movies persisted even when CT feedback was suppressed. We conclude that CT feedback modulates visual information on its way to cortex in a stimulus-dependent manner, but largely independently of behavioral state.


Assuntos
Corpos Geniculados , Filmes Cinematográficos , Animais , Retroalimentação , Corpos Geniculados/fisiologia , Camundongos , Neurônios/fisiologia , Tálamo , Vias Visuais/fisiologia
10.
Psychoneuroendocrinology ; 140: 105719, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35334389

RESUMO

Transcutaneous auricular vagus nerve stimulation (taVNS) is a neuromodulatory technique that is thought to activate the Locus Coeruleus-Noradrenaline (LC-NA) system. Standard taVNS protocols consist of the administration of intermittent or continuous stimulation over long periods. However, there is currently a limited understanding of the temporal dynamics of taVNS modulation of cognitive processes, as well as its mechanisms of action. We argue that novel stimulation approaches, informed by established theories of the LC-NA system, are needed to further our understanding of the neurocognitive underpinnings of taVNS. In this pre-registered study, we tested whether an "event-related" taVNS protocol can modulate the LC-NA system. In a within-subject design (single session) we delivered brief trains of taVNS (3 s) during an auditory oddball paradigm. The taVNS was time-locked to the target stimuli presentation and randomly interleaved with sham stimulation. Response times (RT) and stimuli-driven pupillary diameter (PD) were used as indices of LC-NA activity. Results revealed that active taVNS increased RT to targets, as compared to sham trials. Notably, in line with current theories of LC-NA functioning, taVNS modulation of target-related pupil dilation depended on pre-stimulation PD, an index of baseline LC-NA activity. In particular, active (vs. sham) taVNS was associated with smaller pupil dilation in trials where the baseline PD was small. These results demonstrate, for the first time, the effectiveness of brief event-related taVNS in the modulation of cognitive processes and highlight the importance of using pupil size as an index of tonic and phasic LC-NA activity.


Assuntos
Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Norepinefrina , Estimulação Elétrica Nervosa Transcutânea/métodos , Nervo Vago/fisiologia , Estimulação do Nervo Vago/métodos
11.
Psychophysiology ; 59(4): e13984, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34990045

RESUMO

Although transcutaneous auricular vagus nerve stimulation (taVNS) is thought to increase central noradrenergic activity, findings supporting such mechanism are scarce and inconsistent. This study aimed to investigate whether taVNS modulates indirect markers of phasic and tonic noradrenergic activity. Sixty-six healthy participants performed a novelty auditory oddball task twice on separate days: once while receiving taVNS (left cymba concha), once during sham (left earlobe) stimulation. To maximize potential effects, the stimulation was delivered continuously (frequency: 25 Hz; width: 250 µs) at an intensity individually calibrated to the maximal level below pain threshold. The stimulation was administered 10 min before the oddball task and maintained throughout the session. Event-related pupil dilation (ERPD) to target stimuli and pre-stimulus baseline pupil size were assessed during the oddball task as markers of phasic and tonic noradrenergic activity, respectively. Prior to and at the end of stimulation, tonic pupil size at rest, cortisol, and salivary alpha-amylase were assessed as markers of tonic noradrenergic activity. Finally, we explored the effect of taVNS on cardiac vagal activity, respiratory rate, and salivary flow rate. Results showed a greater ERPD to both target and novelty compared to standard stimuli in the oddball task. In contrast to our hypotheses, taVNS did not impact any of the tested markers. Our findings strongly suggest that continuous stimulation of the cymba concha with the tested stimulation parameters is ineffective to increase noradrenergic activity via a vagal pathway.


Assuntos
alfa-Amilases Salivares , Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Biomarcadores , Humanos , Taxa Respiratória , alfa-Amilases Salivares/metabolismo , Estimulação Elétrica Nervosa Transcutânea/métodos , Nervo Vago/fisiologia , Estimulação do Nervo Vago/métodos
12.
Neurol Sci ; 43(1): 661-666, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33959825

RESUMO

BACKGROUND: Visual perspective during memory retrieval has mainly been evaluated with methodologies based on introspection and subjective reports. The current study investigates whether visual perspective can be evaluated with a physiological measurement: pupil dilation. METHODS: While their pupil diameter was measured with an eye-tracker, forty-five participants retrieved one memory from a field perspective (i.e., as viewed through our own eyes) and one memory from an observer perspective (i.e., as viewed from a spectator's standpoint). After retrieval, participants rated the emotional intensity of the memories. RESULTS: Analysis demonstrated larger pupils during the retrieval of memories from a field perspective and higher emotional intensity for memories retrieved from a field perspective. DISCUSSION: The larger pupils for memories recalled from a field perspective could, however, not be attributed to their higher emotional intensity. These findings suggest that pupil dilation could be used as a physiological assessment of visual perspective during memory retrieval.


Assuntos
Memória Episódica , Emoções , Humanos , Rememoração Mental
13.
Sleep Biol Rhythms ; 20(2): 247-254, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38469249

RESUMO

Bright light is a primary zeitgeber (synchronizer) for the central circadian pacemaker in humans. Recently, head-mounted devices for light therapy have been developed to treat patients suffering from circadian rhythm sleep disorders. In this study, to evaluate the influence of the light incident angle of head-mounted devices on the human circadian pacemaker, we examined the effects of bright light (ca.10000 lx) from two different angles (55° vs. 28°) on the suppression of melatonin secretion at night. Twenty-nine subjects (25.1 ± 6.3 SD years) participated in the present study. The subjects were kept under dim light conditions (< 5 lx) from 4 h before their habitual bedtime, followed by exposure to 1 h of bright light at two different angles during their habitual bedtime. Saliva samples were collected every hour under dim light conditions and then collected every 30 min during the bright light exposure. To assess the effect of the light incident angle on ipRGCs mediating light-evoked pupillary constriction, pupil size was measured in before and after exposure to bright light. Melatonin suppression in the group exposed to light at 28° was significantly higher than that in the group with light at 55° (p < 0.001). The pupillary constriction was significantly greater in the group exposed to light at 28° than that in the group with light at 55° (p < 0.001). The present findings suggest that the light incident angle is an important factor for bright light therapy and should be considered to effectively use head-mounted devices in home and clinical settings.

14.
Artigo em Inglês | MEDLINE | ID: mdl-34769976

RESUMO

The Autonomous Sensory Meridian Response (ASMR) is a tingling sensation across the scalp that occur in response to specific triggering audio and visual stimuli, connected with the Default Mode Network. Our study (N = 76) aimed to test the neurophysiology of ASMR by examining pupil diameter and brain activity. Assuming the idiosyncratic nature of ASMR, we expected results detecting opposite physiological outcomes considering pupil diameter and brain activation. We used a battery of self-reports to investigate psychological dimensions; for the physiological measures, we used two instruments: PupilCore and NeuroSky MindWave Mobile 2. The results showed an augmented pupillary diameter during the ASMR video, regardless of the perception of tingles. On the other hand, the arousal level during the ASMR video was lower than the other conditions. The difference between the two neurophysiological measures appeared as peculiar and can be considered as the promoting phenomenon for ASMR psychological outcomes.


Assuntos
Meridianos , Nível de Alerta , Encéfalo
15.
Clin Neurophysiol ; 132(8): 1859-1865, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34147923

RESUMO

OBJECTIVE: Mechanisms of action and optimal stimulation parameters of transcutaneous auricular vagus nerve stimulation (taVNS) are currently unknown. Pupil size has gained attention as a promising biomarker of vagal activation in different studies on animal models. The aim of this study is to investigate the effects of taVNS on pupil diameter in healthy subjects. METHODS: All subjects received taVNS at the left external acoustic meatus and control stimulation at the left earlobe during the same experimental session. Different intensities (0.5 mA; 1.0 mA; 2.0 mA; 3.0 mA) for both conditions were tested. Tonic pupil size was recorded in both eyes at baseline and during each stimulation using an infrared-automated pupillometer in three different illuminance conditions (scotopic, mesopic, photopic). RESULTS: In scotopic illuminance condition, a significant interaction between intensity and condition (real vs control) was found for the left eye. Post-Hoc analysis showed that during real taVNS at 2 mA, pupil size was significantly larger in comparison to baseline and 2 mA control stimulation. CONCLUSIONS: Our study demonstrates that taVNS induces pupil dilation under specific illuminance conditions and at specific stimulation intensity. SIGNIFICANCE: The effects of taVNS are strictly dependent on technical aspects, such as stimulation parameters and experimental set-up.


Assuntos
Pupila/fisiologia , Reflexo Pupilar/fisiologia , Estimulação Elétrica Nervosa Transcutânea/métodos , Estimulação do Nervo Vago/métodos , Adulto , Estudos Cross-Over , Feminino , Humanos , Masculino , Método Simples-Cego
16.
Conscious Cogn ; 89: 103089, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33607423

RESUMO

To examine the relationship between visual imagery and autobiographical memory, eye position and pupil size were recorded while participants first searched for memories and then reconstructed the retrieved memories (Experiment 1), or only searched for memories (Experiment 2). In Experiment 1, we observed that, although recollective experience was not associated with the number of fixations per minute, memories that took longer to retrieve were linked to increased pupil size. In Experiment 2, we observed that directly retrieved memories were recalled more quickly and were accompanied by smaller pupils than generatively retrieved memories. After correcting for response time, retrieval mode also produced an effect, showing that decreased pupil size is not simply due to directly retrieved memories being recalled more quickly. These findings provide compelling evidence that objective measures, such as pupil size, can be used alongside subjective measures, such as self-reports, to distinguish between directly retrieved and generatively retrieved memories.


Assuntos
Memória Episódica , Movimentos Oculares , Humanos , Imagens, Psicoterapia , Rememoração Mental , Tempo de Reação
17.
J Neurosci ; 41(2): 320-330, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33214317

RESUMO

Vagus nerve stimulation (VNS) is widely used to treat drug-resistant epilepsy and depression. While the precise mechanisms mediating its long-term therapeutic effects are not fully resolved, they likely involve locus coeruleus (LC) stimulation via the nucleus of the solitary tract, which receives afferent vagal inputs. In rats, VNS elevates LC firing and forebrain noradrenaline levels, whereas LC lesions suppress VNS therapeutic efficacy. Noninvasive transcutaneous VNS (tVNS) uses electrical stimulation that targets the auricular branch of the vagus nerve at the cymba conchae of the ear. However, the extent to which tVNS mimics VNS remains unclear. Here, we investigated the short-term effects of tVNS in healthy human male volunteers (n = 24), using high-density EEG and pupillometry during visual fixation at rest. We compared short (3.4 s) trials of tVNS to sham electrical stimulation at the earlobe (far from the vagus nerve branch) to control for somatosensory stimulation. Although tVNS and sham stimulation did not differ in subjective intensity ratings, tVNS led to robust pupil dilation (peaking 4-5 s after trial onset) that was significantly higher than following sham stimulation. We further quantified, using parallel factor analysis, how tVNS modulates idle occipital alpha (8-13Hz) activity identified in each participant. We found greater attenuation of alpha oscillations by tVNS than by sham stimulation. This demonstrates that tVNS reliably induces pupillary and EEG markers of arousal beyond the effects of somatosensory stimulation, thus supporting the hypothesis that tVNS elevates noradrenaline and other arousal-promoting neuromodulatory signaling, and mimics invasive VNS.SIGNIFICANCE STATEMENT Current noninvasive brain stimulation techniques are mostly confined to modulating cortical activity, as is typical with transcranial magnetic or transcranial direct/alternating current electrical stimulation. Transcutaneous vagus nerve stimulation (tVNS) has been proposed to stimulate subcortical arousal-promoting nuclei, though previous studies yielded inconsistent results. Here we show that short (3.4 s) tVNS pulses in naive healthy male volunteers induced transient pupil dilation and attenuation of occipital alpha oscillations. These markers of brain arousal are in line with the established effects of invasive VNS on locus coeruleus-noradrenaline signaling, and support that tVNS mimics VNS. Therefore, tVNS can be used as a tool for studying how endogenous subcortical neuromodulatory signaling affects human cognition, including perception, attention, memory, and decision-making; and also for developing novel clinical applications.


Assuntos
Ritmo alfa/fisiologia , Reflexo Pupilar/fisiologia , Estimulação do Nervo Vago , Adulto , Nível de Alerta/fisiologia , Orelha Externa , Eletroencefalografia , Fixação Ocular , Voluntários Saudáveis , Humanos , Masculino , Norepinefrina/fisiologia , Lobo Occipital/fisiologia , Transdução de Sinais/fisiologia , Estimulação Elétrica Nervosa Transcutânea , Adulto Jovem
18.
Psychophysiology ; 57(6): e13571, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32202671

RESUMO

Transcutaneous vagus nerve stimulation (tVNS) is a non-invasive neurostimulation technique that is currently being tested as a potential treatment for a myriad of neurological and psychiatric disorders. However, the working mechanisms underlying tVNS are poorly understood and it remains unclear whether stimulation activates the vagus nerve for every participant. Finding a biological marker of tVNS is imperative, as it can help guide research on clinical applications and can inform researchers on optimal stimulation sites and parameters to further optimize treatment efficacy. In this narrative review, we discuss five potential biomarkers for tVNS and review currently available evidence for these markers for both invasive and tVNS. While some of these biomarkers hold promise from a theoretical perspective, none of the potential biomarkers provide clear and definitive indications that tVNS increases the vagal activity or augments activity in the locus coeruleus-noradrenaline network. We conclude the review by providing several recommendations for how to tackle the challenges and opportunities when researching potential biomarkers for the effects of tVNS.


Assuntos
Biomarcadores , Potenciais Evocados P300/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Frequência Cardíaca/fisiologia , Sistema Nervoso Parassimpático/fisiologia , Pupila/fisiologia , alfa-Amilases Salivares/análise , Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Humanos
19.
Biol Psychol ; 152: 107863, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32050095

RESUMO

Transcutaneous stimulation of the auricular branch of the vagus nerve (tVNS) has been proposed as a treatment for a spectrum of physical and psychological disorders. One of the proposed working mechanisms of tVNS is a modulatory effect on the locus coeruleus - noradrenaline (LC-NA) network. We tested this hypothesis in humans in a series of three studies: one focusing on high trait worriers, and two in healthy populations. In all three studies, we tested whether tVNS increases resting pupil diameter - as an index of LC-NA network activity. Additionally, we tested whether tVNS affects task performance and task-related pupil dilation during an Attentional Blink task. We found no evidence that tVNS increases pupil diameter or task-related pupil dilation in any of the tasks. No consistent effects of tVNS on performance on the attentional blink task were found. Overall, the results of these studies indicate that tVNS does not affect these behavioral and physiological indices of noradrenergic activity.


Assuntos
Pupila , Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Humanos , Norepinefrina , Pupila/fisiologia , Nervo Vago
20.
Acupunct Med ; 38(2): 86-92, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31782309

RESUMO

OBJECTIVE: To examine the effect of electroacupuncture (EA) stimulation on multiple physiological indices and to evaluate both local and systemic physiological responses induced by the stimulation. METHODS: 15 healthy male college students participated in an experimental crossover study. They received two kinds of interventions: one with EA stimulation and one without EA stimulation on different days. Two disposable acupuncture needles were inserted at two traditional acupuncture points (ST36 and ST38), located along the anterior tibialis muscle. EA stimulation was administered for 10 min. Skin temperature (ST), skin blood flow (SBF) and muscle blood volume (MBV) were recorded near the stimulation sites, while the pupil diameter (PD) was measured before, during and after the interventions. RESULTS: ST, SBF and MBV increased significantly following EA stimulation. PD of the right and left eyes decreased significantly following EA stimulation. There was a significant difference in ST responses between the groups (P=0.001). For SBF, MBV and PD, no significant differences were demonstrated between the groups. CONCLUSIONS: Our study showed that 10 min of EA stimulation increased ST, SBF and MBV, and decreased PD, compared to baseline, while no significant change was observed in the control group. This suggests that EA stimulation alters local blood flow and ST, and these responses are likely mediated via segmental spinal reflexes, supraspinal reflexes involving parasympathetic activation, and other mechanisms.


Assuntos
Eletroacupuntura , Pupila , Fluxo Sanguíneo Regional , Temperatura Cutânea , Pontos de Acupuntura , Adulto , Estudos Cross-Over , Voluntários Saudáveis , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA