Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biology (Basel) ; 13(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38666892

RESUMO

Astragalus mongholicus is a traditional Chinese medicine (TCM) with important medicinal value and is widely used worldwide. Heat shock (HSF) transcription factors are among the most important transcription factors in plants and are involved in the transcriptional regulation of various stress responses, including drought, salinity, oxidation, osmotic stress, and high light, thereby regulating growth and developmental processes. However, the HFS gene family has not yet been identified in A. mongholicus, and little is known regarding the role of HSF genes in A. mongholicus. This study is based on whole genome analysis of A. mongholicus, identifying a total of 22 AmHSF genes and analyzing their physicochemical properties. Divided into three subgroups based on phylogenetic and gene structural characteristics, including subgroup A (12), subgroup B (9), and subgroup C (1), they are randomly distributed in 8 out of 9 chromosomes of A. mongholicus. In addition, transcriptome data and quantitative real time polymerase chain reaction (qRT-PCR) analyses revealed that AmHSF was differentially transcribed in different tissues, suggesting that AmHSF gene functions may differ. Red and blue light treatment significantly affected the expression of 20 HSF genes in soilless cultivation of A. mongholicus seedlings. AmHSF3, AmHSF3, AmHSF11, AmHSF12, and AmHSF14 were upregulated after red light and blue light treatment, and these genes all had light-corresponding cis-elements, suggesting that AmHSF genes play an important role in the light response of A. mongholicus. Although the responses of soilless-cultivated A. mongholicus seedlings to red and blue light may not represent the mature stage, our results provide fundamental research for future elucidation of the regulatory mechanisms of HSF in the growth and development of A. mongholicus and its response to different light conditions.

2.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474041

RESUMO

Dickeya solani, belonging to the Soft Rot Pectobacteriaceae, are aggressive necrotrophs, exhibiting both a wide geographic distribution and a wide host range that includes many angiosperm orders, both dicot and monocot plants, cultivated under all climatic conditions. Little is known about the infection strategies D. solani employs to infect hosts other than potato (Solanum tuberosum L.). Our earlier study identified D. solani Tn5 mutants induced exclusively by the presence of the weed host S. dulcamara. The current study assessed the identity and virulence contribution of the selected genes mutated by the Tn5 insertions and induced by the presence of S. dulcamara. These genes encode proteins with functions linked to polyketide antibiotics and polysaccharide synthesis, membrane transport, stress response, and sugar and amino acid metabolism. Eight of these genes, encoding UvrY (GacA), tRNA guanosine transglycosylase Tgt, LPS-related WbeA, capsular biosynthesis protein VpsM, DltB alanine export protein, glycosyltransferase, putative transcription regulator YheO/PAS domain-containing protein, and a hypothetical protein, were required for virulence on S. dulcamara plants. The implications of D. solani interaction with a weed host, S. dulcamara, are discussed.


Assuntos
Solanum tuberosum , Solanum , Solanum/genética , Dickeya/genética , Solanum tuberosum/genética , Enterobacteriaceae/genética , Loci Gênicos , Doenças das Plantas
3.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37958868

RESUMO

Oxidative stress has been associated with different diseases, and different medicinal plants have been used to treat or prevent this condition. The leaf ethanolic extract (EE) and aqueous extract (AE) from Coccoloba alnifolia have previously been characterized to have antioxidant potential in vitro and in vivo. In this study, we worked with EE and AE and two partition phases, AF (ethyl acetate) and BF (butanol), from AE extract. These extracts and partition phases did not display cytotoxicity. The EE and AE reduced NO production and ROS in all three concentrations tested. Furthermore, it was observed that EE and AE at 500 µg/mL concentration were able to reduce phagocytic activity by 30 and 50%, respectively. A scratch assay using a fibroblast cell line (NHI/3T3) showed that extracts and fractions induced cell migration with 60% wound recovery within 24 h, especially for BF. It was also observed that AF and BF had antioxidant potential in all the assays evaluated. In addition, copper chelation was observed. This activity was previously not detected in AE. The HPLC-DAD analysis showed the presence of phenolic compounds such as p-cumaric acid and vitexin for extracts, while the GNPS annotated the presence of isoorientin, vitexin, kanakugiol, and tryptamine in the BF partition phase. The data presented here demonstrated that the EE, AE, AF, and BF of C. alnifolia have potential immunomodulatory effects, antioxidant effects, as well as in vitro wound healing characteristics, which are important for dynamic inflammation process control.


Assuntos
Antioxidantes , Cicatrização , Antioxidantes/farmacologia , Estresse Oxidativo , Fenóis/farmacologia , Linhagem Celular , Extratos Vegetais/farmacologia , Extratos Vegetais/análise , Etanol/farmacologia , Folhas de Planta
4.
Front Plant Sci ; 14: 1284007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023897

RESUMO

Ardisia kteniophylla A. DC, widely known as folk medicinal herb and ornamental plant, has been extensively investigated due to its unique leaf color, anti-cancer and other pharmacological activities. The quantitative real-time PCR (qRT-PCR) was an excellent tool for the analysis of gene expression with its high sensitivity and quantitative properties. Normalizing gene expression with stable reference genes was essential for qRT-PCR accuracy. In addition, no studies have yet been performed on the selection, verification and stability of internal reference genes suitable for A. kteniophylla, which has greatly hindered the biomolecular researches of this species. In this study, 29 candidate genes were successfully screened according to stable expression patterns of large-scale RNA seq data that from a variety of tissues and the roots of different growth stages in A. kteniophylla. The candidates were then further determined via qRT-PCR in various experimental samples, including MeJA, ABA, SA, NaCl, CuSO4, AgNO3, MnSO4, CoCl2, drought, low temperature, heat, waterlogging, wounding and oxidative stress. To assess the stability of the candidates, five commonly used strategies were employed: delta-CT, geNorm, BestKeeper, NormFinder, and the comprehensive tool RefFinder. In summary, UBC2 and UBA1 were found to be effective in accurately normalizing target gene expression in A. kteniophella regardless of experimental conditions, while PP2A-2 had the lowest stability. Additionally, to verify the reliability of the recommended reference genes under different colored leaf samples, we examined the expression patterns of six genes associated with anthocyanin synthesis and regulation. Our findings suggested that PAP1 and ANS3 may be involved in leaf color change in A. kteniphella. This study successfully identified the ideal reference gene for qRT-PCR analysis in A. kteniphella, providing a foundation for future research on gene function, particularly in the biosynthesis of anthocyanins.

5.
Plants (Basel) ; 12(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37765365

RESUMO

E. rutaecarpa var. officinalis is a traditional Chinese medicinal plant known for its therapeutic effects, which encompass the promotion of digestion, the dispelling of cold, the alleviation of pain, and the exhibition of anti-inflammatory and antibacterial properties. The principal active component of this plant, limonin, is a potent triterpene compound with notable pharmacological activities. Despite its significance, the complete biosynthesis pathway of limonin in E. rutaecarpa var. officinalis remains incompletely understood, and the underlying molecular mechanisms remain unexplored. The main purpose of this study was to screen the reference genes suitable for expression analysis in E. rutaecarpa var. officinalis, calculate the expression patterns of the genes in the limonin biosynthesis pathway, and identify the relevant enzyme genes related to limonin biosynthesis. The reference genes play a pivotal role in establishing reliable reference standards for normalizing the gene expression data, thereby ensuring precision and credibility in the biological research outcomes. In order to identify the optimal reference genes and gene expression patterns across the diverse tissues (e.g., roots, stems, leaves, and flower buds) and developmental stages (i.e., 17 July, 24 August, 1 September, and 24 October) of E. rutaecarpa var. officinalis, LC-MS was used to analyze the limonin contents in distinct tissue samples and developmental stages, and qRT-PCR technology was employed to investigate the expression patterns of the ten reference genes and eighteen genes involved in limonin biosynthesis. Utilizing a comprehensive analysis that integrated three software tools (GeNorm ver. 3.5, NormFinder ver. 0.953 and BestKeeper ver. 1.0) and Delta Ct method alongside the RefFinder website, the best reference genes were selected. Through the research, we determined that Act1 and UBQ served as the preferred reference genes for normalizing gene expression during various fruit developmental stages, while Act1 and His3 were optimal for different tissues. Using Act1 and UBQ as the reference genes, and based on the different fruit developmental stages, qRT-PCR analysis was performed on the pathway genes selected from the "full-length transcriptome + expression profile + metabolome" data in the limonin biosynthesis pathway of E. rutaecarpa var. officinalis. The findings indicated that there were consistent expression patterns of HMGCR, SQE, and CYP450 with fluctuations in the limonin contents, suggesting their potential involvement in the limonin biosynthesis of E. rutaecarpa var. officinalis. This study lays the foundation for further research on the metabolic pathway of limonin in E. rutaecarpa var. officinalis and provides reliable reference genes for other researchers to use for conducting expression analyses.

6.
Plants (Basel) ; 12(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37447072

RESUMO

Magnesium (Mg2+) is the most abundant divalent ion in plants, participating in numerous metabolic processes in growth and development. CorA/MRS2/ALR type Mg2+ transporters are essential for maintaining Mg2+ homeostasis in plants. However, the candidate protein and its potential functions in the tomato plant have not been fully understood. In this study, we identified seven MGT genes (SlMRS2) in tomato based on sequence similarity, domain analysis, conserved motif identification, and structure prediction. Two SlMRS2 genes were analyzed in the bacterial strain MM281, and a functional complementary assay demonstrated their high-affinity transport of Mg2+. Quantitative real-time PCR analysis revealed that the expressions of these Mg2+ transporters were down-regulated in leaves under Mg2+ limitation, with a greater impact on lower and middle leaves compared to young leaves. Conversely, under Mg2+ toxicity, several genes were up-regulated in leaves with a circadian rhythm. Our findings indicate that members of the SlMRS2 family function as Mg2+ transporters and lay the groundwork for further analysis of their distinct functions in tomato.

7.
PeerJ ; 11: e15331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187526

RESUMO

Background: Panax Ginseng is a perennial and semi-shady herb with tremendous medicinal value. Due to its unique botanical characteristics, ginseng is vulnerable to various abiotic factors during its growth and development, especially in high temperatures. Proteins encoded by 14-3-3 genes form a highly conserved protein family that widely exists in eukaryotes. The 14-3-3 family regulates the vital movement of cells and plays an essential role in the response of plants to abiotic stresses, including high temperatures. Currently, there is no relevant research on the 14-3-3 genes of ginseng. Methods: The identification of the ginseng 14-3-3 gene family was mainly based on ginseng genomic data and Hidden Markov Models (HMM). We used bioinformatics-related databases and tools to analyze the gene structure, physicochemical properties, cis-acting elements, gene ontology (GO), phylogenetic tree, interacting proteins, and transcription factor regulatory networks. We analyzed the transcriptome data of different ginseng tissues to clarify the expression pattern of the 14-3-3 gene family in ginseng. The expression level and modes of 14-3-3 genes under heat stress were analyzed by quantitative real-time PCR (qRT-PCR) technology to determine the genes in the 14-3-3 gene family responding to high-temperature stress. Results: In this study, 42 14-3-3 genes were identified from the ginseng genome and renamed PgGF14-1 to PgGF14-42. Gene structure and evolutionary relationship research divided PgGF14s into epsilon (ε) and non-epsilon (non-ε) groups, mainly located in four evolutionary branches. The gene structure and motif remained highly consistent within a subgroup. The physicochemical properties and structure of the predicted PgGF14 proteins conformed to the essential characteristics of 14-3-3 proteins. RNA-seq results indicated that the detected PgGF14s existed in different organs and tissues but differed in abundance; their expression was higher in roots, stems, leaves, and fruits but lower in seeds. The analysis of GO, cis-acting elements, interacting proteins, and regulatory networks of transcription factors indicated that PgGF14s might participate in physiological processes, such as response to stress, signal transduction, material synthesis-metabolism, and cell development. The qRT-PCR results indicated PgGF14s had multiple expression patterns under high-temperature stress with different change trends in several treatment times, and 38 of them had an apparent response to high-temperature stress. Furthermore, PgGF14-5 was significantly upregulated, and PgGF14-4 was significantly downregulated in all treatment times. This research lays a foundation for further study on the function of 14-3-3 genes and provides theoretical guidance for investigating abiotic stresses in ginseng.


Assuntos
Panax , Filogenia , Panax/genética , Proteínas de Plantas/genética , Resposta ao Choque Térmico/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética
8.
Pharm Biol ; 61(1): 825-838, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37212299

RESUMO

CONTEXT: Lantana camara Linn. (Verbenaceae) is used for improving memory in certain African societies. OBJECTIVE: This study investigated the effect of prophylactic treatment with hydroethanolic leaf extract of Lantana camara (LCE) on short-term memory deficit and neuroinflammation induced with scopolamine in zebrafish and mice. MATERIALS AND METHODS: Zebrafish (AB strain) and mice (ICR) were given donepezil (0.65 mg/kg, oral) and LCE (10, 30, 100 mg/kg, oral) for 7, and 10 days, respectively, before induction of cognitive impairment with scopolamine immersion (200 µM) and intraperitoneal injection (2 mg/kg), respectively. Spatial short-term memory was assessed in zebrafish using both Y- and T-mazes, whereas Y-maze was used in mice. Mice hippocampal and cortical tissues were analyzed for mRNA expression of proinflammatory genes (IL-1ß, IL-6, TNF-α, COX-2) using qRT-PCR. RESULTS: In the zebrafish Y-maze, LCE (10 and 100 mg/kg) increased time spent in the novel arm by 55.89 ± 5.70%, and 68.21 ± 2.75%, respectively, but not at 30 mg/kg. In the zebrafish T-maze, there was an increase in time spent in the food-containing arm at 30 (44.23 ± 2.13) and 100 mg/kg (52.30 ± 1.94). In the mouse Y-maze, spontaneous alternation increased by 52.89 ± 4.98% at only 10 mg/kg. LCE (10, 30, 100 mg/kg) inhibited proinflammatory gene (IL-1ß, IL-6, TNF-α, COX-2) mRNA expression, with the highest inhibitory effect on IL-6 in both the hippocampus (83.27 ± 2.49%; 100 mg/kg) and the cortex (98.74 ± 0.11%; 10 mg/kg). DISCUSSION AND CONCLUSION: LCE ameliorated scopolamine-induced AD in both zebrafish and mice.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Lantana , Camundongos , Animais , Escopolamina/toxicidade , Peixe-Zebra , Lantana/metabolismo , Doença de Alzheimer/metabolismo , Doenças Neuroinflamatórias , Ciclo-Oxigenase 2/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Extratos Vegetais/efeitos adversos , Camundongos Endogâmicos ICR , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/prevenção & controle , RNA Mensageiro/metabolismo , Aprendizagem em Labirinto , Hipocampo
9.
Mol Biol Rep ; 50(6): 5091-5103, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37101006

RESUMO

BACKGROUND: Nitrogen (N) and phosphorous (P) play a very important role in the growth and development of wheat as well as major constituents of biological membranes. To meet the plant's nutritional demand these nutrients are applied in the form of fertilizers. But the plant can utilize only half of the applied fertilizer whereas the rest is lost through surface runoff, leaching and volatilization. Thus, to overcome the N/P loss we need to elucidate the molecular mechanism behind the N/P uptake. METHODS: In our study, we used DBW16 (low NUE), and WH147 (high NUE) wheat genotypes under different doses of N, whereas HD2967 (low PUE) and WH1100 (high PUE) genotypes were studied under different doses of P. To check the effect of different doses of N/P, the physiological parameters like total chlorophyll content, net photosynthetic rate, N/P content, and N/PUE of these genotypes were calculated. In addition, gene expression of various genes involved in N uptake, utilization, and acquisition such as Nitrite reductase (NiR), Nitrate transporter 1/Peptide transporter family (NPF2.4/2.5), Nitrate transporter (NRT1) and NIN Like Protein (NLP) and induced phosphate starvation (IPS), Phosphate Transporter (PHT1.7) and Phosphate 2 (PHO2) acquisition was studied by quantitative real-time PCR. RESULTS: Statistical analysis revealed a lower percent reduction in TCC, NPR, and N/P content in N/P efficient wheat genotypes (WH147 & WH1100). A significant increase in relative fold expression of genes under low N/P concentration was observed in N/P efficient genotypes as compared to N/P deficient genotypes. CONCLUSION: Significant differences in physiological data and gene expression among N/ P efficient and deficient wheat genotypes could be useful for future improvement of N/P use efficiency.


Assuntos
Nitrogênio , Triticum , Nitrogênio/metabolismo , Triticum/metabolismo , Transportadores de Nitrato , Fenótipo , Fósforo/metabolismo , Fosfatos
10.
Microb Cell Fact ; 22(1): 83, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106372

RESUMO

Various factors contribute to the development of the acute inflammation process, like the pro-inflammatory cytokines, certain enzymes as well as oxidative stress mediators. The anti-inflammatory potential of the endophytic fungus Penicillium brefeldianum was explored in carrageenan-induced inflammation in rats. After isolation of the fungus from Acalypha hispida leaves, it was identified by 18S rRNA gene sequencing. Then, its phytochemical profile was elucidated using LC-ESI-MS/MS technique. There was a remarkable decrease in the edema weight in the endophytic fungi-treated group (200 mg/kg). Also, this group had few inflammatory cells and thickened epidermis with underlying moderate collagenosis when stained with haematoxylin and eosin. Besides, immunostaining with monoclonal antibodies of cyclooxygenase-2 and tumor necrosis factor alpha showed a decrease in the positive immune cells in the endophytic fungi treated group (200 mg/kg) in relation to the positive control. Interestingly, the levels of the inflammatory as well as oxidative stress markers, including prostaglandin E2, nitric oxide, and malondialdehyde, which are hallmarks of the inflammatory process, considerably diminished (p < 0.05) in this group. qRT-PCR was utilised to elucidate the impact of the endophytic fungi treatment on the expression of interleukins (IL-1ß and IL-6) genes, which decreased in comparison with the positive control group. Consequently, we can deduce that P. brefeldianum endophytic fungus has a promising anti-inflammatory potential and should be extensively studied on a broader range in the near future.


Assuntos
Penicillium , Espectrometria de Massas em Tandem , Ratos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Compostos Fitoquímicos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
11.
J Orthop Translat ; 39: 34-42, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36636358

RESUMO

Background: Osteosarcoma (OS) is the most common primary malignancy in bone tissues, and effective therapeutics remain absent in clinical practice. Traditional Chinese medicines (TCM) have been used for thousands of years, which provide great insights into OS management. Gallic acid (GA) is a natural phenolic acid enriched in various foods and herbs. Several pharmacological activities of GA such as anti-oxidation and anti-inflammation have been well-established. However, its biological function in OS remains not fully understood. Methods: The potential anti-cancer properties of GA were evaluated in 143 â€‹B, U2OS and MG63 â€‹cells. Its effects on cell growth, cell cycle, apoptosis and migration were examined in these OS cells. The lncRNA H19 and Wnt/ß-catenin signaling were detected by qPCR, luciferase activity and Western blotting assays. The in vivo effect of GA on tumor growth was investigated using an orthotopic mouse model. Results: In the present study, GA was found to suppress the tumor growth in vitro via inducing cell cycle arrest and apoptosis in OS cells, and inhibit the invasion and metastasis as well. Using the orthotopic animal model, GA was also found to suppress tumorigenesis in vivo. Long noncoding RNA (lncRNA) H19 was demonstrated to be down-regulated by GA, and thus disrupted the canonical Wnt/ß-catenin signaling in OS cells. Furthermore, the ectopic expression of H19 rescued the GA-induced suppressive effects on tumor growth and metastasis, and partially reversed the inactivation of Wnt/ß-catenin signaling. Conclusions: Taken together, our results indicated that GA inhibited tumor growth through an H19-mediated Wnt/ß-catenin signaling regulatory axis in OS cells. The translational potential of this article: The information gained from this study provides a novel underlying mechanism of GA mediated anti-OS activity, suggesting that GA may be a promising drug candidate for OS patients.

12.
Naunyn Schmiedebergs Arch Pharmacol ; 396(6): 1117-1128, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36651944

RESUMO

Hepatocellular carcinoma (HCC) is the major life-threatening primary liver malignancy in both sexes all over the world. Unfortunately, the majority of patients are diagnosed at later stages because HCC does not elicit obvious symptoms during its early incidence. Consequently, most individuals escape the first-line HCC treatments and are treated with chemotherapy. Regrettably, the therapeutic outcomes for those patients are usually poor because of the development of multidrug resistance phenomena. Furthermore, most anti-HCC therapies cause severe undesired side effects that notably interfere with the life quality of such patients. Accordingly, there is an important need to search for an alternative therapeutic drug or adjuvant which is more efficient with safe or even minimal side effects for HCC treatment. Melatonin was recently reported to exert intrinsic antitumor activity in different cancers. However, the regulatory pathways underlying the antitumor activity of melatonin are poorly understood in resistant liver cells. Furthermore, a limited number of studies have addressed the therapeutic role of melatonin in HCC cells resistant to doxorubicin chemotherapy. In this study, we investigated the antitumor effects of melatonin in doxorubicin-resistant HepG2 cells and explored the regulatory pivotal targets underlying these effects. To achieve our aim, an MTT assay was used to calculate the 50% inhibitory concentration of melatonin and evaluate its antiproliferative effect on resistant cells. Additionally, qRT-PCR was used to quantify genes having a role in drug resistance phenotype (ABCB1, ABCC1, ABCC2, ABCC3, ABCC4, ABCC5, and ABCG2); apoptosis (caspases-3, and -7, Bcl2, Bax, and p53); anti-oxidation (NRF2); expression of melatonin receptors (MT1, MT2, and MT3); besides, programmed death receptor PD-1 gene. The active form of the caspase-3 enzyme was estimated by ELISA. A human inflammatory antibody membrane array was employed to quantify forty inflammatory factors expressed in treated cells. We observed that melatonin inhibited the proliferation of doxorubicin-resistant HepG2 cells in a dose-dependent manner after 24-h incubation time with a calculated IC50 greater than 10 mM (13.4 mM), the expression levels of genes involved in drug resistance response (ABCB1, ABCC1, ABCC5, and ABCG2) were downregulated. Also, the expression of caspase-3, Caspase-7, NRF2, and p53 genes were expressed at higher levels as compared to control (DMSO-treated cells). An active form of caspase-3 was confirmed by ELISA. Moreover, the anti-inflammatory effect of melatonin was detected through the calculated fold change to control which was reduced for various mediators that have a role in the inflammation pathway. The current findings introduce melatonin as a promising anti-cancer treatment for human-resistant HCC which could be used in combination with current chemotherapeutic regimens to improve the outcome and reduce the developed multidrug resistance.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Melatonina , Masculino , Feminino , Humanos , Carcinoma Hepatocelular/patologia , Melatonina/farmacologia , Melatonina/uso terapêutico , Caspase 3 , Neoplasias Hepáticas/patologia , Fator 2 Relacionado a NF-E2 , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Apoptose , Anti-Inflamatórios/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos
13.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36708174

RESUMO

The rare, fastest-germinating, frequently invasive mucorale, Cunninghamella bertholletiae, is intractable due to its imprecise etiology. Cunninghamella bertholletiae spores can infect both immunocompromised and immunocompetent individuals to cause mucormycosis. Sub-optimal drug-susceptibility further limits its treatment options. The classical nasal drop, Anu Taila, is reported to be effective against the rather prevalent mucorales, Mucor spp., making its anti-mucormycotic effect against C. bertholletiae worth testing. The inhibitory effect of Anu Taila against C. bertholletiae was manifested as microstructural alterations of the spores and their delayed germination. Anu Taila reduced the germination-promoting reactive oxygen species (ROS) levels in both the pathogen, C. bertholletiae, and the human host lung epithelial A549 cells. Expressions of structural (chitin synthase, trehalose synthase) and functional (cAMP-PKA) markers of spore germination were regulated by Anu Taila. cAMP-PKA expression and ROS generation are well-correlated, implicating the role of Anu Taila in delaying C. bertholletiae spore germination by targeting cAMP-PKA-mediated ROS generation. In conclusion, this study demonstrates that Anu Taila can create an opportunity for the host immune system to tackle the onset of C. bertholletiae infection by delaying its pathogenesis. This can be further leveraged to reinforce the host immune system through combinatorial treatment to prevent the establishment of the mucormycosis infection.


Assuntos
Mucorales , Mucormicose , Humanos , Mucormicose/patologia , Espécies Reativas de Oxigênio
14.
Plant Signal Behav ; 18(1): 2163069, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36681901

RESUMO

Platycodon grandiflorus set ornamental, edible, and medicinal plant with broad prospects for further application development. However, there are no reports on the YABBY transcription factor in P. grandiflorus. Identification and analysis of the YABBY gene family of P. grandiflorus using bioinformatics means. Six YABBY genes were identified and divided into five subgroups. Transcriptome data and qRT-PCR were used to analyze the expression patterns of YABBY. YABBY genes exhibited organ-specific patterns in expression in P grandiflorus. Upon salt stress and drought induction, P. grandiflorus presented different morphological and physiological changes with some dynamic changes. Under salt treatment, the YABBY gene family was down-regulated; PgYABBY5 was up-regulated in leaves at 24 h. In drought treatment, PgYABBY1, PgYABBY2, and PgYABBY3 were down-regulated to varying degrees, but PgYABBY3 was significantly up-regulated in the roots. PgYABBY5 was up-regulated gradually after being down-regulated. PgYABBY5 was significantly up-regulated in stem and leaf at 48 h. PgYABBY6 was down-regulated at first and then significantly up-regulated. The dynamic changes of salt stress and drought stress can be regarded as the responses of plants to resist damage. During the whole process of salt and drought stress treatment, the protein content of each tissue part of P grandiflorus changed continuously. At the same time, we found that the promoter region of the PgYABBY gene contains stress-resistant elements, and the regulatory role of YABBY transcription factor in the anti-stress mechanism of P grandiflorus remains to be studied. PgYABBY1, PgYABBY2, and PgYABBY5 may be involved in the regulation of saponins in P. grandiflorus. PgYABBY5 may be involved in the drought resistance mechanism in P. grandiflorus stems and leaves. This study may provide a theoretical basis for studying the regulation of terpenoids by the YABBY transcription factor and its resistance to abiotic stress.


Assuntos
Plantas Medicinais , Platycodon , Platycodon/genética , Platycodon/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/genética
15.
Toxicol Rep ; 9: 1655-1665, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518482

RESUMO

Cardiovascular disease is the most common disease in the world and the first among the causes of human death. Its morbidity and mortality increase annually, but no effective treatment is available. Therefore, new drugs should be developed to treat cardiovascular disease. Gentianella acuta (Michx.) Hulten (G. acuta) is an important Mongolian medicine in China and elicits protective effects on cardiovascular health. In this study, liquid chromatography-mass spectrometry (LC-MS) combined with network pharmacology was used to screen the main active ingredients and confirm that bellidifolin was one of the main components for the treatment of ischemic heart disease. Then, rat myocardial (H9c2) cells injury model induced by hydrogen peroxide (H2O2) in vitro was established to verify the effect of bellidifolin on oxidative stress stimulation, including determination of antioxidant enzyme activity and apoptosis. Transcriptome sequencing, qRT-PCR, and western blot were performed to further verify the antioxidant stress mechanism of bellidifolin. Results showed that bellidifolin pretreatment decreased the rate of apoptosis and the levels of lactate dehydrogenase (LDH), creatine kinase (CK), and alanine aminotransferase (ALT). Conversely, it increased the contents of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in a dose-dependent manner, indicating that bellidifolin caused a protective effect on cardiomyocyte injury. Bellidifolin minimized the H2O2-induced cell injury by activating the PI3K-Akt signal pathway and downregulating glycogen synthase kinase-3ß (GSK-3ß) and p-Akt1/Akt1. Therefore, this work revealed that G. acuta has a good development prospect as an edible medicinal plant in cardiovascular disease. Its bellidifolin component is a potential therapeutic agent for cardiovascular disease induced by oxidative stress damage.

16.
PeerJ ; 10: e14394, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36415861

RESUMO

Context: Scutellaria baicalensis Georgi (SBG) may relieve bone cancer pain (BCP) by regulating cell proliferation, angiogenesis, and apoptosis. Objective: The mechanism of SBG in the treatment of BCP remains to be further explored. Methods: The active compounds and targets of SBG were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and SwissTargetPrediction databases. BCP-related targets were screened from NCBI and GeneCards databases. Additionally, Cytoscape software was applied to construct network diagrams, and OmicShare platform was used to enrich Gene Ontology (GO) and pathways. Finally, the verification of active compounds and core targets was performed based on quantitative real-time PCR (qRT-PCR). Results: Interestingly, we identified baicalein and wogonin as the main active components of SBG. A total of 41 SBG targets, including VEGFA, IL6, MAPK3, JUN and TNF, were obtained in the treatment of BCP. In addition, pathways in cancer may be an essential way of SBG in the treatment of BCP. Experimental verification had shown that baicalein and wogonin were significantly related to BCP core targets. Conclusions: The active components of SBG have been clarified, and the mechanism of the active components in treating BCP has been predicted and verified, which provides an experimental and theoretical basis for the in-depth elucidation of the pharmacodynamics material basis and mechanism of SBG.


Assuntos
Dor do Câncer , Neoplasias , Scutellaria baicalensis , Farmacologia em Rede , Medicina Tradicional Chinesa
17.
Food Chem (Oxf) ; 5: 100133, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36111060

RESUMO

Chronic administration of a high-fat diet in mice has been established to influence the generation and trafficking of immune cells such as neutrophils in the bone marrow, the dysregulation of which may contribute to a wide range of diseases. However, no studies have tested the hypothesis that a short-term, high-fat diet could early modulate the neutrophil release from bone marrow at fasting and at postprandial in response to a high-fat meal challenge, and that the predominant type of fatty acids in dietary fats could play a role in both context conditions. Based on these premises, we aimed to establish the effects of different fats [butter, enriched in saturated fatty acids (SFAs), olive oil, enriched in monounsaturated fatty acids (MUFAs), and olive oil supplemented with eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids] on neutrophil navigation from bone marrow to blood in mice. The analysis of cellular models for mechanistic understanding and of postprandial blood samples from healthy volunteers for translational purposes was assessed. The results revealed a powerful effect of dietary SFAs in promotion the neutrophil traffic from bone marrow to blood via the CXCL2-CXCR2 axis. Dietary SFAs, but not MUFAs or EPA and DHA, were also associated with increased neutrophil apoptosis and bone marrow inflammation. Similar dietary fatty-acid-induced postprandial neutrophilia was observed in otherwise healthy humans. Therefore, dietary MUFAs might preserve bone marrow health and proper migration of bone marrow neutrophils early in the course of high-fat diets even after the intake of high-fat meals.

18.
Mol Biol Rep ; 49(11): 10307-10314, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36097107

RESUMO

BACKGROUND: Justicia adhatoda is an important medicinal plant traditionally used in the Indian system of medicine and the absence of molecular-level studies in this plant hinders its wide use, hence the study was aimed to analyse the genes involved in its various pathways. METHODS AND RESULTS: The RNA isolated was subjected to Illumina sequencing. De novo assembly was performed using TRINITY software which produced 171,064 transcripts with 55,528 genes and N50 value of 2065 bp, followed by annotation of unigenes against NCBI, KEGG and Gene ontology databases resulted in 105,572 annotated unigenes and 40,288 non-annotated unigenes. A total of 5980 unigenes were mapped to 144 biochemical pathways, including the metabolism and biosynthesis pathways. The pathway analysis revealed the major transcripts involved in the tryptophan biosynthesis with TPM values of 6.0903, 33.6854, 11.527, 1.6959, and 8.1662 for Anthranilate synthase alpha, Anthranilate synthase beta, Arogenate/Prephenate dehydratase, Chorismate synthase and Chorismate mutase, respectively. The qRT-PCR validation of the key enzymes showed up-regulation in mid mature leaf when compared to root and young leaf tissue. A total of 16,154 SSRs were identified from the leaf transcriptome of J. Adhatoda ,which could be helpful in molecular breeding. CONCLUSIONS: The study aimed at identifying transcripts involved in the tryptophan biosynthesis pathway for its medicinal properties, as it acts as a precursor to the acridone alkaloid biosynthesis with major key enzymes and their validation. This is the first study that reports transcriptome assembly and annotation of J. adhatoda plant.


Assuntos
Justicia , Justicia/genética , Vias Biossintéticas/genética , Anotação de Sequência Molecular , Regulação da Expressão Gênica de Plantas/genética , Antranilato Sintase/genética , Triptofano/genética , Perfilação da Expressão Gênica , Transcriptoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
19.
Mol Biol Rep ; 49(11): 10357-10365, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36097118

RESUMO

BACKGROUND: Catharanthus roseus is the sole resource of vinblastine and vincristine, two TIAs of great interest for their powerful anticancer activities. Increasing the concentration of these alkaloids in various organs of the plant is one of the important goals in C. roseus breeding programs. Plant probiotic bacteria (PBB) act as biotic elicitors and can induce the synthesis of secondary products in plants. The purpose of this research is to study the effects of PBB on expression of the TIA biosynthetic pathway genes and the content of alkaloids in C. roseus. METHODS AND RESULTS: The individual and combined effects of P. fluorescens strains 169 and A. brasilense strains Ab-101 was studied for expression of the TIA biosynthetic pathway genes (G10H, DAT, T16H and CrPRX) using qRT-PCR and the content of vinblastine and vincristine using HPLC method in roots of C. roseus. P. fluorescens. This drastically increased the content of vinblastine and vincristine alkaloids, compared to the control in the roots, to 174 and 589 (µg/g), respectively. Molecular analysis showed bacterium significantly increased the expression of more genes in the TIA biosynthetic pathway compared to the control. P. fluorescens increased the expression of the final gene of the biosynthetic pathway (CrPRX) 47.9 times compared to the control. Our findings indicate the correlation between transcriptional and metabolic outcomes. The same was true for A. brasilense. CONCLUSIONS: It can be concluded that seed treatments and seedling root treatments composed of naturally occurring probiotic bacteria are likely to be widely applicable for inducing enhanced alkaloid contents in medicinal plants.


Assuntos
Catharanthus , Probióticos , Alcaloides de Triptamina e Secologanina , Catharanthus/genética , Catharanthus/metabolismo , Vimblastina/metabolismo , Vimblastina/farmacologia , Vincristina/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Melhoramento Vegetal , Perfilação da Expressão Gênica , Bactérias/genética , Regulação da Expressão Gênica de Plantas
20.
Front Plant Sci ; 13: 972804, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035706

RESUMO

Codonopsis tangshen Oliv (C. tangshen) is an important Chinese traditional medicinal plant with various health benefits. However, the growth of C. tangshen are seriously affected by continuous cropping, which led to the decrease of the yield and quality. A field experiment was conducted to learn the effects of soil amendments on the growth of C. tangshen under continuous cropping condition, and the biological events which occurred at molecular level were investigated. The results indicated that the content of chlorophyll a (Chl a), chlorophyll b (Chl b), and carotenoid (Car) was significantly higher in SCPM (silicon-calcium-potassium-magnesium fertilizer), SCPMA (SCPM combined with azoxystrobin) and SCPMAOM (SCPM combined with azoxystrobin and organic manure) treatments. Moreover, the yield and the levels of alkaloid, polysaccharide, flavone and total protein in the treatments of SCPM, SCPMA and SCPMAOM were significantly higher than those in the control, and these indexes were all highest in the SCPMAOM treatment. RNA-sequencing (RNA-Seq) is an economical and efficient method to obtain genetic information for species with or without available genome data. In this study, RNA-Seq was performed to understand how continuously cropped C. tangshen responded to the soil amendments at the transcriptome level. The number of differentially expressed genes (DEGs) were as follows: CK vs. SCPM (719 up- and 1456 down-), CK vs. SCPMA (1302 up- and 1748 down-), CK vs. SCPMAOM (1274 up- and 1678 down-). The soil amendments affected the growth of C. tangshen mainly by regulating the genes involved in pathways of 'photosynthesis,' 'plant hormone signal transduction,' 'biosynthesis of unsaturated fatty acids,' 'phenylpropanoid biosynthesis,' and 'starch and sucrose metabolism,' etc. qRT-PCR was performed to validate the expressions of 10 target genes such as CP26, PsaF, and POX, etc., which verified the reliability of RNA-Seq results. Overall, this study revealed the roles and underlying mechanisms of the soil amendments in regulating the growth of continuously cropped C. tangshen at transcriptome level. These findings are beneficial for improving the continuous cropping tolerance and may be valuable for future genetic improvement of C. tangshen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA