Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Photodermatol Photoimmunol Photomed ; 40(1): e12926, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37957888

RESUMO

BACKGROUND: Light therapy is widely used in medicine. Specifically, photobiomodulation has been shown to exert beneficial effects in wound healing disorders, which present a major challenge in health care. The study's aim was providing information on the effect of a novel, red-laser-based wound therapy device (WTD) on keratinocytes and fibroblasts during wound healing under optimal and non-optimal conditions. METHODS: The scratch wound assay was employed as a wound healing model for mechanical damage with readjustment of specific cell milieus, explicitly chronic TH1 inflammation and TH2-dominant conditions. Furthermore, gene expression analysis of pro-inflammatory cytokines (IL1A, IL6, CXCL8), growth factors (TGFB1, PDGFC), transcription factors (NFKB1, TP53) and heat shock proteins (HSP90AA1, HSPA1A, HSPD1) as well as desmogleins (DSG1, DSG3) in keratinocytes and collagen (COL1A1, COL3A1) in fibroblasts was performed after WTD treatment. RESULTS: It was shown that WTD treatment is biocompatible and supports scratch wound closure under non-optimal conditions. A distinct enhancement of desmoglein and collagen gene expression as well as induction of early growth factor gene expression was observed under chronic inflammatory conditions. Moreover, WTD increased HSPD1 transcript levels in keratinocytes and augmented collagen expression in fibroblasts during wound healing under TH2 conditions. WTD treatment also alleviated the inflammatory response in keratinocytes and induced early growth factor gene expression in fibroblasts under physiological conditions. CONCLUSION: Positive effects described for wound treatment with WTD could be replicated in vitro and seem to be to be conferred by a direct influence on cellular processes taking place in keratinocytes and fibroblasts during wound healing.


Assuntos
Queratinócitos , Cicatrização , Humanos , Proliferação de Células , Movimento Celular , Queratinócitos/fisiologia , Colágeno , Inflamação , Peptídeos e Proteínas de Sinalização Intercelular , Lasers , Fibroblastos/fisiologia
2.
Ann Biomed Eng ; 52(2): 376-385, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37851144

RESUMO

This study aims to investigate the effectiveness of low power red light (661 nm) in accelerating the wound healing process of an in vitro scratch assay model of keratinocytes. Furthermore, the study aims to clarify the role of light irradiation parameters, optimize them and gain additional insight into the mechanisms of wound closure as a result of photobiomodulation. Wound healing was studied using scratch assay model of NCTC 2544 keratinocytes. Cells were irradiated with a laser at various power densities and times. Images were acquired at 0, 24, 48 and 72 h following the laser treatment. Cellular proliferation was studied by MTT. ROS were studied at 0 and 24 h by fluorescence microscopy. Image analysis was used to determine the wound closure rates and quantify ROS. The energy range of 0.18-7.2 J/cm2 was not phototoxic, increased cell viability and promoted wound healing. Power and irradiation time proved to be more important than energy. The results indicated the existence of two thresholds in both power and irradiation time that need to be overcome to improve wound healing. An increase in ROS production was observed at 0 h only in the group with the lowest healing rate. This early response seemed to block proliferation and finally wound healing. Low level laser light at 661 nm enhanced both proliferation and migration in keratinocytes, providing evidence that it could possibly stimulate wound healing in vivo. The observed results are dependent on irradiance and irradiation time rather than energy dose in total.


Assuntos
Terapia com Luz de Baixa Intensidade , Terapia com Luz de Baixa Intensidade/métodos , Espécies Reativas de Oxigênio , Queratinócitos , Cicatrização , Proliferação de Células
3.
Plants (Basel) ; 12(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38005794

RESUMO

Tropaeolum majus L. is a traditional medicinal plant with a wide range of biological activities due to the degradation products of the glucosinolate glucotropaeolin. Therefore, the goals of this study were to identify volatiles using gas chromatography-mass spectrometry analysis (GC-MS) of the hydrosols (HYs) isolated using microwave-assisted extraction (MAE) and microwave hydrodiffusion and gravity (MHG). Cytotoxic activity was tested against a cervical cancer cell line (HeLa), human colon cancer cell line (HCT116), human osteosarcoma cell line (U2OS), and healthy cell line (RPE1). The effect on wound healing was investigated using human keratinocyte cells (HaCaT), while the antibacterial activity of the HYs was tested against growth and adhesion to a polystyrene surface of Staphylococcus aureus and Escherichia coli. Antiphytoviral activity against tobacco mosaic virus (TMV) was determined. The GC-MS analysis showed that the two main compounds in the HYs of T. majus are benzyl isothiocyanate (BITC) and benzyl cyanide (BCN) using the MAE (62.29% BITC and 15.02% BCN) and MHG (17.89% BITC and 65.33% BCN) extraction techniques. The HYs obtained using MAE showed better cytotoxic activity against the tested cancer cell lines (IC50 value of 472.61-637.07 µg/mL) compared to the HYs obtained using MHG (IC50 value of 719.01-1307.03 µg/mL). Both concentrations (5 and 20 µg/mL) of T. majus HYs using MAE showed a mild but statistically non-significant effect in promoting gap closure compared with untreated cells, whereas the T. majus HY isolated using MHG at a concentration of 15 µg/mL showed a statistically significant negative effect on wound healing. The test showed that the MIC concentration was above 0.5 mg/mL for the HY isolated using MAE, and 2 mg/mL for the HY isolated using MHG. The HY isolated using MHG reduced the adhesion of E. coli at a concentration of 2 mg/mL, while it also reduced the adhesion of S. aureus at a concentration of 1 mg/mL. Both hydrosols showed excellent antiphytoviral activity against TMV, achieving100% inhibition of local lesions on the leaves of infected plants, which is the first time such a result was obtained with a hydrosol treatment. Due to the antiphytoviral activity results, hydrosols of T. majus have a promising future for use in agricultural production.

4.
J Ayurveda Integr Med ; 14(3): 100721, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37245340

RESUMO

BACKGROUND: Traditional medicine in form of decoctions has been known for ages to possess wound healing abilities. One such traditional formulation mentioned in Indian literature Charak Samhita Chikitsa Sthanam is Kampillakadi Taila and tremendous information is available on its implication in the treatment of skin cuts and wounds, diseases, or bacterial infections. This research paper focuses on studying the wound healing property of one such herbal proprietary formulation known as a wound healing oil, derived from Kampillakadi Taila fortified with root extract of Wagatea spicata (VIKHPF). OBJECTIVE: The current research is aimed at studying chemical profiling, antioxidant activity, antimicrobial efficacy, in-vitro cell proliferating, and in-vitro wound healing activity of this VKHPF. MATERIALS AND METHODS: The chemical characterization of VKHPF was done by gas chromatography- fatty acid methyl esters GC-FAME analysis for lipid analysis and gas chromatography high-resolution mass spectrometry (GC-HRMS)for revealing its chemical constituents. Proliferation and migration are two underlying mechanisms involved in the healing of wounds. Hence, in-vitro studies such as cell proliferation assay and in-vitro scratch test on NIH/3T3 mice fibroblast cell line were conducted were used to determine in-vitro wound healing capacity of VKHPF. The oil was also tested for antioxidant effect (DPPH assay) and anti-microbial potential (Time kill test). RESULTS: The GC-HRMS and GC-FAME analyses revealed rich medicinally important fatty acids and vitamins were present in VKHPF, such as oleic acid, hexadecanoic acid, squalene, α, γ-tocopherol, γ-sitosterol, and benzoic acid. VKHPF at 0.5 mg/ml in media without serum showed 164.00 ± 0.011% cell viability with 64.00% cell proliferation in contrast to media containing serum (100% cell viability). At the same concentration, the wound closure was 98% for VKHPF. The oil sample possessed antioxidant activity with an IC50 value of 3.5 mg/ml and antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa when tested using Time Kill Activity. CONCLUSION: This study is the first to report the use of Vakeri fortified Kampillakadi Taila herbal proprietary formulation (VKHPF) in in-vitro wound healing and the present data suggest that it can form a part of modern medicine.

5.
Int J Pharm ; 634: 122650, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36716832

RESUMO

The Echium amoenum Fisch. and C.A. Mey. (E. amoenum) is an herb native from Iranian shrub, and its blue-violet flowers are traditionally used as medical plants. In the present study, an antioxidant phytocomplex was extracted from the flowers of E. amoenum by ultrasounds-assisted hydroalcoholic maceration. The main components, contained in the extract, have been detected using HPLC-DAD, and rosmarinic acid was found to be the most abundant. The antioxidant power of the extract along with the phenolic content were measured using colorimetric assays. The extract was loaded in liposomes, which were enriched adding different bioadhesive polymers (i.e., mucin, xanthan gum and carboxymethyl cellulose sodium salt) individually or in combination. The main physico-chemical properties (i.e. size, size distribution, surface charge) of the prepared vesicles were measured as well as their stability on storage. The viscosity of dispersion and the ability of vesicles to interact with mucus were evaluated measuring their stability in a mucin dispersion and mobility in a mucin film. The biocompatibility and the ability of the formulations to protect keratinocytes from damages caused by hydrogen peroxide and to promote the cell migration were measured in vitro.


Assuntos
Echium , Extratos Vegetais , Extratos Vegetais/química , Echium/química , Antioxidantes , Fosfolipídeos , Irã (Geográfico)
6.
Drug Chem Toxicol ; 46(4): 625-633, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35635134

RESUMO

AIM: The aim of the study was to assess the toxicity profile of Selaginella bryopteris extract and evaluate its wound healing activity. METHODS: In vitro wound healing activity of S. bryopteris extract (5% and 10%) was performed using Clonogenic and Scratch assays. The toxicity profile of S. bryopteris extract ointment was evaluated on animals using acute toxicity and dermal toxicity tests. In vivo wound healing activity of S. bryopteris extract ointment (5% and 10%) was used to determine tensile strength in the incision wound healing model. RESULTS: Results exhibited that the extract was safe up to 2000 mg/kg per oral dose and non-reactive while applied topically. In vitro results showed that S. bryopteris extract closed the wound gap created by 97.13% in 48 h. The clonogenic assay revealed that the surviving factor for HaCaT cells and MEF cells was 0.78 and 0.85 after treated with 10% concentrations of S. bryopteris. The tensile strength exhibited by S. bryopteris 5% and 10% groups was 395.4 g and 558.5 g in comparison to the control group. CONCLUSION: Thus, S. bryopteris extract can be used as an alternative safe drug therapy against topical wounds.


Assuntos
Selaginellaceae , Ratos , Animais , Ratos Wistar , Extratos Vegetais/toxicidade , Pomadas , Cicatrização
7.
Molecules ; 27(5)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35268823

RESUMO

Clinacanthus nutans is known to be an anticancer and antiviral agent, and Strobilanthes crispus has proven to be an antidiuretic and antidiabetic agent. However, there is a high possibility that these plants possess multiple beneficial properties, such as antimicrobial and wound healing properties. This study aims to assess the wound healing, antioxidant, and antimicrobial properties of Clinacanthus nutans and Strobilanthes crispus. The Clinacanthus nutans and Strobilanthes crispus leaves were dried, ground, and extracted with ethanol, acetone, and chloroform through cold maceration. In a modified scratch assay with co-incubation of skin fibroblast and Methicillin-resistant Staphylococcus aureus, Clinacanthus nutans and Strobilanthes crispus extracts were assessed for their wound healing potential, and the antimicrobial activities of Clinacanthus nutans and Strobilanthes crispus extracts were performed on a panel of Gram-positive and Gram-negative bacteria on Mueller-Hinton agar based on a disc diffusion assay. To assess for antioxidant potential, 2,2-diphenyl-1-picrylhydrazyl (DPPH), total phenolic and total flavonoid assays were conducted. In the modified scratch assay, Clinacanthus nutans extracts aided in the wound healing activity while in the presence of MRSA, and Strobilanthes crispus extracts were superior in antimicrobial and wound healing activities. In addition, Strobilanthes crispus extracts were superior to Clinacanthus nutans extracts against Pseudomonas aeruginosa on Mueller-Hinton agar. Acetone-extracted Clinacanthus nutans contained the highest level of antioxidant in comparison with other Clinacanthus nutans extracts.


Assuntos
Acanthaceae , Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Acanthaceae/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Cicatrização
8.
J Adv Pharm Technol Res ; 13(1): 38-43, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223439

RESUMO

Derris scandens (DS) is a Thai herbal medicine used to relieve musculoskeletal pain. It has been found as a single crude medication, ethanolic extract, and compounded herbal recipe for oral administration in pharmacies across the country. Due to its medicinal benefits and enriched phytochemicals, researchers are now drawn to examine the new pharmacological effects of this plant to increase its usage in complementary medicines. The purpose of this research was to investigate the wound-healing properties of the plant's ethanolic extracts as well as their active chemical composition. The extracts (both 50% and absolute ethanol) prepared by Soxhlet extraction were examined for cytotoxicity and wound-healing activity using human skin fibroblast cells, and the active chemical contents in the extracts were analyzed further using the HPLC method. For this study, genistein and lupeol compounds were selected as chemical markers. In the concentration range of 0.0001-1 mg/mL, all extracts had no cytotoxic effects on the examined cells, and 1 mg/mL of both ethanolic extracts was effective for wound closure in a scratch assay. The phytochemicals genistein and lupeol were found to be 0.0332% and 0.0588% (w/w) in the 50% ethanolic extract, respectively, and 0.0309% and 0.3472% (w/w) in the absolute ethanolic extract. The ability of DS extracts containing these compounds on in vitro wound-healing activity was demonstrated in this study.

9.
Molecules ; 27(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35163900

RESUMO

Proliferation and migration of keratinocytes and fibroblasts play an important role in cutaneous wound healing, while oral mucosal squamous cell proliferation and migration are crucial for oral wound healing. In this study, the phytochemical profile of Pluchea indica branch ethanolic extract was characterized. The bioactive compound of Pluchea indica branch ethanolic extract was identified and analyzed by the validated HPLC method. The nanoparticles of P. indica branch extract were formulated by solvent displacement method to increase the solubility and the colloidal stability of the extract. The stability of the nanoparticles was investigated by using the dynamic light scattering technique. Effects of P. indica crude extract and nanoparticles on cell viability, proliferation and migration of primary epidermal keratinocytes, human dermal fibroblasts, and oral mucosal keratinocyte cells were investigated by MTT assay and scratch assay, respectively. The results showed that P. indica branch extract contained a high content of total phenolic and total flavonoids. The HPLC analysis revealed that the main compound in the extract was 4,5-O-dicaffeoylquinic acid. The cell viability of the extract and nanoparticles decreased when cells were exposed to a high concentration of extract and nanoparticles. These results demonstrate that P. indica branch extract and extract nanoparticles at specific concentrations possess in vitro wound healing activity and they may be possibly used to treat different types of wounds including dermal and oral mucosal wounds.


Assuntos
Antioxidantes , Nanopartículas , Antioxidantes/farmacologia , Humanos , Queratinócitos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Cicatrização
10.
Lasers Med Sci ; 37(5): 2431-2437, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35048232

RESUMO

Phototherapy is gaining more attention in the treatment of various diseases. Especially, blue light seems to be a promising approach for wound healing promotion due to its antimicrobial and immune-modulating properties. Despite this, there is only little research focusing on the immune-modulating properties of blue light and its possible effects on wound healing. Therefore, we investigated the effects of blue light irradiation on peripheral blood mononuclear cells (PBMC) and the influence on reepithelization in vitro. PBMCs were irradiated with DermoDyne® (DermoDyne HealthCare, Berlin, Germany) and effects on cell viability, cytokine expression, and scratch wound closure were evaluated afterwards. Irradiated cells showed a higher Interleukin-γ concentration while irradiation reduced resazurin concentration in a time-dependent manner. No differences in reepithelization were detectable when keratinocytes were treated with the supernatant of these blue light irradiated PBMCs. Blue light-mediated ex vivo stimulation of PBMCs does not cause faster reepithelization in an in vitro setting. Further research is needed to investigate the wound healing effects of phototherapy with blue light.


Assuntos
Leucócitos Mononucleares , Cicatrização , Queratinócitos , Luz , Fototerapia , Cicatrização/efeitos da radiação
11.
Eur J Pharm Biopharm ; 170: 1-9, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34798283

RESUMO

In previous studies, lecithin-based nanoemulsions (NEs) have been shown to be skin friendly drug carrier systems. Due to their nontoxic properties, NEs might also be suitable as wound healing agents. Hence, different O/W NEs based on lecithin Lipoid® S 75 and plant oils or medium chain triglycerides were produced and characterised. Two lipophilic natural wound healing agents, a betulin-enriched extract from birch bark (BET) and a purified spruce balm (PSB), were successfully incorporated and their effects on primary human skin cells were studied in vitro. MTT, BrdU and scratch assays uncovered the positive influence of the drug-loaded NEs on cell viability, proliferation and potential wound closure. Compared to control formulations, the NEs loaded with either BET or PSB led to higher cell viability rates of fibroblasts and keratinocytes. Higher proliferative activity of keratinocytes and fibroblasts was observed after the treatment, which is a prerequisite for wound closure. Indeed, in scratch assays NEs with PSB and notably BET showed significantly ameliorated wound closure rates than the negative control (unloaded NEs) and the positive control (NEs with dexpanthenol). Our findings suggest that BET and PSB are outstanding wound healing drugs and their incorporation into lecithin-based NEs may represent a valid strategy for wound care.


Assuntos
Lecitinas/farmacologia , Óleos de Plantas/farmacologia , Pele/citologia , Pele/efeitos dos fármacos , Triglicerídeos/farmacologia , Cicatrização/efeitos dos fármacos , Betula , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Emulsões , Humanos , Técnicas In Vitro , Picea , Triterpenos/farmacologia
12.
Biomedicines ; 9(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34944618

RESUMO

It is a general goal to improve wound healing, especially of chronic wounds. As light therapy has gained increasing attention, the positive influence on healing progression of water-filtered infrared A (wIRA), a special form of thermal radiation, has been investigated and compared to the detrimental effects of UV-B irradiation on wound closure in vitro. Models of keratinocyte and fibroblast scratches help to elucidate effects on epithelial and dermal healing. This study further used the simulation of non-optimal settings such as S. aureus infection, chronic inflammation, and anti-inflammatory conditions to determine how these affect scratch wound progression and whether wIRA treatment can improve healing. Gene expression analysis for cytokines (IL1A, IL6, CXCL8), growth (TGFB1, PDGFC) and transcription factors (NFKB1, TP53), heat shock proteins (HSP90AA1, HSPA1A, HSPD1), keratinocyte desmogleins (DSG1, DSG3), and fibroblast collagen (COL1A1, COL3A1) was performed. Keratinocyte and fibroblast wound healing under non-optimal conditions was found to be distinctly reduced in vitro. wIRA treatment could counteract the inflammatory response in infected keratinocytes as well as under chronic inflammatory conditions by decreasing pro-inflammatory cytokine gene expression and improve wound healing. In contrast, in the anti-inflammatory setting, wIRA radiation could re-initiate the acute inflammatory response necessary after injury to stimulate the regenerative processes and advance scratch closure.

13.
Biomed Pharmacother ; 144: 112351, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34794231

RESUMO

Pistacia lentiscus L. is a sclerophyllous shrub capable of growing under harsh climatic conditions especially in the Mediterranean Basin. Different products can be obtained from this plant, such as essential oil, mastic gum or even fixed oil. The last is well known for its flavor which is mainly exploited in the food industry. Additionally, it has been traditionally used in the treatment of skin diseases, but, at the moment, any suitable formulation for skin delivery has been formulated and its biological effects was not deeply confirmed. Given that, in the present study, the lentisk oil has been formulated in liposomes at different concentrations (10, 20, 30 mg/ml) and their physicochemical, technological and main biological properties have been evaluated. Vesicles were prepared by using natural soy lecithin and a green and organic solvent free method, thus obtaining spherical, small (~ 118 nm), homogeneously dispersed (0.27) and highly negatively charged (~ -62 mV) vesicles. The used amount of oil loaded in liposomes (10, 20, 30 mg/ml) modulated the penetration ability of vesicles in the skin, favoring the deposition of the payload in the deeper strata. The loading in the vesicles potentiated the ability of oil to counteract the damaging effects caused by hydrogen peroxide in keratinocytes and fibroblasts and facilitate their migration in a cell monolayer lesion. Overall findings suggested that the incorporation of lentisk oil in liposomes made from soy lecithin can be an alternative and natural approach to exploit it in pharmaceutical ad cosmetical applications and manufacturing natural products suitable for the treatment of skin lesions.


Assuntos
Movimento Celular/efeitos dos fármacos , Lipossomos/química , Óleos Voláteis/administração & dosagem , Óleos Voláteis/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Pistacia/química , Administração Tópica , Animais , Linhagem Celular , Composição de Medicamentos , Humanos , Peróxido de Hidrogênio/antagonistas & inibidores , Peróxido de Hidrogênio/toxicidade , Queratinócitos/efeitos dos fármacos , Lecitinas/química , Teste de Materiais , Camundongos , Oxidantes/antagonistas & inibidores , Oxidantes/toxicidade , Tamanho da Partícula , Glycine max/química , Suínos
14.
J Nat Med ; 75(4): 833-839, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33963491

RESUMO

Indigo Naturalis, also known as Qing Dai (QD) is a compound obtained from Indigofera tinctoria, Isatis tinctoria, and Polygonum tinctoria and is known to ameliorate refractory ulcerative colitis (UC) by an unknown mechanism. QD maintains both homeostasis and the integrity of colon epithelia in mice that have experimentally induced colitis. The primary component of QD, indigo, comprises 42.4% of the compound. Indigo efficiently suppresses rectal bleeding and reduces the erosion of the colon epithelium, whereas it does not reduce weight loss or increase survival in a certain condition. Indigo is a ligand of the aryl hydrocarbon receptor (AhR), which is involved in the anti-colitis activity of QD. Here we investigate the effects of indigo on wound (erosion) closure in colon epithelial cells. Oral administration of indigo induced expression of Cytochrome P450 1A1 (Cyp1a1) in the colon but not in the liver, suggesting that indigo stimulates AhR from the luminal side of the colon. The erosion-closure activity tested in the scratch assays using Caco-2 cells was accelerated by addition of QD and indigo to the culture medium. QD and indigo also induced nuclear localization of AhR and expression of CYP1A1 in the Caco-2 cells. Acceleration of scratch wound closure was abolished by addition of the AhR-antagonist CH223191. Cell proliferation and actin polymerization were also shown to contribute to erosion closure. The results suggest that indigo exerts its erosion-healing effects by increasing proliferation and migration of colon epithelial cells via activation of AhR in intestinal epithelia.


Assuntos
Indigofera , Receptores de Hidrocarboneto Arílico , Animais , Células CACO-2 , Citocromo P-450 CYP1A1/genética , Humanos , Índigo Carmim , Camundongos , Cicatrização
15.
J Microencapsul ; 38(5): 263-275, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33719838

RESUMO

AIM: The present work involves encapsulation of herbal drug nanocurcumin into the virosomes and compared with a liposome in terms of their in vitro anti-proliferative, anti-inflammatory, and anti-migratory efficacy. METHODS: The anti-proliferative, anti-inflammatory, and anti-migratory efficacy of virosome and liposome were compared in HepG2 and CaCo2 cells by using MTT, Nitric oxide scavenging, and Wound healing assay, respectively. RESULTS: Size of the optimised NC-Virosome and NC-Liposome was 70.06 ± 1.63 and 265.80 ± 1.64 nm, respectively. The prepared NC-Virosome can be stored at -4 °C up to six months. The drug encapsulation efficiency of NC-Virosome and NC-Liposome was found to be 84.66 ± 1.67 and 62.15 ± 1.75% (w/w). The evaluated minimum inhibitory concentration (IC50 value) for NC-Virosome was 102.7 µg/ml and 108.1 µg/ml, while NC-Liposome showed 129.2 µg/ml and 160.1 µg/ml for HepG2 and CaCo2 cells, respectively. Morphological examination depicts detachment of the cells from substratum after exposure to NC-Virosome for 48 h. CONCLUSION: The prepared NC-Virosome provides remarkable in vitro efficacy in both the cell lines with site-specific drug-targeting potential as compared to the liposome, results proved its potential as a drug delivery vehicle for future therapy with reduced toxicity.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Lipossomos/química , Virossomos/química , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/uso terapêutico , Antineoplásicos Fitogênicos/administração & dosagem , Células CACO-2 , Movimento Celular/efeitos dos fármacos , Curcumina/administração & dosagem , Curcumina/uso terapêutico , Sistemas de Liberação de Medicamentos , Excipientes , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Neoplasias/tratamento farmacológico , Óxido Nítrico/química , Sais de Tetrazólio , Tiazóis , Cicatrização/efeitos dos fármacos
16.
Pharmaceuticals (Basel) ; 13(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872140

RESUMO

This work aimed at developing a mouthwash based on liposomes loading Citrus limon var. pompia essential oil or citral to treat oropharyngeal diseases. Vesicles were prepared by dispersing phosphatidylcholine and pompia essential oil or citral at increasing amounts (12, 25 and 50 mg/mL) in water. Transparent vesicle dispersions were obtained by direct sonication avoiding the use of organic solvents. Cryogenic transmission electron microscopy (cryo-TEM) confirmed the formation of unilamellar, spherical and regularly shaped vesicles. Essential oil and citral loaded liposomes were small in size (~110 and ~100 nm, respectively) and negatively charged. Liposomes, especially those loading citral, were highly stable as their physico-chemical properties did not change during storage. The formulations were highly biocompatible against keratinocytes, were able to counteract the damages induced in cells by using hydrogen peroxide, and able to increase the rate of skin repair. In addition, liposomes loading citral at higher concentrations inhibited the proliferation of cariogenic bacterium.

17.
Food Res Int ; 133: 109168, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32466931

RESUMO

Araticum (Annona crassiflora Mart.) is a native fruit from Brazilian Cerrado widely used by folk medicine. Nevertheless, the biological effects of its seeds and peel have not been extensively evaluated. We evaluate herein the antioxidant, antiproliferative and healing potential of araticum peel and seeds extracts. HPLC-ESI-MS/MS analysis showed flavonoids, namely epicatechin and quercetin, as the main compounds in peel and seeds extracts, respectively. These extracts showed high content of phenolic compounds (7254.46 and 97.74 µg/g extract) and, as consequence, high antioxidant capacity. Interesting, the seeds extract was more effective than peel extract against all tested cancer cells, especially on NCI-ADR/RES (multidrug resistant ovary adenocarcinoma) cell line. In the cell migration assay by using HaCaT (keratinocyte), the seeds extract induced migration, while the peel extract showed an inhibitory effect. In this way, phenolic content could be related to antioxidant capacity, but it was not related to antiproliferative and healing effect. The araticum seeds extract showed an interesting response to in vitro biological assay although of its low content of phenolic compounds. Unidentified compounds, such as alkaloids and annonaceous acetogenins could be related to it. Araticum has potential to be used as therapeutic plant especially as antiproliferative and healing drug.


Assuntos
Annona , Antioxidantes/farmacologia , Brasil , Sementes , Espectrometria de Massas em Tandem
18.
Mater Sci Eng C Mater Biol Appl ; 109: 110643, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32229007

RESUMO

Chronic wounds constitute a serious public health problem, and developing pharmaceutical dosage forms to ensure patient comfort and safety, as well as optimizing treatment effectiveness, are of great interest in the pharmaceutical, medical and biomaterial fields. In this work, the preparation of films based on blends of poly(vinyl alcohol), starch and poly(acrylic acid), polymers widely used as pharmaceutical excipients, and pomegranate peel extract (PPE), a bioactive compound with antimicrobial and healing activities relevant to the use as a bioactive wound dressing, was proposed. Initially, the minimum inhibitory concentration (MIC) of the PPE was investigated by an in vitro method. Then, the best concentration of the PPE to be used to prepare the films was researched using an antimicrobial susceptibility test with the disc diffusion method. The microbiological assay was performed in films prepared by the solvent casting method in the presence of two concentrations of PPE: 1.25% w/v and 2.5% w/v. Films containing the lower PPE concentration showed antimicrobial activity against Staphylococcus aureus and Staphylococcus epidermidis, with a difference that was not considered statistically significant when compared to the higher concentration of the extract. Therefore, the films prepared with the lower proportion of PPE (1.25% w/v) were considered for the other studies. The miscibility and stability of the extract in the films were investigated by thermal analysis. Parameters that determine the barrier properties of the films were also investigated by complementary techniques. Finally, in vitro biological tests were performed for safety evaluation and activity research. Analysis of the results showed that the incorporation of the higher proportion of starch in the blend (15% v/v) (PVA:S:PAA:PPE4) yielded smooth, transparent, and domain-free films without phase separation. Additionally, the PVA:S:PAA:PPE4 film presented barrier properties suitable for use as a cover. These films, when subjected to the in vitro hemolytic activity assay, were nonhemolytic and biocompatible. No toxicity from the extract was observed at the concentrations studied. The results of the wound healing in vitro test showed that films containing 1.25% PPE are efficient in reducing the scratch open area, provoking almost total closure of the scratches within 48 h without cytotoxicity.


Assuntos
Antibacterianos/química , Bandagens , Membranas Artificiais , Álcool de Polivinil/química , Punica granatum/química , Amido/química , Animais , Linhagem Celular , Camundongos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus epidermidis/crescimento & desenvolvimento
19.
Antioxidants (Basel) ; 9(1)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936888

RESUMO

Pholiota nameko, a type of edible and medicinal fungus, is currently grown extensively for food and traditional medicine in China and Japan. It possesses various biological activities, such as anti-inflammatory, anti-hyperlipidemia and antitumor activities. However, P. nameko has rarely been discussed in the field of dermatology; identifying its biological activities could be beneficial in development of a new natural ingredient used in wound care. To evaluate its in vitro wound healing activities, the present study assessed the antioxidant and anti-collagenase activities of P. nameko polysaccharides (PNPs) prepared through fractional precipitation (40%, 60% and 80% (v/v)); the assessments were conducted using reducing power, hydroxyl radical scavenging activity, dichloro-dihydro-fluorescein diacetate and collagenase activity assays. The ability of PNPs to facilitate L929 fibroblast cell proliferation and migration was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and scratch assays. The findings indicated that, among all fractions, PNP-80 showed the best antioxidant and anti-collagenase activity, as measured by their reducing power (IC50 of PNP-80 was 2.43 ± 0.17 mg/mL), the hydroxyl radical scavenging (IC50 of PNP-80 was 2.74 ± 0.11 mg/mL) and collagenase activity assay, and significantly reduced cellular ROS content, compared with that of H2O2-induced L929 cells. Moreover, PNP-80 significantly promoted L929 fibroblast proliferation and migration, compared with the control group. Overall, we suggested that PNP-80 could be a promising candidate for further evaluation of its potential application on wound healing.

20.
J Ethnopharmacol ; 248: 112307, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31629026

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sorocea guilleminina Gaudich. is a tree or shrub endemic to Brazil. Its leaves are used in Brazilian folk medicine for the healing of wounds, stomach problems, inflammation and as diuretic. The present study evaluates the activity and action mechanisms of the healing properties of the aqueous extract of S. guilleminiana leaves (AESg), in experimental models in vivo and in vitro, as well as performs a phytochemical analysis of the extract. MATERIALS AND METHODS: The AESg was prepared by infusion: Ten g of dry leaves powder in 1 L hot water, soaked for 15 min, filtered, lyophilized, and stored at -30 °C. Phytochemical analyses were realized by colorimetry and HPLC/ESI/MS. Its' in vitro cytotoxicity was evaluated on fibroblastic N3T3 cells. The potential of the wound healing activity in vivo was evaluated using excision and incision wound rat models, by histopathology of the injured skin along with the determination of nitric oxide, cytokines (IL-1ß, IL-10, and TNF-α), and antioxidant parameters (GSH, MPO and CAT). In vitro wound healing activity was also demonstrated in scratched N3T3 cells, by measuring the proliferation/migration rate. RESULTS: The phytochemical analysis of the AESg revealed a strong presence of polar compounds, especially flavonoids (4 majoritarian), as well as terpenes and/or sterols (2 majoritarian). The AESg showed no toxicity in the N3T3 cell line (IC50 > 800 µg/mL). Topical treatment with the AESg showed an increase (p < 0.05) in wound contraction with 2 mg/g cream on days 5 and 9 (43.56% and 6.70% increase, respectively), and with 50 mg/g on days 7 and 9 (10.88% and 7.91%, respectively), compared to the vehicle (non-ionic neutral cream). Topical application of AESg (2 or 50 mg/g non-ionic cream) in incised wounds caused an increase in the force necessary for the rupture of the wound when compared to the vehicle group. No changes in cytokines (IL-1ß, IL-10, or TNF-α) or NO accumulation was found with up to 50 mg/g AESg treatment. For antioxidant activity on the incision wound, an increase in GSH levels was denoted with the AESg use, at the lowest and highest dose (2 and 50 mg/g) by 75.86% and 61.20% respectively, when compared to the vehicle. Also, the CAT activity was accentuated by AESg at the highest dose (50 mg/g) by 85.87%. Finally, the AESg at all doses attenuated MPO activity significantly in the incision wound by 71.35%, 73.21%, 78.08%, respectively. In the scratch test on N3T3 cells, the treatment with AESg resulted also in an increase in fibroblast proliferation/migration rate, compared to the vehicle. CONCLUSION: AESg is not cytotoxic. The results confirm the popular use of the leaf infusion of S. guilleminiana for the treatment of cutaneous wounds, possibly by stimulating the proliferation of fibroblasts with a consequent deposition of collagen, fastening rearrangement of collagen fibers, and greater transformation into myofibroblasts, essential in the healing process. Preliminary chemical analyzes of AESg revealed the presence mainly of phenolic compounds, being salicylic acid, gallic acid, pinocembrin and isoquercitrin the majoritarian ones.


Assuntos
Moraceae , Extratos Vegetais/farmacologia , Folhas de Planta , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Ferimentos Penetrantes/tratamento farmacológico , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Camundongos , Moraceae/química , Células NIH 3T3 , Óxido Nítrico/metabolismo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Folhas de Planta/química , Ratos Wistar , Reepitelização/efeitos dos fármacos , Pele/lesões , Pele/metabolismo , Pele/patologia , Ferimentos Penetrantes/metabolismo , Ferimentos Penetrantes/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA