Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 30(2): 317-336, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38623170

RESUMO

Seaweed extracts have enormous potential as bio-stimulants and demonstrated increased growth and yield in different crops. The presence of physiologically active component stimulate plant stress signaling pathways, enhances growth and productivity, as well as serve as plant defense agents. The seaweed extracts can reduce the use of chemicals that harm the environment for disease management. In the present study, the Sargassum tenerrimum extract treatment was applied, alone and in combination with Sclerotium rolfsii, to Arachis hypogea, to study the differential metabolite expression. The majority of metabolites showed maximum accumulation with Sargassum extract-treated plants compared to fungus-treated plants. The different classes of metabolite compounds like sugars, carboxylic acids, polyols, showed integrated peaks in different treatments of plants. The sugars were higher in Sargassum extract and Sargassum extract + fungus treatments compared to control and fungus treatment, respectively. Interestingly, Sargassum extract + fungus treatment showed maximum accumulation of carboxylic acids. Pathway enrichment analysis showed regulation of different metabolites, highest impact with galactose metabolism pathway, identifying sucrose, myo-inositol, glycerol and fructose. The differential metabolite profiling and pathway analysis of groundnut in response to Sargassum extract and S. rolfsii help in understanding the groundnut- S. rolfsii interactions and the potential role of the Sargassum extract towards these interactions. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01418-9.

2.
J Sci Food Agric ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661233

RESUMO

BACKGROUND: Wheat distillers' grains (WDG) and seaweeds are recommended as alternative protein sources and enteric methane mitigators in dairy cow diets, respectively, but little is known about their impact on milk quality and safety. In the present study, 16 cows in four 4 × 4 Latin squares were fed isonitrogenous diets (50:50 forage:concentrate ratio), with rapeseed meal (RSM)-based or WDG-based concentrate (230 and 205 g kg-1 dry matter) and supplemented with or without Saccharina latissima. RESULTS: Replacement of RSM with WDG enhanced milk nutritional profile by decreasing milk atherogenicity (P = 0.002) and thrombogenicity (P = 0.019) indices and the concentrations of the nutritionally undesirable saturated fatty acids - specifically, lauric (P = 0.045), myristic (P = 0.022) and palmitic (P = 0.007) acids. It also increased milk concentrations of the nutritionally beneficial vaccenic (P < 0.001), oleic (P = 0.030), linoleic (P < 0.001), rumenic (P < 0.001) and α-linolenic (P = 0.012) acids, and total monounsaturated (P = 0.044), polyunsaturated (P < 0.001) and n-6 (P < 0.001) fatty acids. Feeding Saccharina latissima at 35.7 g per cow per day did not affect the nutritionally relevant milk fatty acids or pose any risk on milk safety, as bromoform concentrations in milk were negligible and unaffected by the dietary treatments. However, it slightly reduced milk concentrations of pantothenate. CONCLUSION: Feeding WDG to dairy cows improved milk fatty acid profiles, by increasing the concentrations of nutritionally beneficial fatty acids and reducing the concentration of nutritionally undesirable saturated fatty acids, while feeding seaweed slightly reduced pantothenate concentrations. However, when considering the current average milk intakes in the population, the milk compositional differences between treatments in this study appear relatively small to have an effect on human health. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
Sci Rep ; 14(1): 6214, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486008

RESUMO

Fucoidan has attracted considerable attention from scientists and pharmaceutical companies due to its antioxidant, anticoagulant, anti-inflammatory, anti-tumor, and health-enhancing properties. However, the extraction of fucoidan from seaweeds often involves the use of harsh chemicals, which necessitates the search for alternative solvents. Additionally, the high viscosity and low cell permeability of high molecular weight (Mw) fucoidan can limit its effectiveness in drug action, while lower Mw fractions exhibit increased biological activity and are also utilized as dietary supplements. The study aimed to (1) extract fucoidan from the seaweed Fucus vesiculosus (FV) using an environmentally friendly solvent and compare it with the most commonly used extraction solvent, hydrochloric acid, and (2) assess the impact of ultrasound-assisted depolymerization on reducing the molecular weight of the fucoidan extracts and examine the cytotoxic effect of different molecular weight fractions. The findings indicated that the green depolymerization solvent, in conjunction with a brief ultrasound treatment, effectively reduced the molecular weight. Moreover, a significant decrease in cell viability was observed in selected samples, indicating potential anticancer properties. As a result, ultrasound was determined to be an effective method for depolymerizing crude fucoidan from Fucus Vesiculosus seaweed.


Assuntos
Fucus , Polissacarídeos , Alga Marinha , Alga Marinha/química , Fucus/química , Anticoagulantes , Solventes
4.
J Med Food ; 27(4): 359-368, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526569

RESUMO

As the body's largest organ, the skin is located at the internal and external environment interface, serving as a line of defense against various harmful stressors. Recently, marine-derived physiologically active ingredients have attracted considerable attention in the cosmeceutical industry due to their beneficial effects on skin health. Sargassum, a genus of brown macroalgae, has traditionally been consumed as food and medicine in several countries and is rich in bioactive compounds such as meroterpenoids, sulfated polysaccharides, fucoidan, fucoxanthin, flavonoids, and terpenoids. Sargassum spp. have various beneficial effects on skin disorders. They help with atopic dermatitis by improving skin barrier protection and reducing inflammation. Several species show potential in treating acne by inhibiting bacterial growth and reducing inflammation. Some species, such as Sargassum horneri, demonstrate antiallergic effects by modulating mast cell activity. Certain Sargassum species exhibit anticancer activity by inhibiting tumor growth and promoting apoptosis, and some species help with wound healing by promoting angiogenesis and reducing oxidative stress. Overall, Sargassum spp. demonstrate potential for treating and managing various skin conditions. Therefore, the bioactive compounds of Sargassum spp. may be natural ingredients with a wide range of functional properties for preventing and treating skin disorders. The present review focused on the various biological effects of Sargassum extracts and derived compounds on skin disorders.


Assuntos
Sargassum , Alga Marinha , Humanos , Inflamação , Pele , Terpenos
5.
J Cosmet Dermatol ; 23(6): 2181-2189, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38450959

RESUMO

BACKGROUND: Cellulite represents a common multi-factorial condition that affects nearly all women and is now recognized as a clinical condition associated with systemic factors and negative psychological effects. Several noninvasive and minimally invasive treatments were developed during the last few years, but limited evidence supports many of them due to lack of evidence, insufficient participants, and potential adverse effects. METHODS: This study aimed to evaluate the efficacy of a seaweed mud application in improving both the structure and function of tissues affected by cellulite. Sixty women with cellulite underwent 4-week applications of seaweed mud on the buttocks and thighs. The following assessments were performed at baseline and after the last treatment: photographic, clinical, and anthropometric evaluation; tests for elasticity and hydration; ultrasonography of cellulite nodules; and cellulite biopsies in the trochanteric region. Patient satisfaction was assessed using a 5-point Likert-scale questionnaire. RESULTS: The treatment resulted in a significant improvement in the severity of cellulite severity between the initial assessment and the 4-week follow-up, with enhanced structure, elasticity, and hydration of the affected tissues. Microscopic analysis of the cellulite biopsies revealed a significant restoration of dermal organization with induced collagen synthesis and reduced inflammation, edema, and lipid deposition following the 4-week seaweed mud applications. Additionally, the treatment led to a remarkable improvement in comfort and satisfaction as well as a reduction in body circumferences. CONCLUSIONS: The cosmetic application of seaweed mud has proven to be a safe, non-invasive treatment for improving the tissue alterations characteristic of cellulite.


Assuntos
Celulite , Satisfação do Paciente , Alga Marinha , Coxa da Perna , Humanos , Feminino , Projetos Piloto , Celulite/terapia , Celulite/tratamento farmacológico , Adulto , Nádegas , Pessoa de Meia-Idade , Resultado do Tratamento , Peloterapia , Índice de Gravidade de Doença , Elasticidade/efeitos dos fármacos
6.
Poult Sci ; 103(4): 103562, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417338

RESUMO

Brown seaweed (Ascophyllum nodosum) is known for its prebiotic roles and can improve animal intestinal health by enhancing the growth of beneficial microbes and inhibiting pathogenic ones. However, the gut health-modulatory roles of brown seaweed on chickens challenged with heat stress (HS) are rarely studied. The current study examined the effects of brown seaweed meal (SWM) and extract (SWE) on the ceca microbiota and small intestinal morphology of chickens challenged or unchallenged with HS. Three hundred and thirty-six 1-day-old Ross 308 broiler chicks were randomly assigned to either a thermoneutral (TN; 24 ± 1°C); or HS room (HS; 32-34°C, 8 h/d from d 21 to 27). All birds in each room were randomly allotted to 4 treatments - control (CON), CON + 1 mL/L seaweed extract (SWE) in drinking water, CON + 2 mL/L SWE in drinking water, and CON + 2% seaweed meal (SWM) in feed and raised for 28 d. On d 14 and 28, 12 and 24 birds per treatment group, respectively, were euthanized to collect the ceca content for gut microbiota analysis and small intestinal tissues for morphological examination. On d 14, 2% SWM increased (P = 0.047) the relative abundance of cecal Fecalibacterium and all brown seaweed treatments improved jejunal villus height (VH) and VH:CD compared to the CON diet. On d 28, HS significantly reduced (P < 0.05) ileal VH, VW, and VH:CD, and duodenal VH and VH:CD. Among the HS group, 2% SWM and 2 mL/L SWE significantly increased (P < 0.05) the relative abundance of Lactobacillus, Sellimonas, and Fournierella, compared to the CON diet. HS birds fed with 2% SWM had higher ileal VH and VH:CD compared to other treatments. In summary, SWM and SWE enhanced the abundance of beneficial microbes and improved small intestinal morphology among HS chickens. This implies that seaweed could potentially alleviate HS-induced intestinal impairment in chickens.


Assuntos
Água Potável , Microbioma Gastrointestinal , Alga Marinha , Animais , Galinhas , Água Potável/análise , Dieta/veterinária , Resposta ao Choque Térmico , Extratos Vegetais , Ração Animal/análise , Suplementos Nutricionais/análise
7.
Water Res ; 252: 121219, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309067

RESUMO

Exploring and developing promising biomass composite membranes for the water purification and waste resource utilization is of great significance. The modification of biomass has always been a focus of research in its resource utilization. In this study, we successfully prepare a functional composite membrane, activated graphene oxide/seaweed residue-zirconium dioxide (GOSRZ), with fluoride removal, uranium extraction, and antibacterial activity by biomimetic mineralization of zirconium dioxide nanoparticles (ZrO2 NPs) on seaweed residue (SR) grafted with oxidized graphene (GO). The GOSRZ membrane exhibits highly efficient and specific adsorption of fluoride. For the fluoride concentrations in the range of 100-400 mg/L in water, the removal efficiency can reach over 99 %, even in the presence of interfering ions. Satisfactory extraction rates are also achieved for uranium by the GOSRZ membrane. Additionally, the antibacterial performance studies show that this composite membrane efficiently removes Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA). The high adsorption of F- and U(VI) to the composite membrane is ascribed to the ionic exchange and coordination interactions, and its antibacterial activity is caused by the destruction of bacterial cell structure. The sustainability of the biomass composite membranes is further evaluated using the Sustainability Footprint method. This study provides a simple preparation method of biomass composite membrane, expands the water purification treatment technology, and offers valuable guidance for the resource utilization of seaweed waste and the removal of pollutants in wastewater.


Assuntos
Grafite , Staphylococcus aureus Resistente à Meticilina , Urânio , Purificação da Água , Zircônio , Urânio/análise , Flúor , Escherichia coli , Fluoretos , Biomimética , Purificação da Água/métodos , Adsorção , Antibacterianos
8.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38255871

RESUMO

Seaweed, a miscellaneous group of marine algae, has long been recognized for its rich nutritional composition and bioactive compounds, being considered nutraceutical ingredient. This revision delves into the promising role of seaweed-derived nutrients as a beneficial resource for drug discovery and innovative product development. Seaweeds are abundant sources of essential vitamins, minerals, polysaccharides, polyphenols, and unique secondary metabolites, which reveal a wide range of biological activities. These bioactive compounds possess potential therapeutic properties, making them intriguing candidates for drug leads in various medical applications and pharmaceutical drug development. It explores their pharmacological properties, including antioxidant, anti-inflammatory, antimicrobial, and anticancer activities, shedding light on their potential as therapeutic agents. Moreover, the manuscript provides insights into the development of formulation strategies and delivery systems to enhance the bioavailability and stability of seaweed-derived compounds. The manuscript also discusses the challenges and opportunities associated with the integration of seaweed-based nutrients into the pharmaceutical and nutraceutical industries. Regulatory considerations, sustainability, and scalability of sustainable seaweed sourcing and cultivation methods are addressed, emphasizing the need for a holistic approach in harnessing seaweed's potential. This revision underscores the immense potential of seaweed-derived compounds as a valuable reservoir for drug leads and product development. By bridging the gap between marine biology, pharmacology, and product formulation, this research contributes to the critical advancement of sustainable and innovative solutions in the pharmaceutical and nutraceutical sectors.


Assuntos
Medicina , Desenvolvimento de Medicamentos , Vitaminas , Veículos Farmacêuticos , Oceanos e Mares
9.
Bioorg Chem ; 143: 107099, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190798

RESUMO

INTRODUCTION: Antihypertensive drugs that are chemically synthesized usually tend to initiate different health complications. The quest for bioactive molecules to create novel medicines has focused on Marine resources like seaweeds. These molecules can furnish a positive probability for patients to gain benefits from these natural substances. METHODS: This study aims to identify phytoconstituents present in brown seaweed-Padina boergesenii. Five different solvents were used to prepare extracts and their antioxidant activity as well as antihypertensive activity was evaluated. Phytoconstituents were identified using LC-MS/MS, and subjected to molecular interaction against ACE enzyme. RESULTS: The 70% ethanolic extract exhibited the highest total phenolic content (TPC), significant radical scavenging activity and concentration dependent Angiotensin Converting Enzyme (ACE) inhibition activity. LC-MS/MS analysis confirmed the presence of bioactive compounds from which 7,8 dihydroxycoumarin had the highest affinity against ACE enzyme in molecular docking study. CONCLUSION: These findings advocate that Padina boergesenii can be a potential source for developing novel antihypertensive therapeutic drug(s) and could pave the way for evolving effective and safe remedies from natural resources.


Assuntos
Anti-Hipertensivos , Alga Marinha , Humanos , Anti-Hipertensivos/farmacologia , Simulação de Acoplamento Molecular , Cromatografia Líquida , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Antioxidantes/farmacologia , Alga Marinha/química
10.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38206107

RESUMO

Research into the potential use of various dietary feed supplements to reduce methane (CH4) production from ruminants has proliferated in recent years. In this study, two 8-wk long experiments were conducted with mature ewes and incorporated the use of a variety of natural dietary feed supplements offered either independently or in combination. Both experiments followed a randomized complete block design. Ewes were offered a basal diet in the form of ad libitum access to grass silage supplemented with 0.5 kg concentrates/ewe/d. The entire daily dietary concentrate allocation, incorporating the respective feed supplement, was offered each morning, and this was followed by the daily silage allocation. In experiment 1, the experimental diets contained 1) no supplementation (CON), 2) Ascophyllum nodosum (SW), 3) A. nodosum extract (EX1), 4) a blend of garlic and citrus extracts (GAR), and 5) a blend of essential oils (EO). In experiment 2, the experimental diets contained 1) no supplementation (CON), 2) A. nodosum extract (EX2), 3) soya oil (SO), and 4) a combination of EX2 and SO (EXSO). Twenty ewes per treatment were individually housed during both experiments. Methane was measured using portable accumulation chambers. Rumen fluid was collected at the end of both experiments for subsequent volatile fatty acid (VFA) and ammonia analyses. Data were analyzed using mixed models ANOVA (PROC MIXED, SAS v9.4). Statistically significant differences between treatment means were considered when P < 0.05. Dry matter intake was not affected by diet in either experiment (P > 0.05). Ewes offered EO tended to have an increased feed:gain ratio relative to CON (P < 0.10) and SO tended to increase the average daily gain (P < 0.10) which resulted in animals having a higher final body weight (P < 0.05) than CON. Ewes offered EX1 and SO emitted 9% less CH4 g/d than CON. The only dietary treatment to have an effect on rumen fermentation variables relative to CON was SW, which enhanced total VFA production (P < 0.05). In conclusion, the A. nodosum extract had inconsistent results on CH4 emissions whereby EX1 reduced CH4 g/d while EX2 had no mitigating effect on CH4 production, likely due to the differences in PT content reported for EX1 and EX2. SO was the only dietary feed supplement assessed in the current study that enhanced animal performance whilst mitigating daily CH4 production.


Reducing methane emissions from agriculture is vital to minimize the effects of global warming and to meet greenhouse gas reduction targets set by EU policy. In this experiment, a range of natural feed supplements were offered to mature ewes through the concentrated portion of their diet. Soya oil and brown seaweed extract reduced daily methane emissions by 9% when offered independently of each other; however, no reduction in methane was observed when combined. Additionally, inclusion of soya oil improved animal weight gain. Results from the current experiment may contribute to the development of a targeted dietary strategy to reduce methane emissions from livestock.


Assuntos
Dieta , Metano , Ovinos , Animais , Feminino , Metano/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Ruminantes , Silagem/análise , Ácidos Graxos Voláteis/metabolismo , Rúmen/metabolismo , Óleo de Soja/metabolismo , Extratos Vegetais , Fermentação , Ração Animal/análise , Lactação , Digestão
11.
Probiotics Antimicrob Proteins ; 16(1): 259-274, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36637793

RESUMO

The research aims to give new insights on the effect of administering selected bacterial strains, isolated from honey bee gut, and/or a commercial plant extract blend (HiveAlive®) on Nosema ceranae. Analyses were first performed under laboratory conditions such as different infective doses of N. ceranae, the effect of single strains and their mixture and the influence of pollen administration. Daily survival and feed consumption rate were recorded and pathogen development was analysed using qPCR and microscope counts. Biomarkers of immunity and physiological status were also evaluated for the different treatments tested using one bacterial strain, a mixture of all the bacteria and/or a plant extract blend as treatments. The results showed an increase of abaecin transcript levels in the midgut of the honey bees treated with the bacterial mixture and an increased expression of the protein vitellogenin in the haemolymph of honey bees treated with two separate bacterial strains (Bifidobacterium coryneforme and Apilactobacillus kunkeei). A significant effectiveness in reducing N. ceranae was shown by the bacterial mixture and the plant extract blend regardless of the composition of the diet. This bioactivity was seasonally linked. Quantitative PCR and microscope counts showed the reduction of N. ceranae under different experimental conditions. The antiparasitic efficacy of the treatments at field conditions was studied using a semi-field approach which was adapted from research on insecticides for the first time, to analyse antiparasitic activity against N. ceranae. The approach proved to be reliable and effective in validating data obtained in the laboratory. Both the mixture of beneficial bacteria and its association with Hive Alive® are effective in controlling the natural infection of N. ceranae in honey bee colonies.


Assuntos
Nosema , Extratos Vegetais , Abelhas , Animais , Vitelogeninas , Antiparasitários
12.
Biotechnol Lett ; 46(1): 19-28, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37987932

RESUMO

OBJECTIVE: Assembly and construction of resveratrol production pathway in Saccharomyces cerevisiae for denovo production of resveratrol using seaweed extract as fermentation medium. RESULTS: Genes involved in the production of resveratrol from tyrosine pathway, tyrosine ammonia lyase (FTAL) gene from Flavobacterium johnsoniae (FjTAL), the 4-coumarate:CoA ligase gene from Arabidopsis thaliana (4CL1) and the stilbene synthase gene from Vitis vinifera (VvSTS) were introduced into low copy, high copy and integrative vector and transformed into S. cerevisiae W303-1a. The resulting strains W303-1a/pARS-res5, W303-1a/2µ-res1 and W303-1a/IntUra-res9 produced a level of 2.39 ± 0.01, 3.33 ± 0.03 and 8.34 ± 0.03 mg resveratrol l-1 respectively. CRISPR mediated integration at the δ locus resulted in 17.13 ± 1.1 mg resveratrol l-1. Gracilaria corticata extract was tested as a substrate for the growth of transformant to produce resveratrol. The strain produced a comparable level, 13.6 ± 0.54 mg resveratrol l-1 when grown in seaweed extract medium. CONCLUSIONS: The strain W303-1a/IntδC-res1 utilized Gracillaria hydrolysate and produced 13.6 ± 0.54 mg resveratrol l-1 and further investigations are being carried out focusing on pathway engineering and optimization of process parameters to enhance resveratrol yield.


Assuntos
Arabidopsis , Gracilaria , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Resveratrol/metabolismo , Gracilaria/genética , Gracilaria/metabolismo , Arabidopsis/genética , Tirosina/metabolismo , Extratos Vegetais
13.
BMC Plant Biol ; 23(1): 635, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38072956

RESUMO

BACKGROUND: Due to the important economic role of pistachio (Pistacia vera L.) the cultivation of this valuable crop has been extended. Various abiotic stresses harm the growth and performance of pistachio. Seaweed extract containing various substances such as pseudo-hormones that stimulate growth, nutritional elements, and anti-stress substances can cause more resistance to abiotic stresses, and increase the quantity and the quality of the fruit. The present study was conducted to evaluate the effect of foliar application of Ascophyllum nodosum (L.) Le Jol. seaweed extract on some biochemical traits related to abiotic stress in Pistacia vera L. cv. Kaleh-Ghoochi. The first factor of foliar spraying treatment included A. nodosum seaweed extract at four levels (0, 1, 2, and 3 g/L), and the second factor was the time of spraying solution which was done at three times (1- at the beginning of pistachio kernel growth period at the end of June, 2- at the stage of full kernel development at the end of August, and 3- Spraying in both late June and August). RESULTS: The results showed that all investigated traits were significant under the treatment of seaweed extract compared with the control. The seaweed extract concentrations had a significant effect on all traits except soluble carbohydrates, but the time of consumption of seaweed extract on soluble carbohydrates, protein, peroxidase, ascorbate peroxidase, and superoxide dismutase enzymes was significant, while had no significant effect on the rest of the traits. According to the interaction effect of time and concentration of consumption of seaweed extract, the highest values of the biochemical characters were as follows: total phenol content: 168.30 mg CAE/g DW, flavonoid content: mg CE/g DW, catalase: 12.66 µmol APX min- 1 mg- 1 protein, superoxide dismutase: 231.4 µmol APX min- 1 mg- 1 protein, and ascorbate peroxidase: 39.53 µmol APX min- 1 mg- 1 protein. CONCLUSIONS: Based on the results of this study, it seems that it is possible to use fertilizers containing A. nodosum seaweed extract with a concentration of 3 g/L in August to increase the tolerance of the pistachio cultivar "Kaleh-Ghoochi" to abiotic stresses.


Assuntos
Ascophyllum , Pistacia , Alga Marinha , Ascophyllum/química , Ascorbato Peroxidases , Estresse Fisiológico , Extratos Vegetais/farmacologia , Superóxido Dismutase , Carboidratos
14.
Anim Sci J ; 94(1): e13900, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38061880

RESUMO

In this study, we investigated the effect of feeding seaweed to Japanese Black cows before calving on IgA concentrations in colostrum. Seven Japanese Black breeding cows were used as test animals, with three cows in the seaweed-fed group (seaweed group) and four in the seaweed-non-fed group (control group). Each cow was fed 6 kg of sudangrass hay and 2.5 kg of compound feed twice daily (09:00 a.m. and 04:00 p.m.) as basal diets. Both groups had free access to water. In the seaweed group, commercially available seaweed feed was fed from 2 months before calving until the day of calving. The seaweed of 150 g/head/day was added to the basal diet at the morning feeding. Colostrum collected immediately after calving was used to measure IgA concentrations by ELISA. The IgA concentration in colostrum was significantly higher in the seaweed group than in the control group (P < 0.05). This suggested that feeding seaweed to Japanese Black cows before calving may increase IgA concentration in colostrum.


Assuntos
Imunoglobulina A Secretora , Imunoglobulina G , Gravidez , Feminino , Animais , Bovinos , Imunoglobulina G/análise , Melhoramento Vegetal , Colostro/química , Dieta/veterinária
15.
Food Sci Nutr ; 11(12): 7707-7717, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38107121

RESUMO

The consumption of seaweed is on the rise in the Western world. Seaweeds may contain substantial amounts of iodine, and some species could serve as a potential dietary iodine source. However, limited data on the iodine content and in vivo bioavailability of iodine from seaweeds exist. The objective was to assess whether iodine from a meal consisting of sushi with nori, (Porphyra spp) and a wakame seaweed salad (Undaria pinnatifida) had similar bioavailability as a potassium iodide reference supplement of similar iodine content. A randomized 2 × 2 crossover trial (AB/BA model) was conducted in 20 healthy young women. One intervention arm consisted of a meal with sushi and wakame salad (231 µg iodine), and the other of potassium iodide (KI) supplement (225 µg iodine). Urinary iodine concentration (UIC) was measured at 11 different time points for 48 h after the interventions. The UIC increased after consumption of both the sushi and wakame meal and the KI supplement, but the median UIC was higher after ingestion of the KI supplement. The estimated bioavailability of iodine during the first 24 h was 75% from sushi with wakame and 97% from the KI supplement. The bioequivalence analyses confirmed that the KI supplement had higher estimated bioavailability than the sushi and wakame meal, however, with small margins. Our findings on iodine bioavailability imply that sushi and wakame could be potential iodine sources in the diet, which may be favorable for population groups at risk for iodine deficiency. However, further research is needed to account for the variability of iodine content in seaweeds by different locations and degree of processing, to assure that the iodine levels are stable and predictable for the consumers.

16.
Foods ; 12(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38137301

RESUMO

The healthy "superfood" sector is currently quickly developing in Europe, and grocery stores are increasingly stocking macroalgae food supplements. Due to its high amount of protein, fiber, and minerals, numerous studies have demonstrated that seaweed has a significant potential for usage as a functional ingredient in the food sector. The aim of the current study was to evaluate the rheological (ICC 173 standard method) and chemical potentials of using Saccharina latissima flour in the bread sector. The calcium level of S. latissima flour was found to be 8236 mg/kg, the magnesium level was 6041 mg/kg, the K concentration was 62,088 mg/kg, the iron content was 35.23 mg/kg, the P content was 2263 mg/kg, and the I content was 12,530 mg/kg, significantly higher values than those of wheat flour. The antioxidant properties of the algae powder used were highlighted by the analysis of the total polyphenol content and its antioxidant activity (DPPH method). Four bread samples, which were compared with the control sample entirely made of wheat flour in order to evaluate their potential, were made, using a replacement degree from 1.5% to 6% of S. latissima. Rheological analyses were completed using the ICC 173 standard method, as well as sensorial analysis, where a panel of assessors' evaluations compared the sensory properties of samples with 1.5-6% of S. latissima flour to a control sample manufactured with flour type 650. It was concluded that sample A1 (1.5% algae flour) has sensorial properties similar to those of the control sample, and, for the other samples, the properties began to degrade with the increase in the amount of algae flour. Textural analyses performed during 96 h of storage show that the firmness and gumminess increase with the addition of algae flour and over time. The conclusions indicated that samples comprising 4.5% and 6% of S. latissima are unsatisfactory from a rheological and sensory perspective, while samples having 1.5% and 3% of S. latissima can be viewed as sources of fiber and minerals.

17.
J Med Food ; 26(11): 799-808, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37939270

RESUMO

Metabolic diseases, including obesity, diabetes, and fatty liver disease, are dramatically increasing around the world. Seaweed is low in calories and rich in many active ingredients that are necessary for maintaining good health, and is expected to be effective for preventing metabolic diseases. The purpose of this study was to examine the effects of a traditional Japanese edible seaweed Hypnea asiatica (H. asiatica) on obesity, using a mouse model. H. asiatica was dried and powdered, mixed with a high-fat diet, and fed to male C57BL/6J mice for 13 weeks. On the last day of the experiment, blood samples were collected under anesthesia and biochemical parameters such as lipids and adipokines were measured. Liver and adipose tissue were excised, weighed, and oxidant/antioxidant parameters were measured. Some mice were perfused with a fixative solution containing formalin, and tissue specimens were prepared. A glucose tolerance test was used to assess insulin resistance. The inhibition of lipase activity was evaluated in vitro. Thirteen-week supplementation with H. asiatica suppressed body weight gain, body fat accumulation, and blood glucose levels. H. asiatica also improved fatty liver and hypercholesterolemia, and reduced the oxidant and inflammatory parameters of serum and liver. H. asiatica increased fecal triglyceride excretion and polyphenol-rich ethanol extract of H. asiatica inhibited lipase activity in vitro. These results suggest that polysaccharides and polyphenols in H. asiatica may ameliorate obesity and diabetes by inhibiting intestinal fat absorption and reducing oxidative stress and inflammation. H. asiatica may be useful in preventing metabolic diseases such as obesity, diabetes, and fatty liver.


Assuntos
Diabetes Mellitus , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Alga Marinha , Masculino , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Diabetes Mellitus/metabolismo , Oxidantes/metabolismo , Oxidantes/farmacologia , Lipase
18.
Mar Drugs ; 21(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37999401

RESUMO

Obesity is a multifactorial disease characterized by an excessive accumulation of fat, which in turn poses a significant risk to health. Bioactive compounds obtained from macroalgae have demonstrated their efficacy in combating obesity in various animal models. The green macroalgae Caulerpa lentillifera (CL) contains numerous active constituents. Hence, in the present study, we aimed to elucidate the beneficial anti-obesity effects of extracts derived from C. lentillifera using a Caenorhabditis elegans obesity model. The ethanol (CLET) and ethyl acetate (CLEA) extracts caused a significant decrease in fat consumption, reaching up to approximately 50-60%. Triglyceride levels in 50 mM glucose-fed worms were significantly reduced by approximately 200%. The GFP-labeled dhs-3, a marker for lipid droplets, exhibited a significant reduction in its level to approximately 30%. Furthermore, the level of intracellular ROS displayed a significant decrease of 18.26 to 23.91% in high-glucose-fed worms treated with CL extracts, while their lifespan remained unchanged. Additionally, the mRNA expression of genes associated with lipogenesis, such as sbp-1, showed a significant down-regulation following treatment with CL extracts. This finding was supported by a significant decrease (at 16.22-18.29%) in GFP-labeled sbp-1 gene expression. These results suggest that C. lentillifera extracts may facilitate a reduction in total fat accumulation induced by glucose through sbp-1 pathways. In summary, this study highlights the anti-obesity potential of compounds derived from C. lentillifera extracts in a C. elegans model of obesity, mediated by the suppression of lipogenesis pathways.


Assuntos
Caulerpa , Alga Marinha , Animais , Caenorhabditis elegans/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Glucose/metabolismo
19.
Mar Drugs ; 21(11)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37999402

RESUMO

Diseases such as obesity; cardiovascular diseases such as high blood pressure, myocardial infarction and stroke; digestive diseases such as celiac disease; certain types of cancer and osteoporosis are related to food. On the other hand, as the world's population increases, the ability of the current food production system to produce food consistently is at risk. As a result, intensive agriculture has contributed to climate change and a major environmental impact. Research is, therefore, needed to find new sustainable food sources. One of the most promising sources of sustainable food raw materials is macroalgae. Algae are crucial to solving this nutritional deficiency because they are abundant in bioactive substances that have been shown to combat diseases such as hyperglycemia, diabetes, obesity, metabolic disorders, neurodegenerative diseases and cardiovascular diseases. Examples of these substances include polysaccharides such as alginate, fucoidan, agar and carrageenan; proteins such as phycobiliproteins; carotenoids such as ß-carotene and fucoxanthin; phenolic compounds; vitamins and minerals. Seaweed is already considered a nutraceutical food since it has higher protein values than legumes and soy and is, therefore, becoming increasingly common. On the other hand, compounds such as polysaccharides extracted from seaweed are already used in the food industry as thickening agents and stabilizers to improve the quality of the final product and to extend its shelf life; they have also demonstrated antidiabetic effects. Among the other bioactive compounds present in macroalgae, phenolic compounds, pigments, carotenoids and fatty acids stand out due to their different bioactive properties, such as antidiabetics, antimicrobials and antioxidants, which are important in the treatment or control of diseases such as diabetes, cholesterol, hyperglycemia and cardiovascular diseases. That said, there have already been some studies in which macroalgae (red, green and brown) have been incorporated into certain foods, but studies on gluten-free products are still scarce, as only the potential use of macroalgae for this type of product is considered. Considering the aforementioned issues, this review aims to analyze how macroalgae can be incorporated into foods or used as a food supplement, as well as to describe the bioactive compounds they contain, which have beneficial properties for human health. In this way, the potential of macroalgae-based products in eminent diseases, such as celiac disease, or in more common diseases, such as diabetes and cholesterol complications, can be seen.


Assuntos
Doenças Cardiovasculares , Doença Celíaca , Diabetes Mellitus , Hiperglicemia , Alga Marinha , Humanos , Polissacarídeos/metabolismo , Suplementos Nutricionais , Alga Marinha/metabolismo , Proteínas/metabolismo , Carotenoides/metabolismo , Fenóis/análise , Obesidade , Atenção à Saúde , Colesterol/metabolismo
20.
Chem Biodivers ; 20(12): e202300429, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37908056

RESUMO

Phaeurus antarcticus is a member of the Desmarestiaceae family endemic to the Antarctic Peninsula. Reports addressing its chemical composition and biological activities are scarce. Herein, bioactive non-polar compounds of P. antarcticus against pathogenic bacteria, Leishmania amazonensis and Neospora caninum parasites were targeted through GC-MS Molecular Networking and multivariate analysis (OPLS-DA). The effects on horseradish peroxidase (HRP) were also evaluated. P. antarcticus exhibited selective bacteriostatic and bactericidal activities against Staphylococcus aureus with MIC and MBC values from 6.25-100 µg mL-1 . Fractions HX-FC and HX-FD were the most active against L. amazonensis with EC50 ranging from 18.5-62.3 µg mL-1 . Additionally, fractions HX-FC and HX-FD showed potent inhibition of N. caninum at EC50 values of 2.8 and 6.3 µg mL-1 , respectively. All fractions inhibited HRP activity, indicating possible interactions with Heme proteins. It was possible to annotate compounds from tree mains clusters, containing terpenoids, steroids, fatty acids, and alcohols by correlating the spectral data of the GC-MS analysis with Molecular Networking and the OPLS-DA results.


Assuntos
Anti-Infecciosos , Alga Marinha , Extratos Vegetais/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Regiões Antárticas , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA