Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Pharmacol Res ; 203: 107179, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615876

RESUMO

Exosomes, small yet vital extracellular vesicles, play an integral role in intercellular communication. They transport critical components, such as proteins, lipid bilayers, DNA, RNA, and glycans, to target cells. These vesicles are crucial in modulating the extracellular matrix and orchestrating signal transduction processes. In oncology, exosomes are pivotal in tumor growth, metastasis, drug resistance, and immune modulation within the tumor microenvironment. Exosomal proteins, noted for their stability and specificity, have garnered widespread attention. This review delves into the mechanisms of exosomal protein loading and their impact on tumor development, with a focus on the regulatory effects of natural products and traditional Chinese medicine on exosomal protein loading and function. These insights not only offer new strategies and methodologies for cancer treatment but also provide scientific bases and directions for future clinical applications.


Assuntos
Produtos Biológicos , Exossomos , Medicina Tradicional Chinesa , Neoplasias , Humanos , Exossomos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Produtos Biológicos/uso terapêutico , Produtos Biológicos/farmacologia , Microambiente Tumoral/efeitos dos fármacos
2.
Phytomedicine ; 128: 155512, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460357

RESUMO

BACKGROUND: The overproliferation of fibroblast-like synoviocytes (FLS) contributes to synovial hyperplasia, a pivotal pathological feature of rheumatoid arthritis (RA). Shikonin (SKN), the active compound from Lithospermum erythrorhizon, exerts anti-RA effects by diverse means. However, further research is needed to confirm SKN's in vitro and in vivo anti-proliferative functions and reveal the underlying specific molecular mechanisms. PURPOSE: This study revealed SKN's anti-proliferative effects by inducing both apoptosis and autophagic cell death in RA FLS and adjuvant-induced arthritis (AIA) rat synovium, with involvement of regulating the AMPK/mTOR/ULK-1 pathway. METHODS: SKN's influences on RA FLS were assessed for proliferation, apoptosis, and autophagy with immunofluorescence staining (Ki67, LC3B, P62), EdU incorporation assay, staining assays of Hoechst, Annexin V-FITC/PI, and JC-1, transmission electron microscopy, mCherry-GFP-LC3B puncta assay, and western blot. In AIA rats, SKN's anti-arthritic effects were assessed, and its impacts on synovial proliferation, apoptosis, and autophagy were studied using Ki67 immunohistochemistry, TUNEL, and western blot. The involvement of AMPK/mTOR/ULK-1 pathway was examined via western blot. RESULTS: SKN suppressed RA FLS proliferation with reduced cell viability and decreased Ki67-positive and EdU-positive cells. SKN promoted RA FLS apoptosis, as evidenced by apoptotic nuclear fragmentation, increased Annexin V-FITC/PI-stained cells, reduced mitochondrial potential, elevated Bax/Bcl-2 ratio, and increased cleaved-caspase 3 and cleaved-PARP protein levels. SKN also enhanced RA FLS autophagy, featuring increased LC3B, reduced P62, autophagosome formation, and activated autophagic flux. Autophagy inhibition by 3-MA attenuated SKN's anti-proliferative roles, implying that SKN-induced autophagy contributes to cell death. In vivo, SKN mitigated the severity of rat AIA while also reducing Ki67 expression, inducing apoptosis, and enhancing autophagy within AIA rat synovium. Mechanistically, SKN modulated the AMPK/mTOR/ULK-1 pathway in RA FLS and AIA rat synovium, as shown by elevated P-AMPK and P-ULK-1 expression and decreased P-mTOR expression. This regulation was supported by the reversal of SKN's in vitro and in vivo effects upon co-administration with the AMPK inhibitor compound C. CONCLUSION: SKN exerted in vitro and in vivo anti-proliferative properties by inducing apoptosis and autophagic cell death via modulating the AMPK/mTOR/ULK-1 pathway. Our study revealed novel molecular mechanisms underlying SKN's anti-RA effects.


Assuntos
Proteínas Quinases Ativadas por AMP , Apoptose , Artrite Experimental , Artrite Reumatoide , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Autofagia , Naftoquinonas , Transdução de Sinais , Sinoviócitos , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Apoptose/efeitos dos fármacos , Artrite Reumatoide/tratamento farmacológico , Naftoquinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ratos , Artrite Experimental/tratamento farmacológico , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Masculino , Proliferação de Células/efeitos dos fármacos , Humanos , Ratos Sprague-Dawley
3.
Zhongguo Zhong Yao Za Zhi ; 49(1): 175-184, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403350

RESUMO

The occurrence and development of tumors are associated with the cell energy metabolism. Inhibiting energy metabolism of lung cancer cells is an important strategy to overcome drug resistance. Based on the cellular energy metabolism pathway, this study observed the effect of combination of shikonin(SKN) and gefitinib(GFB) on the drug resistance in non-small cell lung cancer and explored the underlying mechanism. The human non-small cell lung cancer line HCC827/GR resistant to gefitinib was used as the cell model in vitro. The CCK-8 assay and flow cytometry were employed to investigate the cell viability and apoptosis, respectively. The high performance liquid chromatography was employed to measure the intracellular accumulation of GFB. A Seahorse XFe96 Analyzer was used to detect the changes of cellular energy metabolism. Western blot was employed to determine the expression of the proteins involved in the drug resistance. The tumor-bearing nude mouse model was used to verify the efficacy of SKN+GFB in overcoming drug resistance in vivo. The results showed that SKN+GFB significantly reduced the IC_(50) of GFB on HCC827/GR cells, with the combination index of 0.628, indicating that the combination of the two drugs had a synergistic effect and promoted cell apoptosis. SKN increased the intracellular accumulation of GFB. SKN+GFB lowered the oxygen consumption rate(OCR) and glycolytic proton efflux rate(GlycoPER) in cell energy metabolism, and down-regulated the overexpression of PKM2, p-EGFR, P-gp, and HIF-1α in drug resistance. The results of reversing drug resistance test in vivo showed that GFB or SKN alone had no significant antitumor effect, while the combination at different doses induced the apoptosis of the tumor tissue and inhibited the expression of PKM2 and P-gp, demonstrating a significant antitumor effect. Moreover, the tumor inhibition rate in the high-dose combination group reached 64.01%. In summary, SKN+GFB may interfere with the energy metabolism to limit the function of HCC827/GR cells, thus reversing the GFB resistance in non-small cell lung cancer.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Naftoquinonas , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Quinazolinas/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células , Linhagem Celular Tumoral , Apoptose
4.
Phytomedicine ; 126: 154894, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377719

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a malignant tumor without specific therapeutic targets and a poor prognosis. Chemotherapy is currently the first-line therapeutic option for TNBC. However, due to the heterogeneity of TNBC, not all of TNBC patients are responsive to chemotherapeutic agents. Therefore, the demand for new targeted agents is critical. ß-tubulin isotype III (Tubb3) is a prognostic factor associated with cancer progression, including breast cancer, and targeting Tubb3 may lead to improve TNBC disease control. Shikonin, the active compound in the roots of Lithospermun erythrorhizon suppresses the growth of various types of tumors, and its efficacy can be improved by altering its chemical structure. PURPOSE: In this work, the anti-TNBC effect of a shikonin derivative (PMMB276) was investigated, and its mechanism was also investigated. STUDY DESIGN/METHODS: This study combines flow cytometry, immunofluorescence staining, immunoblotting, immunoprecipitation, siRNA silencing, and the iTRAQ proteomics assay to analyze the inhibition potential of PMMB276 on TNBC. In vivo study was performed, Balb/c female murine models with or without the small molecule treatments. RESULTS: Herein, we screened 300 in-house synthesized analogs of shikonin against TNBC and identified a novel small molecule, PMMB276; it suppressed cell proliferation, induced apoptosis, and arrested the cell cycle at the G2/M phase, suggesting that it could have a tumor suppressive role in TNBC. Tubb3 was identified as the target of PMMB276 using proteomic and biological activity analyses. Meanwhile, PMMB276 regulated microtubule dynamics in vitro by inducing microtubule depolymerization and it could act as a tubulin stabilizer by a different process than that of paclitaxel. Moreover, suppressing or inhibiting Tubb3 with PMMB276 reduced the growth of breast cancer in an experimental mouse model, indicating that Tubb3 plays a significant role in TNBC progression. CONCLUSION: The findings support the therapeutic potential of PMMB276, a Tubb3 inhibitor, as a treatment for TNBC. Our findings might serve as a foundation for the utilization of shikonin and its derivatives in the development of anti-TNBC.


Assuntos
Naftoquinonas , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/patologia , Tubulina (Proteína) , Proteômica , Proliferação de Células
5.
Phytomedicine ; 126: 155459, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417243

RESUMO

BACKGROUND: Osteosarcoma is the most prevalent malignant bone tumour with a poor prognosis. Shikonin (SHK) is derived from the traditional Chinese medicine Lithospermum that has been extensively studied for its notable anti-tumour effects, including for osteosarcoma. However, its application has certain limitations. Valproic acid (VPA) is a histone deacetylase inhibitor (HDACI) that has recently been employed as an adjunctive therapeutic agent that allows chromatin to assume a more relaxed state, thereby enhancing anti-tumour efficacy. PURPOSE: This study was aimed to investigate the synergistic anti-tumour efficacy of SHK in combination with VPA and elucidate its underlying mechanism. METHODS/STUDY DESIGN: CCK-8 assays were utilized to calculate the combination index. Additional assays, including colony formation, acridine orange/ethidium bromide double fluorescent staining, and flow cytometry, were employed to evaluate the effects on osteosarcoma cells. Wound healing and transwell assays were utilized to assess cell mobility. RNA sequencing, PCR, and Western blot analyses were conducted to uncover the underlying mechanism. Rescue experiments were performed to validate the mechanism of apoptotic induction. The impact of SHK and VPA combination treatment on primary osteosarcoma cells was also assessed. Finally, in vivo experiments were conducted to validate its anti-tumour effects and mechanism. RESULTS: The combination of SHK and VPA synergistically inhibited the proliferation and migration of osteosarcoma cells in vitro and induced apoptosis in these cells. Through a comprehensive analysis involving RNA sequencing, PCR, Western blot, and rescue experiments, we have substantiated our hypothesis that the combination of SHK and VPA induced apoptosis via the ROS-EGR1-Bax axis. Importantly, our in vivo experiments corroborated these findings, demonstrating the potential of the SHK and VPA combination as a promising therapeutic approach for osteosarcoma. CONCLUSION: The combination of SHK and VPA exerted an anti-tumour effect by inducing apoptosis through the ROS-EGR1-Bax pathway. Repurposing the old drug VPA demonstrated its effectiveness as an adjunctive therapeutic agent for SHK, enhancing its anti-tumour efficacy and revealing its potential value. Furthermore, our study expanded the application of natural compounds in the anti-tumour field and overcame some of their limitations through combination therapy. Finally, we enhanced the understanding of the mechanistic pathways linking reactive oxygen species (ROS) accumulation and apoptosis in osteosarcoma cells. Additionally, we elucidated the role of EGR1 in osteosarcoma cells, offering novel strategies and concepts for the treatment of osteosarcoma.


Assuntos
Neoplasias Ósseas , Naftoquinonas , Osteossarcoma , Humanos , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2 , Apoptose , Osteossarcoma/patologia , Linhagem Celular Tumoral , Neoplasias Ósseas/metabolismo , Proliferação de Células , Proteína 1 de Resposta de Crescimento Precoce/farmacologia
6.
Fungal Biol ; 128(1): 1607-1615, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38341266

RESUMO

Endophytic fungi as well as arbuscular mycorrhizal fungi (AMF) are known to stimulate plant growth and production of secondary metabolites in medicinal plants. Here, 10 endophytic fungi isolated from roots of wild Alkanna tinctoria plants and 5 AMF purchased from the Glomeromycota in vitro collection were evaluated, during two successive three-month greenhouse experiments, on the growth of Echium vulgare and alkannin/shikonin and their derivatives (A/Sd) production in the roots. Some of the endophytic fungi tested significantly increased plant growth parameters as compared to the control: Cladosporium allicinum, Cadophora sp., Clonostachys sp., Trichoderma hispanicum and Leptosphaeria ladina increased root volume, Plectosphaerella sp. And T. hispanicum root fresh weight and root water retention and T. hispanicum plant water retention. However, none of these fungi impacted A/Sd production. Conversely, none of the AMF strains tested impacted plant growth parameters, but those inoculated with Rhizophagus intraradices MUCL 49410 had a significantly higher concentration of alkannin/shikonin (A/S), acetyl-A/S, ß,ß- dimethylacryl-A/S, isovaleryl-A/S and total A/Sd, compared to the control plants. Further studies are needed to investigate the mechanisms involved in the production of A/Sd in plants associated to specific endophytic fungi/AMF and on the cultivation conditions required for optimal production of these compounds.


Assuntos
Ascomicetos , Echium , Micorrizas , Naftoquinonas , Endófitos , Fungos , Plantas , Água , Raízes de Plantas/microbiologia
7.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256148

RESUMO

Shikonin is extracted from the roots of Lithospermum erythrorhizon, and shikonin extracts have been shown to have inhibitory effects on several bacteria. However, shikonin extracts are difficult to formulate because of their poor water solubility. In the present study, we prepared a shikonin dispersion, which was solubilized by the inclusion of ß-1,3-1,6 glucan, and analysed the inhibitory effects of this dispersion on Streptococcus mutans and non-mutans streptococci. The shikonin dispersion showed pronounced anti-S. mutans activity, and inhibited growth of and biofilm formation by this bacterium. The shikonin dispersion also showed antimicrobial and antiproliferative effects against non-mutans streptococci. In addition, a clinical trial was conducted in which 20 subjects were asked to brush their teeth for 1 week using either shikonin dispersion-containing or non-containing toothpaste, respectively. The shikonin-containing toothpaste decreased the number of S. mutans in the oral cavity, while no such effect was observed after the use of the shikonin-free toothpaste. These results suggest that shikonin dispersion has an inhibitory effect on S. mutans and non-mutans streptococci, and toothpaste containing shikonin dispersion may be effective in preventing dental caries.


Assuntos
Cárie Dentária , Lithospermum , Naftoquinonas , Humanos , Streptococcus mutans , Cremes Dentais , Anticorpos , Glucanos , Extratos Vegetais/farmacologia
8.
Phytomedicine ; 123: 155214, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38134861

RESUMO

BACKGROUND: Gemcitabine is a first-line chemotherapeutic agent for pancreatic cancer (PC); however, most patients who receive adjuvant gemcitabine rapidly develop resistance and recurrence. Cancer-associated fibroblasts (CAFs) are a crucial component of the tumor stroma that contribute to gemcitabine-resistance. There is thus an urgent need to find a novel therapeutic strategy to improve the efficacy of gemcitabine in PC cells under CAF-stimulation. PURPOSE: To investigate if shikonin potentiates the therapeutic effects of gemcitabine in PC cells with CAF-induced drug resistance. METHODS: PC cell-stimulated fibroblasts or primary CAFs derived from PC tissue were co-cultured with PC cells to evaluate the ability of shikonin to improve the chemotherapeutic effects of gemcitabine in vitro and in vivo. Glucose uptake assay, ATP content analysis, lactate measurement, real-time PCR, immunofluorescence staining, western blot, and plasmid transfection were used to investigate the underlying mechanism. RESULTS: CAFs were innately resistant to gemcitabine, but shikonin suppressed the PC cell-induced transactivation and proliferation of CAFs, reversed CAF-induced resistance, and restored the therapeutic efficacy of gemcitabine in the co-culture system. In addition, CAFs underwent a reverse Warburg effect when co-cultured with PC cells, represented by enhanced aerobic glycolytic metabolism, while shikonin reduced aerobic glycolysis in CAFs by reducing their glucose uptake, ATP concentration, lactate production and secretion, and glycolytic protein expression. Regarding the mechanism underlying these sensitizing effects, shikonin suppressed monocarboxylate transporter 4 (MCT4) expression and cellular membrane translocation to inhibit aerobic glycolysis in CAFs. Overexpression of MCT4 accordingly reversed the inhibitory effects of shikonin on PC cell-induced transactivation and aerobic glycolysis in CAFs, and reduced its sensitizing effects. Furthermore, shikonin promoted the effects of gemcitabine in reducing the growth of tumors derived from PC cells and CAF co-inoculation in BALB/C mice, with no significant systemic toxicity. CONCLUSION: These results indicate that shikonin reduced MCT4 expression and activation, resulting in inhibition of aerobic glycolysis in CAFs and overcoming CAF-induced gemcitabine resistance in PC. Shikonin is a promising chemosensitizing phytochemical agent when used in combination with gemcitabine for PC treatment. The results suggest that disrupting the metabolic coupling between cancer cells and stromal cells might provide an attractive strategy for improving gemcitabine efficacy.


Assuntos
Fibroblastos Associados a Câncer , Naftoquinonas , Neoplasias Pancreáticas , Animais , Camundongos , Humanos , Gencitabina , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Neoplasias Pancreáticas/patologia , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Ácido Láctico/uso terapêutico , Glucose/metabolismo , Trifosfato de Adenosina/metabolismo
9.
Molecules ; 28(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138440

RESUMO

Currently, skin injuries have a serious impact on people's lives and socio-economic stress. Shikonin, a naphthoquinone compound derived from the root of the traditional Chinese medicine Shikonin, has favorable biological activities such as anti-inflammatory, antibacterial, immunomodulatory, anticancer, and wound-healing-promoting pharmacological activities. It has been reported that Shikonin can be used for repairing skin diseases due to its wide range of pharmacological effects. Moreover, the antimicrobial activity of Shikonin can play a great role in food and can also reduce the number of pathogenic bacteria in food. This paper summarizes the research on the pharmacological effects of Shikonin in recent years, as well as research on the mechanism of action of Shikonin in the treatment of certain skin diseases, to provide certain theoretical references for the clinical application of Shikonin, and also to provides research ideas for the investigation of the mechanism of action of Shikonin in other skin diseases.


Assuntos
Naftoquinonas , Dermatopatias , Humanos , Anti-Inflamatórios/farmacologia , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Medicina Tradicional Chinesa , Dermatopatias/tratamento farmacológico
10.
Biofouling ; 39(9-10): 962-979, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38009008

RESUMO

The current work aims to develop a shikonin and tea tree oil loaded nanoemulsion system stabilized by a mixture of GRAS grade surfactants (Tween 20 and monoolein) and a cosurfactant (Transcutol P). This system was designed to address the poor aqueous solubility and photostability issues of shikonin. The authenticity of shikonin employed in this study was confirmed using nuclear magnetic resonance (NMR) spectroscopy. The optimized nanoemulsion exhibited highly favorable characteristics in terms of zeta potential (-23.8 mV), polydispersity index (0.216) and particle size (22.97 nm). These findings were corroborated by transmission electron microscopy (TEM) micrographs which confirmed the spherical and uniform nature of the nanoemulsion globules. Moreover, attenuated total reflectance (ATR) and X-ray diffraction analysis (XRD) analysis affirmed improved chemical stability and amorphization, respectively. Photodegradation studies were performed by exposing pure shikonin and the developed nanoemulsion to ultraviolet light for 1 h using a UV lamp, followed by high performance liquid chromatography (HPLC) analysis. The results confirmed that the developed nanoemulsion system imparts photoprotection to pure shikonin in the encapsulated system. Furthermore, the research investigated the effect of the nanoemulsion on biofilms formed by Candida albicans and methicillin resistant Staphylococcus aureus (MRSA). Scanning electron microscopy, florescence microscopy and phase contrast microscopy unveiled a remarkable reduction in biofilm area, accompanied by disruptions in the cell wall and abnormalities on the cell surface of the tested microorganisms. In conclusion, the nanoencapsulation of shikonin with tea tree oil as the lipid phase showcased significantly enhanced antimicrobial and antibiofilm potential compared to pure shikonin against resistant strains of Candida albicans and Staphylococcus aureus.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Naftoquinonas , Óleo de Melaleuca , Candida albicans , Óleo de Melaleuca/farmacologia , Staphylococcus aureus , Biofilmes , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana
11.
Microbiol Spectr ; 11(6): e0145923, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37800902

RESUMO

IMPORTANCE: Infections caused by multidrug-resistant Escherichia coli (MDR E. coli) have become a major global healthcare problem due to the lack of effective antibiotics today. The emergence of colistin-resistant E. coli strains makes the situation even worse. Therefore, new antimicrobial strategies are urgently needed to combat colistin-resistant E. coli. Combining traditional antibiotics with non-antibacterial drugs has proved to be an effective approach of combating MDR bacteria. This study investigated the combination of colistin and shikonin, a Chinese herbal medicine, against colistin-resistant E. coli. This combination showed good synergistic antibacterial both in vivo and in vitro experiments. Under the background of daily increasing colistin resistance in E. coli, this research points to an effective antimicrobial strategy of using colistin and shikonin in combination against colistin-resistant E. coli.


Assuntos
Medicamentos de Ervas Chinesas , Infecções por Escherichia coli , Proteínas de Escherichia coli , Humanos , Colistina/farmacologia , Escherichia coli , Medicamentos de Ervas Chinesas/farmacologia , Proteínas de Escherichia coli/farmacologia , Antibacterianos/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Testes de Sensibilidade Microbiana
12.
Int J Biol Macromol ; 253(Pt 4): 127049, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37758110

RESUMO

Naturally occurring naphthoquinones, shikonin and alkannin, are important ingredients of traditional Chinese medicine Zicao. These constituents are reported to have many therapeutic uses, such as wound healing; scar treatment; and anti-inflammation, anti-acne, anti-ulcer, anti-HIV, anticancer, and antibacterial properties. The primary objective of this investigation was to explore the effect of shikonin and alkannin on Escherichia coli ATP synthase and its cell growth. Shikonin caused complete (100 %) inhibition, and alkannin caused partial (79 %) inhibition of wild-type E. coli ATP synthase. Both caused partial (4 %-27 %) inhibition of ATP synthase with genetically modified phytochemical binding site. The growth inhibition of strains expressing normal, deficient, and mutant ATP synthase by shikonin and alkannin, corroborated the inhibition observed in isolated normal wild-type and mutant ATP synthase. Trivial inhibition of mutant enzymes indicated αR283D, αE284R, ßV265Q, and γT273A are essential for formation of the phytochemical binding site where shikonin and alkannin bind. Further, shikonin was a potent inhibitor of ATP synthase than alkannin. The antimicrobial properties of shikonin and alkannin were tied to the binding at phytochemical site of microbial ATP synthase. Selective targeting of bacterial ATP synthase by shikonin and alkannin may be an advantageous alternative to address the antibiotic resistance issue.


Assuntos
Escherichia coli , Naftoquinonas , Naftoquinonas/farmacologia , Naftoquinonas/química , Compostos Fitoquímicos/farmacologia , Trifosfato de Adenosina/farmacologia
13.
Microorganisms ; 11(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37763983

RESUMO

Shikonin, derived from the herb Lithospermum erythrorhizon (Purple Cromwell), is extensively utilized in traditional Chinese medicine as an anti-inflammatory agent; however, its effect on the intestinal flora is not yet known. Herein, we demonstrate that, compared to a blank control group, the intragastric administration of shikonin suppressed the swelling rate of ears in a mouse model of acute inflammation in a dose-dependent manner via animal experiments; furthermore, the 20 mg/kg shikonin treatment exhibited the highest inhibitory effect. In formal animal experimentation, we discovered that the inhibitory effect of shikonin with 20 mg/kg on inflammation was closely linked to the intestinal flora, whereby the microbiota phylum was altered in feces through a 16S rDNA sequencing analysis, implying that shikonin improves gut microbiota structures and compositions to counteract inflammation. Notably, using a real-time quantitative polymerase chain reaction (RT-qPCR), a Western blotting assay, and an immunohistochemistry (IHC) assay, we found that inflammatory cytokines such as TNF-α, IL-6, and IL-1ß reduced in both the shikonin-administration group and the positive control group than those in the blank control group, as expected. To the best of our knowledge, this is the first study to outline the underlying mechanism through which shikonin acts on gut microbes to alleviate acute inflammation, providing an alternative mechanism for shikonin to become a preventive agent in countering inflammation.

14.
Molecules ; 28(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37764501

RESUMO

(1) Background: Shikonin, the main ingredient in Chinese herbal medicine, is described as a novel angiogenesis inhibitor, and its anticancer effects have already been studied. Shikonin and its derivatives induce apoptosis and suppress metastasis, which further enhance the effectiveness of chemotherapy. However, their mechanism of function has not been completely elucidated on human renal cancer cells. (2) Methods: In our study, CAKI-2 and A-498 cells were treated with increasing concentrations (2.5-40 µM) of shikonin, when colony formation ability and cytotoxic activity were tested. The changes in the expression of the main targets of apoptotic pathways were measured by RT-qPCR and Western blot. The intracellular levels of miR-21 and miR-155 were quantified by RT-qPCR. (3) Results: Shikonin exerted a dose-dependent effect on the proliferation of the cell lines examined. In 5 µM concentration of shikonin in vitro elevated caspase-3 and -7 levels, the proteins of the Ras/MAPK and PI3K/AKT pathways were activated. However, no significant changes were detected in the miR-21 and miR-155 expressions. (4) Conclusions: Our findings indicated that shikonin causes apoptosis of renal cancer cells by activating the Ras/MAPK and PI3K/AKT pathways. These effects of shikonin on renal cancer cells may bear important potential therapeutic implications for the treatment of renal cancer.

15.
Front Microbiol ; 14: 1216029, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637105

RESUMO

Introduction: Alkanna tinctoria Tausch. is a medicinal plant well-known to produce important therapeutic compounds, such as alkannin/shikonin and their derivatives (A/Sd). It associates with arbuscular mycorrhizal fungi (AMF), which are known, amongst others beneficial effects, to modulate the plant secondary metabolites (SMs) biosynthesis. However, to the best of our knowledge, no study on the effects of AMF strains on the growth and production of A/Sd in A. tinctoria has been reported in the literature. Methods: Here, three experiments were conducted. In Experiment 1, plants were associated with the GINCO strain Rhizophagus irregularis MUCL 41833 and, in Experiment 2, with two strains of GINCO (R. irregularis MUCL 41833 and Rhizophagus aggregatus MUCL 49408) and two native strains isolated from wild growing A. tinctoria (R. irregularis and Septoglomus viscosum) and were grown in a semi-hydroponic (S-H) cultivation system. Plants were harvested after 9 and 37 days in Experiment 1 and 9 days in Experiment 2. In Experiment 3, plants were associated with the two native AMF strains and with R. irregularis MUCL 41833 and were grown for 85 days in pots under greenhouse conditions. Quantification and identification of A/Sd were performed by HPLC-PDA and by HPLC-HRMS/MS, respectively. LePGT1, LePGT2, and GHQH genes involved in the A/Sd biosynthesis were analyzed through RT-qPCR. Results: In Experiment 1, no significant differences were noticed in the production of A/Sd. Conversely, in Experiments 2 and 3, plants associated with the native AMF R. irregularis had the highest content of total A/Sd expressed as shikonin equivalent. In Experiment 1, a significantly higher relative expression of both LePGT1 and LePGT2 was observed in plants inoculated with R. irregularis MUCL 41833 compared with control plants after 37 days in the S-H cultivation system. Similarly, a significantly higher relative expression of LePGT2 in plants inoculated with R. irregularis MUCL 41833 was noticed after 9 versus 37 days in the S-H cultivation system. In Experiment 2, a significant lower relative expression of LePGT2 was observed in native AMF R. irregularis inoculated plants compared to the control. Discussion: Overall, our study showed that the native R. irregularis strain increased A/Sd production in A. tinctoria regardless of the growing system used, further suggesting that the inoculation of native/best performing AMF is a promising method to improve the production of important SMs.

16.
Biomed Pharmacother ; 166: 115296, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37557011

RESUMO

BACKGROUND: Glioblastoma is a type of intracranial malignancy. Shikonin, a Chinese traditional medicine, has been shown to have anti-tumor efficacy toward human glioblastoma cells in vitro. However, shikonin cannot easily cross the blood-brain barrier. To address this issue, we evaluated the anti-tumor effects of direct intracranial infusion of shikonin in in vivo orthotopic syngeneic murine glioblastoma models using C57BL/6 mice. MATERIALS AND METHODS: The cytotoxic effects of shikonin against murine glioblastoma cells, SB28 and CT-2A, were reported resistance to temozolomide, were evaluated using an allophycocyanin-conjugated annexin V and propidium iodide assay with flow cytometry. Impedance-based real-time cell analysis (RTCA) was used to analyze the inhibitory effects of shikonin on growth and proliferation. To evaluate the anti-tumor activity of shikonin in vivo, we used orthotopic syngeneic murine glioblastoma models with SB28 and CT-2A cells. RESULTS: In flow cytometry-based cytotoxic assays, shikonin induced apoptosis. RTCA indicated that shikonin decreased the cell index of murine glioblastoma cells, SB28 and CT-2A, in a dose-dependent manner (p < 0.0001 for both cell lines), while temozolomide did not (p = 0.91 and 0.82, respectively). In murine glioblastoma models, SB28 and CT-2A, direct intracranial infusion of shikonin, as a local chemotherapy, improved the overall survival of mice in a dose-dependent manner compared with control groups (p < 0.0001 and p = 0.02, respectively). While temozolomide did not (p = 0.48 and 0.52, respectively). CONCLUSIONS: The direct intracranial infusion of shikonin has potential as a local therapy for patients with glioblastoma.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Naftoquinonas , Humanos , Camundongos , Animais , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/patologia , Camundongos Endogâmicos C57BL , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral
17.
Anticancer Agents Med Chem ; 23(16): 1880-1887, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37393553

RESUMO

BACKGROUND: Melanoma treatment is highly resistant to current chemotherapeutic agents. Due to its resistance towards apoptotic cell death, non-apoptotic cell death pathways are sought after. OBJECTIVE: We investigated a Chinese herbal medicine, shikonin, and its effect on B16F10 melanoma cells in vitro. METHODS: Cell growth of B16F10 melanoma cells treated with shikonin was analyzed using an MTT assay. Shikonin was combined with necrostatin, an inhibitor of necroptosis; caspase inhibitor; 3-methyladenine, an inhibitor of autophagy; or N-acetyl cysteine, an inhibitor of reactive oxygen species. Flow cytometry was used to assess types of cell death resulting from treatment with shikonin. Cell proliferation was also analyzed utilizing a BrdU labeling assay. Monodansylcadaverine staining was performed on live cells to gauge levels of autophagy. Western blot analysis was conducted to identify specific protein markers of necroptosis including CHOP, RIP1, and pRIP1. MitoTracker staining was utilized to identify differences in mitochondrial density in cells treated with shikonin. RESULTS: Analysis of MTT assays revealed a large decrease in cellular growth with increasing shikonin concentrations. The MTT assays with necrostatin, 3-methyladenine, and N-acetyl cysteine involvement, suggested that necroptosis, autophagy, and reactive oxygen species are a part of shikonin's mechanism of action. Cellular proliferation with shikonin treatment was also decreased. Western blotting confirmed that shikonin-treated melanoma cells increase levels of stress-related proteins, e.g., CHOP, RIP, pRIP. CONCLUSION: Our findings suggest that mainly necroptosis is induced by the shikonin treatment of B16F10 melanoma cells. Induction of ROS production and autophagy are also involved.


Assuntos
Melanoma , Naftoquinonas , Humanos , Apoptose , Necrose , Espécies Reativas de Oxigênio/metabolismo , Cisteína/farmacologia , Linhagem Celular Tumoral , Naftoquinonas/farmacologia
18.
Phytomedicine ; 118: 154943, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421765

RESUMO

BACKGROUND: Shikonin, a natural naphthoquinone compound, has a wide range of pharmacological effects, but its anti-tumor effect and underlying mechanisms in bladder cancer remain unclear. PURPOSE: We aimed to investigate the role of shikonin in bladder cancer in vitro and in vivo in order to broaden the scope of shikonin's clinical application. STUDY DESIGN AND METHODS: We performed MTT and colony formation to detect the inhibiting effect of shikonin on bladder cancer cells. ROS staining and flow cytometry assays were performed to detect the accumulation of ROS. Western blotting, siRNA and immunoprecipitation were used to evaluate the effect of necroptosis in bladder cancer cells. Transmission electron microscopy and immunofluorescence were used to examine the effect of autophagy. Nucleoplasmic separation and other pharmacological experimental methods described were used to explore the Nrf2 signal pathway and the crosstalk with necroptosis and autophagy. We established a subcutaneously implanted tumor model and performed immunohistochemistry assays to study the effects and the underlying mechanisms of shikonin on bladder cancer cells in vivo. RESULTS: The results showed that shikonin has a selective inhibitory effect on bladder cancer cells and has no toxicity on normal bladder epithelial cells. Mechanically, shikonin induced necroptosis and impaired autophagic flux via ROS generation. The accumulation of autophagic biomarker p62 elevated p62/Keap1 complex and activated the Nrf2 signaling pathway to fight against ROS. Furthermore, crosstalk between necroptosis and autophagy was present, we found that RIP3 may be involved in autophagosomes and be degraded by autolysosomes. We found for the first time that shikonin-induced activation of RIP3 may disturb the autophagic flux, and inhibiting RIP3 and necroptosis could accelerate the conversion of autophagosome to autolysosome and further activate autophagy. Therefore, on the basis of RIP3/p62/Keap1 complex regulatory system, we further combined shikonin with late autophagy inhibitor(chloroquine) to treat bladder cancer and achieved a better inhibitory effect. CONCLUSION: In conclusion, shikonin could induce necroptosis and impaired autophagic flux through RIP3/p62/Keap1 complex regulatory system, necroptosis could inhibit the process of autophagy via RIP3. Combining shikonin with late autophagy inhibitor could further activate necroptosis via disturbing RIP3 degradation in bladder cancer in vitro and in vivo.


Assuntos
Naftoquinonas , Neoplasias da Bexiga Urinária , Humanos , Espécies Reativas de Oxigênio/metabolismo , Necroptose , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Morte Celular , Naftoquinonas/farmacologia , Autofagia , Neoplasias da Bexiga Urinária/tratamento farmacológico
19.
Biomed Pharmacother ; 165: 115138, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37454591

RESUMO

Shikonin, the primary active compound found in the rhizome of the traditional Chinese medicinal herb known as "ZiCao", exhibits a diverse range of pharmacological effects. This drug has a wide range of uses, including as an anti-inflammatory, antioxidant, and anti-cancer agent. It is also effective in promoting wound healing and treating autoimmune diseases such as multiple sclerosis, diabetes, asthma, systemic lupus erythematosus, inflammatory bowel disease, psoriasis, and rheumatoid arthritis. Although shikonin has a wide range of applications, its mechanisms are still not fully understood. This review article provides a comprehensive overview of the recent advancements in the use of shikonin for the treatment of immune-related diseases. The article also delves into the anti-inflammatory and immunoregulatory mechanisms of shikonin and offers insights into the inflammation and immunopathogenesis of related diseases. Overall, this article serves as a valuable resource for researchers and clinicians working in this field. These findings not only provide significant new information on the effects and mechanisms of shikonin but also establish a foundation for the development of clinical applications in treating autoimmune diseases.


Assuntos
Doenças Autoimunes , Naftoquinonas , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/patologia , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Doenças Autoimunes/tratamento farmacológico
20.
Int Immunopharmacol ; 121: 110401, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37302371

RESUMO

Sepsis, a life-threatening condition whereby immune dysregulation develops, is one of the major causes of death worldwide. To date, there is still no clinically effective therapeutic method for sepsis. As a natural product from traditional Chinese medicine, Shikonin has been demonstrated to have pleiotropic medical effects, including anti-tumor, anti-inflammation, and relieving sepsis. PD-L1, as the receptor of PD-1, was also involved in exacerbating sepsis by inducing immunosuppression, but the relationship between them is still unclear. In this study, we aimed to evaluate the effect of Shikonin on modulating PD-L1 expression and its contact with PKM2. The results showed that Shikonin significantly decreased the levels of sepsis mice serum inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interferon-γ (IFN-γ), interleukin-1ß (IL-1ß) and maintain the percentage of T cells from the spleen and significantly reduce the apoptosis of splenocytes in LPS-induced sepsis mice. Our data also demonstrated that Shikonin significantly decreased PD-L1 expression on macrophages, not PD-1 expression on T cells in vivo and in vitro. Additionally, we revealed that Shikonin attenuated PD-L1 expression on macrophages and was associated with downregulating phosphorylation and nuclear import of PKM2, which could bind to the HRE-1 and HRE-4 sites of the PD-L1 promoter. As the present research was conducted in sepsis mice model and macrophage cell line, further study is required to evaluate Shikonin to regulate PD-L1 by targeting PKM2 in clinical samples.


Assuntos
Antígeno B7-H1 , Sepse , Animais , Camundongos , Antígeno B7-H1/metabolismo , Macrófagos , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA