Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Molecules ; 29(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474467

RESUMO

Isoflavones, belonging to polyphenolic compounds, show structural similarity to natural estrogens, and in this context, they have been extensively studied. Some of them are also applied as cosmetic additives; however, little is known regarding their effects on skin cells. In this investigation, common isoflavones, including genistein, daidzein, glycitein, formononetin, and biochanin A, as well as coumestrol, were evaluated for antioxidant activity and their impact on human skin fibroblasts and keratinocytes. Antioxidant effects were assessed using DPPH, ABTS, and FRAP tests, and the ability to scavenge reactive oxygen species (ROS) was tested in cells with H2O2-provoked oxidative stress. The impact on the activity of antioxidant enzymes (SOD, CAT, GSH) and lipid peroxidation (MDA) was also explored. As shown by Alamar Blue and neutral red uptake assays, the compounds were not toxic within the tested concentration range, and formononetin and coumestrol even demonstrated a stimulatory effect on cells. Coumestrol and biochanin A demonstrated significant antioxidative potential, leading to a significant decrease in ROS in the cells stimulated by H2O2. Furthermore, they influenced enzyme activity, preventing depletion during induced oxidative stress, and also reduced MDA levels, demonstrating protection against lipid peroxidation. In turn, genistein, daidzein, and glycitein exhibited low antioxidant capacity.


Assuntos
Genisteína , Isoflavonas , Humanos , Genisteína/farmacologia , Cumestrol , Espécies Reativas de Oxigênio , Fitoestrógenos , Antioxidantes , Peróxido de Hidrogênio , Isoflavonas/química , Estresse Oxidativo , Queratinócitos , Fibroblastos
2.
Plants (Basel) ; 12(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38068591

RESUMO

The Colombian Chocó is known for its rich biodiversity and to harbor plant species that are under-explored, including the genus Sloanea. This study aimed to analyze the chemical composition of derivatized ethanolic extracts from S. chocoana and S. pittieriana using BSTFA and TMCS through GC-MS, and to assess cell viability of immortalized human non-tumorigenic keratinocytes (HaCaT) and periodontal ligament fibroblast cells using crude extracts through MTS assay. Antioxidant and photoprotective properties were determined using DPPH assay and spectrophotometry. Antifungal activity of extracts against Candida species was developed following the CLSI standard M27, 4th ed. The sun protective factor (SPF) and UVA/UVB ratio values were calculated using the Mansur equation and the Boots star rating system. The critical wavelength (λc) was determined by calculating the integrated optical density curve's area. The transmission of erythema and pigmentation was calculated through equations that use constants to calculate the flux of erythema and pigmentation. The GC-MS analysis identified 37 compounds for S. chocoana and 38 for S. pittieriana, including alkaloids, triterpenoids, and polyphenolics, among others. Both extracts exhibited proliferative effects on periodontal ligament fibroblasts, did not affect the viability of HaCaT cells, and showed excellent antioxidant activities (46.1% and 43.7%). Relevant antifungal activity was observed with S. pittieriana extract against Candida albicans (GM-MIC: 4 µg/mL), followed by C. auris and C. glabrata (GM-MIC: 32 µg/mL), while S. chocoana extract was active against C. albicans and C. glabrata (GM-MIC: 16 and 32 µg/mL, respectively). High SPF values (31.0 and 30.0), λc (393.98 and 337.81 nm), UVA/UVB ratio (1.5 and 1.2), and low percentage of transmission of erythema and pigmentation were determined for S. chocoana and S. pittieriana, respectively. Results showed that species of Sloanea constitute a promising alternative as ingredients for developing skincare products, and exhaustive studies are required for their sustainable uses.

3.
Molecules ; 28(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37959803

RESUMO

Due to the growing popularity of herbal extract-loaded hydrogels, this study assessed the biological activity of extracts and hydrogels containing three types (water (WE), water-ethanol (EE) and water-glycerin (GE)) of Cornus mas L. (dogwood) extracts. The content of biologically active compounds in the extracts was assessed using the UPLC-DAD-MS technique. Antioxidant properties were assessed by using DPPH and ABTS radicals and measuring the intracellular level of reactive oxygen species. Alamar Blue and Neutral Red tests were used to measure the cytotoxicity of the tested samples on skin cells-fibroblasts and keratinocytes. Cell migration and the anti-aging activity of the tested extracts and hydrogels were assessed. Transepidermal water loss and skin hydration after applying the hydrogels to the skin were also determined. A chromatographic analysis revealed that the extracts contained polyphenols, including gallic, caftaric, protocatechuic, chlorogenic, ellagic and p-coumaroylquinic acids, as well as iridoids, with loganic acid as the predominant component. Additionally, they contained cyanidin 3-O-galactoside, pelargonidin 3-O-glucoside and quinic acid. The obtained results show that the tested extracts and hydrogels had strong antioxidant properties and had a positive effect on the viability of skin cells in vitro. Additionally, it was shown that they stimulated the migration of these cells and had the ability to inhibit the activity of collagenase and elastase. Moreover, the tested hydrogels increased skin hydration and prevented transepidermal water loss. The obtained results indicate that the developed hydrogels may be effective delivery systems for phytochemicals contained in dogwood extracts.


Assuntos
Cornus , Dermatologia , Antioxidantes/química , Cornus/química , Hidrogéis , Água , Extratos Vegetais/farmacologia , Extratos Vegetais/química
4.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686038

RESUMO

Due to the high demand for products that can help treat various skin conditions, the interest in plant extracts, which are a valuable source of phytochemicals, is constantly growing. In this work, the properties of extracts and ferments from Cornus mas L. and their potential use in cosmetic products were compared. For this purpose, their composition, antioxidant properties and cytotoxicity against skin cells, keratinocytes and fibroblasts were assessed in vitro. In addition, the ability to inhibit the activity of collagenase and elastase was compared, which enabled the assessment of their potential to inhibit skin aging. Microbiological analyses carried out on different bacterial strains were made in order to compare their antibacterial properties. The conducted analyses showed that both dogwood extract and ferment have antioxidant and anti-aging properties. In addition, they can have a positive effect on the viability of keratinocytes and fibroblasts and inhibit the proliferation of various pathogenic bacteria, which indicates their great potential as ingredients in skin care preparations. The stronger activity of the ferment compared to the extract indicates the legitimacy of carrying out the fermentation process of plant raw materials using kombucha in order to obtain valuable products for the cosmetics industry.


Assuntos
Antioxidantes , Cornus , Antioxidantes/farmacologia , Fibrinolíticos , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia
5.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446030

RESUMO

Roselle (Hibiscus sabdariffa L.) is a plant that has traditionally been used in various food and beverage products. Here, we investigated the potential of water extracts derived from Roselle leaves and callus cells for cosmetic and pharmaceutical purposes. We generated calluses from Roselle leaves and produced two different water extracts through heat extraction, which we named Hibiscus sabdariffa plant extract (HSPE) and Hibiscus sabdariffa callus extract (HSCE). HPLC analysis showed that the two extracts have different components, with nucleic acids and metabolites such as phenylalanine and tryptophan being the most common components in both extracts. In vitro assays demonstrated that HSCE has strong anti-melanogenic effects and functions for skin barrier and antioxidant activity. Transcriptome profiling of human skin cells treated with HSPE and HSCE showed significant differences, with HSPE having more effects on human skin cells. Up-regulated genes by HSPE function in angiogenesis, the oxidation-reduction process, and glycolysis, while up-regulated genes by HSCE encode ribosome proteins and IFI6, functioning in the healing of radiation-injured skin cells. Therefore, we suggest that the two extracts from Roselle should be applied differently for cosmetics and pharmaceutical purposes. Our findings demonstrate the potential of Roselle extracts as a natural source for skincare products.


Assuntos
Hibiscus , Humanos , Transcriptoma , Água , Pele , Extratos Vegetais/farmacologia
6.
Antioxidants (Basel) ; 12(6)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37371939

RESUMO

The formulation of plant extracts in phospholipid vesicles is a promising strategy to exploit their biological properties while solving problems related to poor solubility in water, high instability, and low skin permeation and retention time. In this study, Ceratonia siliqua ripe pods were used for the preparation of a hydro-ethanolic extract, which showed antioxidant properties owing to the presence of biologically active compounds identified by liquid chromatography-mass spectrometry (e.g., hydroxybenzoic acid and flavonoid derivatives). To improve the applicability of the extract in therapy, a topical formulation based on liposomes was explored. The vesicles were characterized by small size (around 100 nm), negative charge (-13 mV), and high entrapment efficiency (>90%). Furthermore, they displayed both spherical and elongated shapes, with oligolamellar structure. Their biocompatibility was demonstrated in cells, including erythrocytes and representative skin cell lines. The antioxidant activity of the extract was proved by the scavenging of free radicals, the reduction of ferric ions, and the protection of skin cells from oxidative damage.

7.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37373433

RESUMO

In this study, an attempt was made to evaluate the antioxidant, anti-inflammatory and protective effects of the Sambucus nigra fruit extract and its ferment obtained by fermentation with kombucha tea fungus. For this purpose, fermented and non-fermented extracts were compared in terms of their chemical composition by the HPLC/ESI-MS chromatographic method. The antioxidant activity of the tested samples was assessed using DPPH and ABTS assays. Cytotoxicity was also determined using Alamar Blue and Neutral Red tests to assess the viability and metabolism of fibroblast and keratinocyte skin cells. Potential anti-aging properties were determined by their ability to inhibit the activity of the metalloproteinases collagenase and elastase. Tests showed that the extract and the ferment have antioxidant properties and stimulate the proliferation of both cell types. The study also assessed the anti-inflammatory activity of the extract and ferment by monitoring levels of the pro-inflammatory interleukins IL-6, IL-1ß, tumor necrosis factor (TNF-α) and anti-inflammatory IL-10 in lipopolysaccharide (LPS)-treated fibroblast cells. The results indicate that both the S. nigra extract and its kombucha ferment can be effective in preventing free-radical-induced cell damage and have positive effects on skin cell health.


Assuntos
Sambucus nigra , Humanos , Sambucus nigra/química , Antioxidantes/metabolismo , Lipopolissacarídeos/metabolismo , Água/metabolismo , Frutas/química , Anti-Inflamatórios/química , Extratos Vegetais/química , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fibroblastos/metabolismo
8.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36499003

RESUMO

Kombucha is a health-promoting beverage that is produced by fermenting sweetened tea using symbiotic cultures of bacteria belonging to the genus Acetobacter, Gluconobacter, and yeast of the genus Saccharomyces. This study compared the cosmetic and dermatological properties of the extracts of the following redberries: R. rubrum, F. vesca, and R. idaeus, and their ferments, which were obtained by fermentation for 10 and 20 days using tea fungus. For this purpose, the fermented and non-fermented extracts were compared in terms of their chemical composition using the HPLC/ESI-MS chromatographic method, demonstrating the high content of biologically active compounds that were present in the ferments. The antioxidant activity of the tested samples was evaluated using DPPH and ABTS tests, as well as by evaluating the scavenging of the external and intracellular free radicals. The cytotoxicity of the extracts and the ferments, as well as the cosmetic formulations, were also determined by conducting Alamar Blue and Neutral Red tests assessing the cell viability and metabolism using skin cell lines: fibroblasts and keratinocytes. In addition, application tests were conducted showing the positive effects of the model cosmetic tonics on the TEWL, the skin hydration, and the skin pH. The results indicate that both the extracts and the ferments that were obtained from kombucha can be valuable ingredients in cosmetic products.


Assuntos
Chá , Leveduras , Chá/química , Fermentação , Leveduras/metabolismo , Bebidas/análise , Antioxidantes/metabolismo , Cafeína/metabolismo
9.
Molecules ; 27(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36014338

RESUMO

Natural cosmetics are becoming more and more popular every day. For this reason, this work investigates the properties of mushroom extracts, which are not as widely used in the cosmetics industry as plant ingredients. Water extracts of Grifolafrondosa (Maitake), Hericiumerinaceus (Lion's Mane) and Ganoderma lucidum (Reishi) were tested for their antioxidant properties, bioactive substances content, skin cell toxicity, ability to limit TEWL, effect on skin hydration and pH, and skin irritation. Our research showed that Maitake extract contained the highest amount of flavonoids and phenols, and also showed the most effective scavenging of DPPH and ABTS radicals as well as Chelation of Fe2+ and FRAP radicals, which were 39.84% and 82.12% in a concentration of 1000 µg/mL, respectively. All tested extracts did not increase the amount of ROS in fibroblasts and keratinocytes. The addition of mushroom extracts to washing gels reduced the irritating effect on skin, and reduced the intracellular production of free radicals, compared with the cosmetic base. Moreover, it was shown that the analyzedcosmetics had a positive effect on the pH and hydration of the skin, and reduced TEWL.


Assuntos
Cosméticos , Grifola , Reishi , Antioxidantes/química , Antioxidantes/farmacologia , Géis , Extratos Vegetais/farmacologia , Reishi/química
10.
Molecules ; 27(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35408743

RESUMO

Leaves of Rubus fruticosus L., Vaccinum myrtillus L., Ribes nigrum L. and Fragaria vesca L. are considered agro-waste of the berry industry, but they can be a rich source of valuable bioactive compounds used in cosmetic industry. In this study, kombucha-fermented and non-fermented extracts were compared in terms of chemical composition and biological activity. Polyphenol compounds were identified by HPLC/DAD/ESI-MS. The antioxidant potential was analyzed by evaluating the scavenging of intracellular free radicals contained in keratinocytes and fibroblasts and by DPPH and ABTS assay, obtaining a higher radical scavenging capacity for the ferments, especially for R. fruticosus and V. myrtillus ferments. Assessment of the cytotoxicity on skin cell lines showed their positive effect on the viability of fibroblasts and keratinocytes (especially for the ferments after 10 days of fermentation). The potential anti-ageing properties were determined by their ability to inhibit the activity of metalloproteinases, obtaining almost 30% inhibition of collagenase and elastase in the case of fermented V. myrtillus. Moreover, when the samples were applied to the skin, the positive effect of ferments on skin hydration and pH was demonstrated, which indicates that kombucha berry leaf extracts may be an innovative cosmetic ingredient.


Assuntos
Cosméticos , Ribes , Antioxidantes/química , Antioxidantes/farmacologia , Cosméticos/química , Frutas , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ribes/química
11.
Int J Med Sci ; 18(9): 2086-2092, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33850479

RESUMO

Ultraviolet C (UVC) has been applied to treatment of infections in wounds for at least the last two decades, however, cells being treated can be damaged if exposure is prolonged, which calls for protective measures, such as drug or herbal pre-treatment, to minimize damage. Ocimum gratissimum contains plant polyphenols such as isoflavones and caffeic acid, which have antioxidant effects. We hypothesize that Ocimum gratissimum aqueous extracts (OGE) can inhibit UVC-induced oxidative damage on skin cells. In this study, HaCaT skin cells are used to test the protective effects of OGE on cell proliferation and migration after exposure to UVC radiation. Pretreatment with OGE (50~150µg/mL) before 40 J/m2 UVC exposure was able to restore survival from 32.25% to between 46.77% and 68.00%, and 80 J/m2 UVC exposure from 11.49% to between 19.07% and 43.04%. Morphological observation of primarily apoptotic cell death confirms the above findings. The flow cytometry analysis revealed that UVC increased the number of cells at the sub-G1 phase in a dose dependent manner, and when pre-treated with OGE the changes were partially reversed. Moreover, the wound healing test for observing migration showed that UVC 40-80 J/m2 decreased cell migration to 47-28% activity and 100 µg/mL OGE was able to restore cell activity to81-69% at day 3. Based on the above results, we suggest that OGE has a protective effect on UVC-induced inhibition of cell proliferation and migration of skin cells and thus has potential application in wound care.


Assuntos
Antioxidantes/farmacologia , Ocimum/química , Extratos Vegetais/farmacologia , Terapia Ultravioleta/efeitos adversos , Cicatrização/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Células HaCaT , Humanos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Terapia Ultravioleta/métodos , Cicatrização/efeitos da radiação
12.
Mater Sci Eng C Mater Biol Appl ; 120: 111783, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545910

RESUMO

Natural polymeric nanofibers-based materials for medical application is an intensive research area due to the unique features of natural polymeric nanofibers. Bacterial nanocellulose (BC) films containing various concentrations of mangosteen (Garcinia mangostana) peel extract were prepared and evaluated as a multifunctional nanofiber film. The extract was absorbed into BC hydrogel and air dried to entrap the extract into nanofiber network. The resulting films contained about 3, 35, and 294 mg of total phenolic compounds and 2, 24, and 250 mg of α-mangostin per cm3 of the dried films. The film containing the highest phenolic compounds and α-mangostin performed the inhibitory effect to Staphylococcus epidermidis, Propionibacterium acnes, and Staphylococcus aureus. High anticancer activity against B16F10 melanoma and MCF-7 breast cancer cells having viabilities of 10 and 5%, respectively after 48 h were detected after the treatments with the film. However, the film had a low toxicity against normal fibroblast and keratinocyte cells with 41 and 99% viability, respectively. The research suggested that the prepared films were a multifunctional nanofiber films with antimicrobial and anticancer properties.


Assuntos
Anti-Infecciosos , Garcinia mangostana , Nanofibras , Xantonas , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Humanos , Extratos Vegetais/farmacologia , Xantonas/farmacologia
13.
Molecules ; 26(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557174

RESUMO

The skin is an organ that is constantly exposed to many external factors that can affect its structure and function. Due to the presence of different cannabinoid receptors on many types of skin cells, cannabinoids can interact directly with them. Therefore, as part of this work, the impact of two types of Cannabis sativa L. herb extracts on keratinocytes and fibroblasts was assessed. The content of biologically active compounds such as phenols, flavonoids, chlorophylls and cannabinoids was evaluated. The antioxidant capacity of prepared extracts using the DPPH radical, H2DCFDA probe and measurement of superoxide dismutase activity was also assessed. The cytotoxicity of hemp extracts was determined using the Alamar Blue, Neutral Red and LDH assays. The ability of the extracts to inhibit the activity of matrix metalloproteinases, collagenase and elastase, was assessed. Preparations of model hydrogels were also prepared and their effect on transepidermal water loss and skin hydration was measured. The obtained results indicate that hemp extracts can be a valuable source of biologically active substances that reduce oxidative stress, inhibit skin aging processes and positively affect the viability of skin cells. The analysis also showed that hydrogels based on cannabis extracts have a positive effect on skin hydration.


Assuntos
Canabinoides/farmacologia , Cannabis/química , Hidrogéis/química , Queratinócitos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Higiene da Pele/métodos , Canabinoides/análise , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/farmacologia , Extratos Vegetais/química
14.
Nutrients ; 12(4)2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32268495

RESUMO

More recently, we have proposed a safe non-vector approach to modifying the biochemical profiles of the microalga Planktochlorella nurekis and obtained twelve clones with improved content of lipids and selected pigments and B vitamins and antioxidant activity compared to unaffected cells. In the present study, the biological activity of water and ethanolic extracts of modified clones is investigated in the context of their applications in the cosmetic industry and regenerative medicine. Extract-mediated effects on cell cycle progression, proliferation, migration, mitogenic response, apoptosis induction, and oxidative and nitrosative stress promotion were analyzed in normal human fibroblasts and keratinocytes in vitro. Microalgal extracts did not promote cell proliferation and were relatively non-cytotoxic when short-term treatment was considered. Long-term stimulation with selected microalgal extracts attenuated the development of oxidative stress-induced senescence in skin cells that, at least in part, was correlated with nitric oxide signaling and increased niacin and biotin levels compared to an unmodified microalgal clone. We postulate that selected microalgal extracts of Planktochlorella nurekis can be considered to be used in skin anti-aging therapy.


Assuntos
Senescência Celular/efeitos dos fármacos , Clorófitas/química , Fibroblastos/metabolismo , Microalgas/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Pele/metabolismo , Linhagem Celular , Humanos , Extratos Vegetais/química
15.
Genes (Basel) ; 11(2)2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098197

RESUMO

Edelweiss (Leontopodium Alpinum) in the family Asteraceae is a wildflower that grows in rocky limestone places. Here, we investigated the efficacy of edelweiss callus culture extract (Leontopodium Alpinum callus culture extract; LACCE) using multiple assays from in vitro to in vivo as well as transcriptome profiling. Several in vitro assay results showed the strong antioxidant activity of LACCE in response to UVB treatment. Moreover, LACCE suppressed inflammation and wrinkling; however, moisturizing activity was increased by LACCE. The clinical test in vivo demonstrated that constant application of LACCE on the face and skin tissues improved anti-periorbital wrinkles, skin elasticity, dermal density, and skin thickness compared with the placebo. The RNA-Sequencing results showed at least 16.56% of human genes were expressed in keratinocyte cells. LACCE up-regulated genes encoding several KRT proteins; DDIT4, BNIP3, and IGFBP3 were involved in the positive regulation of the developmental process, programmed cell death, keratinization, and cornification forming skin barriers, which provide many advantages in the human skin. By contrast, down-regulated genes were stress-responsive genes, including metal, oxidation, wounding, hypoxia, and virus infection, suggesting LACCE did not cause any harmful stress on the skin. Our comprehensive study demonstrated LACCE is a promising agent for anti-aging cosmetics.


Assuntos
Envelhecimento/efeitos dos fármacos , Asteraceae/genética , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia , Asteraceae/metabolismo , Calosidades/genética , Técnicas de Cultura de Células , Perfilação da Expressão Gênica/métodos , Humanos , Queratinócitos , Pele/efeitos dos fármacos , Transcriptoma/genética
16.
Toxins (Basel) ; 11(3)2019 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-30857352

RESUMO

Jellyfish envenomations result in extensive dermatological symptoms, clinically named as jellyfish dermatitis, which can seriously affect the daily activities and physical health of people. Inflammatory response accompanies the whole process of jellyfish dermatitis and the complexity of jellyfish venom components makes it difficult to treat jellyfish dermatitis symptoms effectively. Moreover, inhibiting inflammation is essential for the treatment of jellyfish stings and exploring the main components of jellyfish venom that cause inflammation is an urgent research area. In this study, the inhibitory effects of matrix metalloproteinase (MMP) inhibitors for venom-induced inflammation were explored at a cellular level. The expression of the three inflammatory factors, IL-6, TNF-α and MCP-1 in two skin cell lines, human keratinocyte cells (HaCaT) and human embryonic skin fibroblasts cells (CCC-ESF-1), at the cellular level, after treatment with the inhibitors of jellyfish Nemopilema nomurai (N. nomurai) nematocyst venom (NnNV-I), were determined. The results showed that inhibitors of MMP can significantly reduce the toxic effects of jellyfish Nemopilema nomurai nematocyst venom (NnNV) to skin cells. The expression levels of the three inflammatory factors IL-6, MCP-1, and TNF-α in the cells were also significantly decreased, indicating that MMPs in jellyfish venom are probably vital factors leading to jellyfish dermatitis. This study is beneficial in the prevention and treatment of jellyfish stings.


Assuntos
Anti-Inflamatórios/farmacologia , Venenos de Cnidários/farmacologia , Fibroblastos/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Inibidores de Metaloproteinases de Matriz/farmacologia , Pele/citologia , Animais , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Fibroblastos/metabolismo , Humanos , Queratinócitos/metabolismo , Nematocisto/química , Cifozoários
17.
Arch Dermatol Res ; 311(3): 203-219, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30783768

RESUMO

The combination of ascorbic acid and rutin is frequently used in oral preparations. However, despite numerous protective effects of each component individually, their combined effect on ultraviolet (UV)-irradiated skin cells has never been evaluated. The aim of this study was to evaluate the combined effect of ascorbic acid and rutin on human keratinocytes and fibroblasts exposed to UVA and UVB radiation. Skin keratinocytes and fibroblasts exposed to UVA and UVB radiation were treated with ascorbic acid or/and rutin. The total antioxidant properties of both components, as well as their effect on cellular pro- and antioxidant status, lipid and protein oxidation, transmembrane transport, and pro-inflammatory and pro/antiapoptotic protein expression were measured. The combination of ascorbic acid and rutin had higher antioxidant properties compared to the activity of the single compound alone, and showed a stronger effect against UV-induced reactive oxygen species generation. The ascorbic acid and rutin combination also showed increased antioxidant enzyme activity (catalase, superoxide dismutase, thioredoxin reductase), which was impaired following UV irradiation. Moreover, ascorbic acid additional stimulated UV-induced bilitranslocase activity responsible for rutin transport, and therefore favored rutin effect on Nrf2 pathway, simultaneously differentiating the reaction of keratinocytes and fibroblasts. In keratinocytes, Nrf2 is strongly activated, while in fibroblasts decreased Nrf2 activity was observed. Used mixture, also significantly silenced UV-induced expression of pro-inflammatory factor NFκB and pro-apoptotic proteins such as caspases 3, 8, and 9. These results showed that ascorbic acid and rutin are complementary in their antioxidant actions, transport and signaling functions. Their combined antioxidant, antiinflammatory and antiapoptotic actions suggest rutin and ascorbic acid are a potentially cytoprotective team against UV-induced skin damage.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Fibroblastos/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Rutina/farmacologia , Pele/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos , Anti-Inflamatórios/farmacologia , Apoptose/efeitos da radiação , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Ceruloplasmina/metabolismo , Quimioterapia Combinada , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Queratinócitos/efeitos da radiação , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Pele/metabolismo , Pele/patologia , Pele/efeitos da radiação
18.
Phytomedicine ; 42: 100-111, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29655676

RESUMO

BACKGROUND: Juglans regia L. has a history of traditional medicinal use for the treatment of various maladies and have been documented with significant antioxidant and antiinflammatory properties. Although all parts of the plant are medicinally important, but male the flower of the plant has not been yet investigated against the photo-damage. PURPOSE: The present study, we sought to determine the photoprotective effect of the male flower of J. regia L. against ultraviolet-B radiation-induced inflammatory responses in human skin cells. METHODS: The profile of pharmacological active compounds present in the male flower of J. regia was analyzed by GC-MS. Then, the antioxidant property of methanolic extract of J. regia (MEJR) was analyzed by in vitro free radical scavenging assays. Further, we analyzed the sun protection factor of this extract by spectrophotometry. Moreover, we investigated the photoprotective effect of MEJR against UVB induced inflammatory signaling in human epidermal cells. Human skin epidermal keratinocytes (HaCaT) were pretreated with the MEJR (80 µg/ml), 30 min prior to UVB-irradiation at a dose of 20 mJ/cm2 and were investigated for lipid peroxidation, enzymatic antioxidants activity, apoptosis and inflammatory markers expression level. RESULTS: The GC-MS results showed the presence of good amount of pharmacologically active compounds in the MEJR. We observed that the MEJR possess significant free radical scavenging activity and it was comparable with standard antioxidants. Further, the MEJR exhibits 8.8 sun-protection-factor (SPF) value. Pretreatment with MEJR, 30 min prior to UVB-irradiation, prevented ROS generation, lipid peroxidation and restored the activity of antioxidant status in HaCaT cells. Moreover, MEJR pretreatment significantly prevented UVB activated inflammatory markers like TNF-α, IL-1, IL-6, NF-κB, COX-2 in HaCaT. CONCLUSION: The present findings suggest that MEJR exhibit photoprotective effects and hence it may be useful for the treatment of inflammation related responses. The pharmacological mechanism of MEJR partly associated with its UV absorbance, modulation of inflammatory signaling as well as due to its free radical scavenging capability.


Assuntos
Epiderme/efeitos dos fármacos , Epiderme/efeitos da radiação , Juglans/química , Extratos Vegetais/farmacologia , Protetores contra Radiação/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Células Epidérmicas , Flores/química , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Peroxidação de Lipídeos/efeitos dos fármacos , NF-kappa B/metabolismo , Extratos Vegetais/química , Protetores contra Radiação/química , Radiodermite/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Raios Ultravioleta/efeitos adversos
19.
Artif Cells Nanomed Biotechnol ; 46(2): 333-340, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28393568

RESUMO

Panax ginseng berry extract possess remarkable pharmacological effects on skin treatment such as anti-aging, antioxidant, promotor of collagen synthesis and alleviation against atopic dermatitis. In recent years, gold nanoparticles have gained much attention due to their extensive range of applications in particular in the field of drug delivery as a result of their biological compatibility and low toxicity. In a previous study, we designed and developed biocompatible gold and silver nanoparticles based on phytochemical profile and pharmacological efficacy of P. ginseng berry extract, we were able to reduce gold ions to nanoparticles through the process of green synthesis. However, its potential as a cosmetic ingredient is still unexplored. The aim of the present study is to investigate the moisture retention, in-vitro scavenging and whitening properties of gold nanoparticles synthesized from P. ginseng berry in cosmetic applications. Our findings confirm that P. ginseng berry mediated gold nanoparticles exhibited moisture retention capacity. In addition, MTT assay results confirmed that P. ginseng berry mediated gold nanoparticles are non-toxic to human dermal fibroblast and murine melanoma skin cells, possess scavenging activity, protect and provide alleviation against injured caused by H2O2-induced damage. In addition, P. ginseng berry mediated gold nanoparticles, significantly reduced melanin content and suppress tyrosinase activity in α-MSH-stimulated B16BL6 cells. We conclude that P. ginseng berry mediated gold nanoparticles are biocompatible and environmental affable materials and can be a potential novel cosmetic ingredient.


Assuntos
Frutas/química , Ouro/química , Ouro/farmacologia , Nanopartículas Metálicas , Panax/química , Extratos Vegetais/química , Segurança , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Sequestradores de Radicais Livres/efeitos adversos , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Ouro/efeitos adversos , Humanos , Peróxido de Hidrogênio/farmacologia , Melaninas/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Preparações Clareadoras de Pele/efeitos adversos , Preparações Clareadoras de Pele/química , Preparações Clareadoras de Pele/farmacologia
20.
Curr Med Chem ; 25(40): 5564-5577, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28748760

RESUMO

BACKGROUND: Visible light is absorbed by photoacceptors in pigmented and non-pigmented mammalian cells, activating signaling cascades and downstream mechanisms that lead to the modulation of cellular processes. Most studies have investigated the molecular mechanisms and therapeutic applications of UV and the red to near infrared regions of the visible spectrum. Considerably less effort has been dedicated to the blue, UV-free part of the spectrum. OBJECTIVE: In this review, we discuss the current advances in the understanding of the molecular photoacceptors, signaling mechanisms, and corresponding therapeutic opportunities of blue light photoreception in non-visual mammalian cells in the context of inflammatory skin conditions. METHODS: The literature was scanned for peer-reviewed articles focusing on the molecular mechanisms, cellular effects, and therapeutic applications of blue light. RESULTS: At a molecular level, blue light is absorbed by flavins, porphyrins, nitrosated proteins, and opsins; inducing the generation of ROS, nitric oxide release, and the activation of G protein coupled signaling. Limited and contrasting results have been reported on the cellular effects of blue light induced signaling. Some investigations describe a regulation of proliferation and differentiation or a modulation of inflammatory parameters; others show growth inhibition and apoptosis. Regardless of the elusive underlying mechanism, clinical studies show that blue light is beneficial in the treatment of inflammatory skin conditions. CONCLUSION: To strengthen the use of blue light for therapeutic purposes, further in depth studies are clearly needed with regard to its underlying molecular and cellular mechanisms, and their translation into clinical applications.


Assuntos
Luz , Fototerapia , Dermatopatias/terapia , Animais , Apoptose/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Humanos , Inflamação/metabolismo , Inflamação/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA