Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytother Res ; 37(6): 2353-2363, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36752025

RESUMO

Obesity-induced metabolic disorders can cause chronic inflammation in the whole body, activating the nuclear factor kappa B (NF-κB) pathway and inducing apoptosis. Therefore, anti-inflammatory strategies may be effective in preventing obesity-related renal injury. Tabersonine (Tab) has been used pharmacologically to alleviate inflammation-related symptoms. This study evaluated the therapeutic effect of Tab on obesity-related renal injury and explored the pharmacological mechanism. Tab (20 mg/kg) relieved HFD-induced renal structural disorder and alleviated renal functional decline in mice, including improvement of renal tissue fibrosis, reducing renal cell apoptosis and inflammation in renal tissues. Mechanistically, we demonstrated that Tab inhibited the activation of NF-κB signaling pathway both in vivo and in vitro, thereby improving the renal tissue lesions in the mice with obesity-related renal injury. In both the obese mouse model and the mouse glomerular mesangial cell model, the natural compound Tab ameliorated HFD- and saturated fatty acid-induced renal cell injury by inhibiting the activation of NF-κB signaling pathway. Our data suggest that Tab may become a potential candidate for the prevention and treatment of obesity-related renal injury.


Assuntos
Nefropatias , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Inflamação/patologia , Rim , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/patologia , Nefropatias/patologia
2.
Phytother Res ; 37(3): 860-871, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36420902

RESUMO

Obesity-induced cardiomyopathy (OIC) is an increasingly serious global disease caused by obesity. Chronic inflammation greatly contributes to the pathogenesis of OIC. This study aimed to explore the role and mechanism of tabersonine (Tab), a natural alkaloid with antiinflammatory activity, in the treatment of OIC. High fat diet (HFD)-induced obese mice were administered with Tab. The results showed that Tab significantly inhibit inflammation, myocardial fibrosis, and hypertrophy to prevent heart dysfunction, without the alteration of body weight and hyperlipidemia, in HFD-induced obese mice. H9c2 cells and primary cardiomyocytes stimulated by palmitic acid (PA) were used to explore the molecular mechanism and target of Tab. We examined the effect of Tab on key proteins involved in HFD/PA-induced inflammatory signaling pathway and found that Tab significantly inhibits TAK1 phosphorylation in cardiomyocytes. We further detected the direct interaction between Tab and TAK1 at the cellular, animal, and molecular levels. We found that Tab directly binds to TAK1 to inhibit TAK1 phosphorylation, which then blocks TAK1-TAB2 interaction and then NF-κB pro-inflammatory pathway in cultured cardiomyocytes. Our results indicate that Tab is a potential agent for the treatment of OIC, and TAK1 is an effective therapeutic target for this disease.


Assuntos
Inflamação , MAP Quinase Quinase Quinases , Camundongos , Animais , Camundongos Obesos , MAP Quinase Quinase Quinases/metabolismo , Fatores de Crescimento Transformadores , Obesidade
3.
Genome Biol Evol ; 14(11)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36300641

RESUMO

The Apocynaceae tree Voacanga thouarsii, native to southern Africa and Madagascar, produces monoterpene indole alkaloids (MIA), which are specialized metabolites with a wide range of bioactive properties. Voacanga species mainly accumulates tabersonine in seeds making these species valuable medicinal plants currently used for industrial MIA production. Despite their importance, the MIA biosynthesis in Voacanga species remains poorly studied. Here, we report the first genome assembly and annotation of a Voacanga species. The combined assembly of Oxford Nanopore Technologies long-reads and Illumina short-reads resulted in 3,406 scaffolds with a total length of 1,354.26 Mb and an N50 of 3.04 Mb. A total of 33,300 protein-coding genes were predicted and functionally annotated. These genes were then used to establish gene families and to investigate gene family expansion and contraction across the phylogenetic tree. A transposable element (TE) analysis showed the highest proportion of TE in Voacanga thouarsii compared with all other MIA-producing plants. In a nutshell, this first reference genome of V. thouarsii will thus contribute to strengthen future comparative and evolutionary studies in MIA-producing plants leading to a better understanding of MIA pathway evolution. This will also allow the potential identification of new MIA biosynthetic genes for metabolic engineering purposes.


Assuntos
Plantas Medicinais , Voacanga , Plantas Medicinais/genética , Filogenia , Sequenciamento de Nucleotídeos em Larga Escala , Sementes , Genoma de Planta
4.
Phytomedicine ; 103: 154238, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35696800

RESUMO

BACKGROUND: Angiotensin II (Ang II)-induced cardiac inflammation contribute to pathological cardiac remodeling and hypertensive heart failure (HF). Tabersonine (Tab) is an indole alkaloid mainly isolated from Catharanthus roseus and exhibits anti-inflammatory activity in various systems. However, the role of Tab in hypertensive HF and its molecular targets remains unknown. HYPOTHESIS/PURPOSE: We aimed to investigate potential cardioprotective effects and mechanism of Tab against Ang II-induced cardiac injuries. METHODS: C57BL/6 mice were administered Ang II (at 1000 ng/kg/min) by micro-osmotic pump infusion for 30 days to develop hypertensive HF. Tab at 20 and 40 mg/kg/day was administered during the last 2 weeks to elucidate the cardioprotective properties. Cultured cardiomyocyte-like H9c2 cells and rat primary cardiomyocytes were used for mechanistic studies of Tab. RESULTS: We demonstrate for the first time that Tab provides protection against Ang II-induced cardiac dysfunction in mice, associated with reduced cardiac inflammation and fibrosis. Mechanistically, we show that Tab may interacts with TAK1 to inhibit Ang II-induced TAK1 ubiquitination and phosphorylation. Disruption of TAK1 activation by Tab blocked downstream NF-κB and JNK/P38 MAPK signaling activation and decreased cardiac inflammation and fibrosis both in vitro and in vivo. TAK1 knockdown also blocked Ang II-induced cardiomyocytes injuries and prevented the innately pharmacological effects of Tab. CONCLUSION: Our results indicate that Tab protects hearts against Ang II-mediated injuries through targeting TAK1 and inhibiting TAK1-mediated inflammatory cascade and response. Thus, Tab may be a potential therapeutic candidate for hypertensive HF.


Assuntos
Angiotensina II , Insuficiência Cardíaca , MAP Quinase Quinase Quinases/metabolismo , Angiotensina II/farmacologia , Animais , Cardiomegalia/induzido quimicamente , Fibrose , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/patologia , Alcaloides Indólicos/farmacologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Quinolinas , Ratos , Transdução de Sinais , Remodelação Ventricular
5.
Proc Natl Acad Sci U S A ; 112(19): 6224-9, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25918424

RESUMO

Antitumor substances related to vinblastine and vincristine are exclusively found in the Catharanthus roseus (Madagascar periwinkle), a member of the Apocynaceae plant family, and continue to be extensively used in cancer chemotherapy. Although in high demand, these valuable compounds only accumulate in trace amounts in C. roseus leaves. Vinblastine and vincristine are condensed from the monoterpenoid indole alkaloid (MIA) precursors catharanthine and vindoline. Although catharanthine biosynthesis remains poorly characterized, the biosynthesis of vindoline from the MIA precursor tabersonine is well understood at the molecular and biochemical levels. This study uses virus-induced gene silencing (VIGS) to identify a cytochrome P450 [CYP71D1V2; tabersonine 3-oxygenase (T3O)] and an alcohol dehydrogenase [ADHL1; tabersonine 3-reductase (T3R)] as candidate genes involved in the conversion of tabersonine or 16-methoxytabersonine to 3-hydroxy-2,3-dihydrotabersonine or 3-hydroxy-16-methoxy-2,3-dihydrotabersonine, which are intermediates in the vindorosine and vindoline pathways, respectively. Biochemical assays with recombinant enzymes confirm that product formation is only possible by the coupled action of T3O and T3R, as the reaction product of T3O is an epoxide that is not used as a substrate by T3R. The T3O and T3R transcripts were identified in a C. roseus database representing genes preferentially expressed in leaf epidermis and suggest that the subsequent reaction products are transported from the leaf epidermis to specialized leaf mesophyll idioblast and laticifer cells to complete the biosynthesis of these MIAs. With these two genes, the complete seven-gene pathway was engineered in yeast to produce vindoline from tabersonine.


Assuntos
Antineoplásicos/química , Catharanthus/genética , Alcaloides Indólicos/química , Engenharia Metabólica , Quinolinas/química , Vimblastina/análogos & derivados , Alcaloides/química , Catharanthus/metabolismo , Biologia Computacional , Desenho de Fármacos , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Dados de Sequência Molecular , Oxigenases/química , Extratos Vegetais/metabolismo , Folhas de Planta/metabolismo , Sementes/metabolismo , Vimblastina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA