Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Drugs ; 18(9)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32839397

RESUMO

Jellyfish blooms are frequent and widespread in coastal areas worldwide, often associated with significant ecological and socio-economic consequences. Recent studies have also suggested cnidarian jellyfish may act as vectors of bacterial pathogens. The scyphomedusa Rhizostoma pulmo is an outbreak-forming jellyfish widely occurring across the Mediterranean basin. Using combination of culture-based approaches and a high-throughput amplicon sequencing (HTS), and based on available knowledge on a warm-affinity jellyfish-associated microbiome, we compared the microbial community associated with R. pulmo adult jellyfish in the Gulf of Taranto (Ionian Sea) between summer (July 2016) and winter (February 2017) sampling periods. The jellyfish-associated microbiota was investigated in three distinct compartments, namely umbrella, oral arms, and the mucus secretion. Actinobacteria, Bacteroidetes, Chlamydiae, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Fusobacteria, Planctomycetes, Proteobacteria, Rhodothermaeota, Spirochaetes, Tenericutes, and Thaumarchaeota were the phyla isolated from all the three R. pulmo compartments in the sampling times. In particular, the main genera Mycoplasma and Spiroplasma, belonging to the class Mollicutes (phylum Tenericutes), have been identified in all the three jellyfish compartments. The taxonomic microbial data were coupled with metabolic profiles resulting from the utilization of 31 different carbon sources by the BIOLOG Eco-Plate system. Microorganisms associated with mucus are characterized by great diversity. The counts of culturable heterotrophic bacteria and potential metabolic activities are also remarkable. Results are discussed in terms of R. pulmo ecology, the potential health hazard for marine and human life as well as the potential biotechnological applications related to the associated microbiome.


Assuntos
Bactérias/classificação , Microbiota , Cifozoários/microbiologia , Animais , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Ribotipagem , Estações do Ano , Temperatura
2.
Sci Total Environ ; 692: 305-318, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31349170

RESUMO

Jellyfish represent an important component of marine food webs characterized by large fluctuations of population density, with the ability to abruptly form outbreaks, followed by rarity periods. In spite of considerable efforts to investigate how jellyfish populations are responding globally to anthropogenic change, available evidence still remains unclear. In the last 50 years, jellyfish are seemingly on the rise in a number of coastal areas, including the Mediterranean Sea, where jellyfish blooms periodically become an issue to marine and maritime human activities. Their impacts on marine organism welfare have been poorly quantified. The jellyfish, Rhizostoma pulmo, is an outbreak-forming scyphomedusa whose large populations spread across the Mediterranean, with increasing periodicity and variable abundance. Studies on cnidarian jellyfish suggested being important vectors of bacterial pathogens. In the present study, by combination of conventional culture-based methods and a high-throughput amplicon sequencing (HTS) approach, we characterized the diversity of the bacterial community associated with this jellyfish during their summer outbreak. Three distinct jellyfish compartments, namely umbrella, oral arms, and the mucus secretion obtained from whole specimens were screened for specifically associated microbiota. A total of 17 phyla, 30 classes, 73 orders, 146 families and 329 genera of microbial organisms were represented in R. pulmo samples with three major clades (i.e. Spiroplasma, Mycoplasma and Wolinella) representing over 90% of the retrieved total sequences. The taxonomic microbial inventory was then combined with metabolic profiling data obtained from the Biolog Eco-Plate system. Significant differences among the jellyfish compartments were detected in terms of bacterial abundance, diversity and metabolic utilization of 31 different carbon sources with the highest value of abundance and metabolic potential in the mucus secretion compared to the umbrella and oral arms. Results are discussed in the framework of the species ecology as well as the potential health hazard for marine organisms and humans.


Assuntos
Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Microbiota , Cifozoários/microbiologia , Animais , Organismos Aquáticos , Humanos , Itália , Mar Mediterrâneo , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA