Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Chinês | WPRIM | ID: wpr-1006556

RESUMO

ObjectiveTo investigate the mechanism of Atractylodis Macrocephalae Rhizoma(AMR) in the treatment of slow-transmission constipation(STC) by observing the effects of AMR on short-chain fatty acids and intestinal barries in STC mice. MethodForty-eight male KM mice were randomly divided into blank group, model group, AMR low-, medium-, high-dose groups(2.5, 5, 10 g·kg-1) and mosapride group(2.5 mg·kg-1). Except for the blank group, all groups were gavaged with loperamide suspension(5 mg·kg-1) twice daily for 14 d to construct the STC mouse model. At the same time, each drug administration group was given the corresponding drug by gavage for consecutive 14 d, the blank and model groups were gavaged with equal volume of distilled water. The effects of the treatment of AMR on body mass, defecation frequency, fecal water content and intestinal propulsion rate of mice were observed, the pathological changes of mouse colon were observed by hematoxylin-eosin(HE) staining and periodic acid-Schiff(PAS) staining, the levels of gastrin(GAS) and motilin(MTL) in serum were detected by enzyme-linked immunosorbent assay(ELISA), gas chromatography-mass spectrometry(GC-MS) was used to detect the contents of short-chain fatty acids(SCFAs) in mouse feces, real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) and Western blot were used to determine the mRNA and protein expression levels of zonula occludens-1(ZO-1), Occludin, and Claudin-1 in the colon of mice. ResultCompared with the blank group, the body mass, defecation frequency, fecal water content and intestinal propulsion rate of mice in the model group were significantly decreased(P<0.05, P<0.01), the arrangement of colonic tissues was disordered, and the number of goblet cells was reduced, the levels of GAS and MTL in serum were significantly decreased(P<0.01), and the levels of SCFAs in the feces were on a decreasing trend, with the contents of acetic acid, propionic acid, butyric acid, isobutyric acid and valeric acid were significantly decreased(P<0.05, P<0.01), the mRNA and protein expression levels of ZO-1, Occludin and Claudin-1 in the colonic tissues were significantly decreased(P<0.01). The above results suggested that STC mouse model was successfully constructed. Compared with the model group, the body mass, defecation frequency, fecal water content and intestinal propulsion rate of mice in AMP administration groups all increased significantly(P<0.05, P<0.01), the mucosal layer of the colonic tissues was structurally intact without obvious damage, and the number of goblet cells increased, serum levels of GAS and MTL were significantly increased(P<0.01), the contents of SCFAs in the feces were all on a rising trend, with the contents of acetic, propionic, butyric and isobutyric acids rising significantly(P<0.05, P<0.01), the mRNA and protein expression levels of ZO-1, Occludin and Claudin-1 in the colonic tissues were significantly increased(P<0.05, P<0.01). ConclusionAMR is able to improve the constipation symptoms in STC mice, and its mechanism may be related to increasing the contents of SCFAs in the intestine as well as promoting the mRNA and protein expression levels of ZO-1, Occludin and Claudin-1 in the colon.

2.
Pharmaceuticals (Basel) ; 16(11)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-38004377

RESUMO

The impact of yogurts made with starter culture bacteria (L. bulgaricus and S. thermophilus) and supplemented with ingredients (maitake mushrooms, quercetin, L-glutamine, slippery elm bark, licorice root, N-acetyl-D-glucosamine, zinc orotate, and marshmallow root) that can help treat leaky gut were investigated using the Caco-2 cell monolayer as a measure of intestinal barrier dysfunction. Milk from the same source was equally dispersed into nine pails, and the eight ingredients were randomly allocated to the eight pails. The control had no ingredients. The Caco-2 cells were treated with isoflavone genistein (negative control) and growth media (positive control). Inflammation was stimulated using an inflammatory cocktail of cytokines (interferon-γ, tumor necrosis factor-α, and interleukin-1ß) and lipopolysaccharide. The yogurt without ingredients (control yogurt) was compared to the yogurt treatments (yogurts with ingredients) that help treat leaky gut. Transepithelial electrical resistance (TEER) and paracellular permeability were measured to evaluate the integrity of the Caco-2 monolayer. Transmission electron microscopy (TEM), immunofluorescence microscopy (IM), and real-time quantitative polymerase chain reaction (RTQPCR) were applied to measure the integrity of tight junction proteins. The yogurts were subjected to gastric and intestinal digestion, and TEER was recorded. Ferrous ion chelating activity, ferric reducing potential, and DPPH radical scavenging were also examined to determine the yogurts' antioxidant capacity. Yogurt with quercetin and marshmallow root improved the antioxidant activity and TEER and had the lowest permeability in fluorescein isothiocyanate (FITC)-dextran and Lucifer yellow flux among the yogurt samples. TEM, IM, and RTQPCR revealed that yogurt enhanced tight junction proteins' localization and gene expression. Intestinal digestion of the yogurt negatively impacted inflammation-induced Caco-2 barrier dysfunction, while yogurt with quercetin, marshmallow root, maitake mushroom, and licorice root had the highest TEER values compared to the control yogurt. Yogurt fortification with quercetin, marshmallow root, maitake mushroom, and licorice root may improve functionality when dealing with intestinal barrier dysfunction.

3.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834178

RESUMO

The intestinal barrier comprises a single layer of epithelial cells tightly joined to form a physical barrier. Disruption or compromise of the intestinal barrier can lead to the inadvertent activation of immune cells, potentially causing an increased risk of chronic inflammation in various tissues. Recent research has suggested that specific dietary components may influence the function of the intestinal barrier, potentially offering a means to prevent or mitigate inflammatory disorders. However, the precise mechanism underlying these effects remains unclear. Bovine colostrum (BC), the first milk from cows after calving, is a natural source of nutrients with immunomodulatory, anti-inflammatory, and gut-barrier fortifying properties. This novel study sought to investigate the transcriptome in BC-treated Zonulin transgenic mice (Ztm), characterized by dysbiotic microbiota, intestinal hyperpermeability, and mild hyperactivity, applying RNA sequencing. Seventy-five tissue samples from the duodenum, colon, and brain of Ztm and wild-type (WT) mice were dissected, processed, and RNA sequenced. The expression profiles were analyzed and integrated to identify differentially expressed genes (DEGs) and differentially expressed transcripts (DETs). These were then further examined using bioinformatics tools. RNA-seq analysis identified 1298 DEGs and 20,952 DETs in the paired (Ztm treatment vs. Ztm control) and reference (WT controls) groups. Of these, 733 DEGs and 10,476 DETs were upregulated, while 565 DEGs and 6097 DETs were downregulated. BC-treated Ztm female mice showed significant upregulation of cingulin (Cgn) and claudin 12 (Cldn12) duodenum and protein interactions, as well as molecular pathways and interactions pertaining to tight junctions, while BC-treated Ztm males displayed an upregulation of transcripts like occludin (Ocln) and Rho/Rac guanine nucleotide exchange factor 2 (Arhgf2) and cellular structures and interfaces, protein-protein interactions, and organization and response mechanisms. This comprehensive analysis reveals the influence of BC treatment on tight junctions (TJs) and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling pathway gene expressions. The present study is the first to analyze intestinal and brain samples from BC-treated Ztm mice applying high-throughput RNA sequencing. This study revealed molecular interaction in intestinal barrier function and identified hub genes and their functional pathways and biological processes in response to BC treatment in Ztm mice. Further research is needed to validate these findings and explore their implications for dietary interventions aimed at improving intestinal barrier integrity and function. The MGH Institutional Animal Care and Use Committee authorized the animal study (2013N000013).


Assuntos
Colostro , Haptoglobinas , Mucosa Intestinal , Precursores de Proteínas , Transcriptoma , Animais , Bovinos , Feminino , Masculino , Camundongos , Gravidez , Mucosa Intestinal/metabolismo , Camundongos Transgênicos , Junções Íntimas/metabolismo , Haptoglobinas/genética , Precursores de Proteínas/genética
4.
Mater Today Bio ; 23: 100808, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37779918

RESUMO

Cannabis-based biomaterials have the potential to deliver anti-inflammatory therapeutics specifically to desired cells, tissues, and organs, enhancing drug delivery and the effectiveness of anti-inflammatory treatment while minimizing toxicity. As a major component of Cannabis, Cannabidiol (CBD) has gained major attention in recent years because of its potential therapeutic properties, e.g., for restoring a disturbed barrier resulting from inflammatory conditions. The aim of this study was to test the hypothesis that CBD has beneficial effects under normal and inflammatory conditions in the established non-transformed intestinal epithelial cell model IPEC-J2. CBD induced a significant increase in transepithelial electrical resistance (TER) values and a decrease in the paracellular permeability of [³H]-D-Mannitol, indicating a strengthening effect on the barrier. Under inflammatory conditions induced by tumor necrosis factor alpha (TNFα), CBD stabilized the TER and mitigated the increase in paracellular permeability. Additionally, CBD prevented the barrier-disrupting effects of TNFα on the distribution and localization of sealing TJ proteins. CBD also affected the expression of TNF receptors. These findings demonstrate the potential of CBD as a component of Cannabis-based biomaterials used in the development of novel therapeutic approaches against inflammatory pathogenesis.

5.
J Nutr Biochem ; 119: 109410, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37364793

RESUMO

The gut has been suggested as the first organ to be affected by unbalanced diets contributing to the obesogenic process. This study aimed to test a short time-course exposition model to a known pro- or anti-inflammatory enriched fatty diet to understand the early gut alterations. Male mice were exposed to the chow diet (CT), high-fat (HF) diet, or a high-fat diet partially replaced on flaxseed oil (FS), rich in omega-3 (ω3), for 14 days. HF and FS increased the total body weight mass compared with the CT group, but FS reduced the epididymal fat depot compared to HF. The bioinformatics from mice and human databases showed the Zo1-Ocln-Cldn7 tight junctions as the main protein-triad. In the ileum, the HF diet has increased IL1ß transcript and IL1ß, TNFα, and CD11b proteins, but reduced the tight junctions (Zo1, Ocln, and Cld7) compared to the CT group. Despite the FS diet being partially efficient in protecting the ileum against inflammation, the tight junctions were increased, compared to the HF group. The GPR120 and GPR40 receptors were unaffected by diets, but GPR120 was colocalized on the surface of ileum macrophages. The short period of a high-fat diet was enough to start the obesogenic process, ileum inflammation, and reduce the tight junctions. Flaxseed oil did not protect efficiently against dysmetabolism. Still, it increased the tight junctions, even without alteration on inflammatory parameters, suggesting the protection against gut permeability during early obesity development.


Assuntos
Ácidos Graxos Ômega-3 , Óleo de Semente do Linho , Humanos , Masculino , Animais , Camundongos , Óleo de Semente do Linho/farmacologia , Junções Íntimas/metabolismo , Ácidos Graxos Insaturados , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Ácidos Graxos
6.
J Anim Sci Biotechnol ; 14(1): 9, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36721201

RESUMO

BACKGROUND: This study examined the efficacy of L-citrulline supplementation on the arginine/nitric oxide metabolism, and intestinal functions of broilers during arginine deficiency. A total of 288 day-old Arbor Acre broilers were randomly assigned to either an arginine deficient basal diet (NC diet), NC diet + 0.50% L-arginine (PC diet), or NC diet + 0.50% L-citrulline (NCL diet). Production performance was recorded, and at 21 days old, chickens were euthanized for tissue collection. RESULTS: The dietary treatments did not affect the growth performance of broilers (P > 0.05), although NC diet increased the plasma alanine aminotransferase, urate, and several amino acids, except arginine (P < 0.05). In contrast, NCL diet elevated the arginine and ornithine concentration higher than NC diet, and it increased the plasma citrulline greater than the PC diet (P < 0.05). The nitric oxide concentration in the kidney and liver tissues, along with the plasma and liver eNOS activities were promoted by NCL diet higher than PC diet (P < 0.05). In the liver, the activities of arginase 1, ASS, and ASL, as well as, the gene expression of iNOS and OTC were induced by PC diet greater than NC diet (P < 0.05). In the kidney, the arginase 1, ASS and ASL enzymes were also increased by PC diet significantly higher than the NC and NCL diets. Comparatively, the kidney had higher abundance of nNOS, ASS, ARG2, and OTC genes than the liver tissue (P < 0.05). In addition, NCL diet upregulated (P < 0.05) the mRNA expression of intestinal nutrient transporters (EAAT3 and PEPT1), tight junction proteins (Claudin 1 and Occludin), and intestinal mucosal defense (MUC2 and pIgR). The intestinal morphology revealed that both PC and NCL diets improved (P < 0.05) the ileal VH/CD ratio and the jejunal VH and VH/CD ratio compared to the NC fed broilers. CONCLUSION: This study revealed that NCL diet supported arginine metabolism, nitric oxide synthesis, and promoted the intestinal function of broilers. Thus, L-citrulline may serve as a partial arginine replacement in broiler's diet without detrimental impacts on the performance, arginine metabolism and gut health of chickens.

7.
J Ethnopharmacol ; 302(Pt A): 115873, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36309114

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Houpo Mahuang Decoction (HPMHD is one of the classic traditional Chinese prescriptions that has been used in the treatment of asthma. The therapeutic effects and mechanism of HPMHD in aggravated asthma remain to be explored, especially from the perspective of metabolomics and Transient Receptor Potential Vanilloid-1 (TRPV1)/Ca2+/Tight junction (TJ) regulation. AIM OF THE STUDY: To investigate the therapeutic and metabolic regulatory effects and the underlying mechanism of HPMHD in asthmatic rats. MATERIALS AND METHODS: The asthmatic rats were administered with the corresponding HPMHD (at dosages of 5.54, 11.07, 22.14 mg/kg). Then inflammatory cells in peripheral blood and bronchoalveolar lavage fluid (BALF) were counted, the levels of interleukin (IL)-4 and IL-13 in BALF were measured, and the changes in enhanced pause (Penh) and pathological damage of lung tissues were also detected to evaluate the protective effects of HPMHD. The serum metabolic profile of HPMHD in asthmatic rats was explored using Ultra-High-Performance Liquid Chromatography-mass spectrometer (UHPLC-MS), and the regulatory effects on TRPV1 and TJs of HPMHD in asthmatic rats were detected by Western blotting analysis. In vitro, 16HBE cells were stimulated with IL-4 plus SO2 derivatives and then administered HPMHD. The intracellular Ca2+ regulated by TRPV1, and the expression levels of TRPV1 and TJ proteins (TJs) were then detected by calcium imaging and Western blotting. The effects were verified by inhibition of TRPV1 and in short hairpin RNA (shRNA)-mediated TRPV1 silencing cells. RESULTS: HPMHD significantly attenuated the airway inflammation of asthmatic rats, and reduced the levels of inflammatory cells in peripheral blood and BALF as well as the levels of IL-4 plus IL-13 in BALF. In addition, the airway hyperresponsiveness and lung pathological damage were alleviated. Serum metabolomic analysis showed that 31 metabolites were differentially expressed among the normal saline-, model-, and HPMHD-treated rats. Pathway enrichment analysis showed that the metabolites were involved in 45 pathways, among which, TJs regulation-relevant pathway was associated with the Ca2+ concentration change mediated by the TRP Vanilloid channel. In vivo and in vitro experiments indicated that HPMHD reduced the concentration of intracellular Ca2+ via suppressing the expression and activation of TRPV1, increased the expression of ZO-1, Occludin, and Claudin-3, and protected the integrity of TJs. CONCLUSION: The current study indicates that HPMHD alleviates rat asthma and participates in the regulation of serum metabolism. The anti-asthma effects of HPMHD might be related to the protection of TJs by inhibiting the intracellular Ca2+ concentration via TRPV1.


Assuntos
Asma , Interleucina-13 , Ratos , Animais , Camundongos , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Asma/patologia , Pulmão , Modelos Animais de Doenças , Ovalbumina/farmacologia , Líquido da Lavagem Broncoalveolar , Camundongos Endogâmicos BALB C , Canais de Cátion TRPV/metabolismo
8.
Biol Trace Elem Res ; 201(7): 3461-3473, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36208383

RESUMO

Selenium deficiency can affect the level of selenoprotein in organs and tissues and cause inflammation. However, the mechanism of selenium deficiency on jejunal injury in chickens remains unclear. In this study, we established a selenium deficiency model in chickens by feeding a low selenium diet and observed ultrastructural and pathological changes in the jejunum. The expression levels of 25 selenoproteins, the levels of oxidative stress, tight junction (TJ) proteins, and antimicrobial peptides (AMP), as well as the expression levels of factors related to inflammatory signaling pathways, were examined in the intestine and analyzed using principal component analysis (PCA). The results of PCA and quantitative real-time PCR (qRT-PCR) showed that selenium deficiency mainly affected the expression of antioxidant selenoproteins in chicken jejunum, especially glutathione peroxidases, thioredoxin reductase, and iodothyronine deiodinase, thus weakening the antioxidant function in the intestine and inducing oxidative stress. We also found disruption of intestinal TJ structures, a significant reduction in TJ protein expression, and downregulation of antimicrobial peptide levels, suggesting that selenium deficiency led to damage of the intestinal barrier. In addition, a significant increase in inflammatory cell infiltration and expression of inflammatory factors was observed in the jejunum, indicating that selenium deficiency induces inflammatory injury. In conclusion, selenium deficiency downregulates antioxidant selenoproteins levels, induces oxidative stress, decreases intestinal AMP levels, and leads to inflammatory injury and disruption of the intestinal barrier in the jejunum. These results shed new light on the molecular mechanisms of intestinal damage caused by selenium deficiency.


Assuntos
Desnutrição , Selênio , Animais , Selênio/farmacologia , Antioxidantes/metabolismo , Galinhas/metabolismo , Jejuno/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Estresse Oxidativo , Desnutrição/metabolismo , Peptídeos Antimicrobianos
9.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36145342

RESUMO

Corticotropin-releasing factor (CRF) mediates stress responses and alters the gut-brain axis, contributing to the pathogenesis of irritable bowel syndrome (IBS), which is recognized by abdominal pain accompanied by bowel habit disturbance. STW 5-II, a mixture of six herbal extracts, is clinically effective in functional dyspepsia and IBS. Here we aimed to establish an organoid-based stress-induced IBS-like model to investigate the mechanisms of action of STW 5-II. STW 5-II (10, 20, and 30 g/mL) was applied to intestinal organoids for 24 h before being treated with CRF (100 nM) for 48 h. The effects of STW 5-II on CRF signaling were investigated using several in vitro and in silico approaches. STW 5-II activities were further explored by in silico PyRx screening followed by molecular docking of the main 52 identified compounds in STW 5-II with both CRF receptors CRFR1 and CRFR2. CRF exposure stimulated inflammation and increased proinflammatory mediators, while STW 5-II dose-dependently counteracted these effects. STW 5-II inhibited CRF-induced claudin-2 overexpression and serotonin release. Docking of the STW 5-II constituents oleanolic acid and licorice saponin G2 to CRFR1 and CRFR2, respectively, showed a good affinity. These multi-target activities support and elucidate the clinically proven efficacy of STW 5-II in disorders of gut-brain interaction.

10.
Front Pharmacol ; 13: 940463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003517

RESUMO

Background: Chronic stress-induced diarrhea is a common clinical condition, characterized by an abnormal bowel movement and loose stools, which lacks effective treatment in the clinic. Si-Ni-San (SNS) is a compound traditional Chinese medicine extensively used in China for stress-related diarrhea. However, the mechanism is unclear. Methods: Male Wistar rats (200 ± 20 g) were placed in a restraint cylinder and fixed horizontally for 3 h once daily for 21 consecutive days to establish a chronic restraint stress (CRS) rat model. SNS (0.6944 g/kg or 1.3888 g/kg) was given by gavage 1 h before the restraint once daily for 21 consecutive days. We examined the fecal score, dopamine ß hydroxylase (DßH), and c-fos expression in locus coeruleus, norepinephrine (NE) content in ileum and plasma, expression of α1 adrenergic receptors, MLCK, MLC, and p-MLC in the colon and mesenteric arteries, contraction of isolated mesenteric arteries, The expression of subunit δ of ATP synthase (ATP5D) in intestinal tissues, ATP, ADP, and AMP content in the ileum and colon, occludin expression between ileum epithelial cells, the number of enterochromaffin cells (ECs) and mast cells (MCs) in the ileum, and 5-hydroxytryptamine (5-HT) content in the ileum and plasma. Results: After SNS treatment, the fecal score was improved. The increased expression of DßH and c-fos in locus coeruleus was inhibited. SNS suppressed the increased NE content in the ileum and plasma, down-regulated α1 adrenergic receptors in mesenteric arteries and MLCK, MLC, p-MLC in the colon and mesenteric arteries, and inhibited the contraction of mesenteric arteries. SNS also increased the ATP content in the ileum and colon, inhibited low expression of ATP5D in intestinal tissues, inhibited the decrease of ATP/ADP in the ileum and ATP/AMP in the colon, and up-regulated the occludin expression between ileum epithelial cells. In addition, SNS inhibited the increase of ECs and MCs in the ileum and the increase of 5-HT content in the ileum and plasma. Conclusion: This study demonstrated that SNS could improve CRS-induced abnormal feces in rats. This effect was related to the inhibition of CRS-induced increased expression of DßH and c-fos in the locus coeruleus, NE content in the ileum and plasma, and the contraction of isolated mesenteric arteries; inhibition of energy metabolism abnormality and decreased occludin expression; inhibition of increased ECs and MCs in the ileum, and 5-HT content in the ileum and plasma.

11.
Front Vet Sci ; 9: 947276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898543

RESUMO

Vitamin D signaling is important for intestinal homeostasis. An increase in vitamin D receptors in immune cells can modulate cell phenotype and cytokine secretion. Cytokines regulate both pro- (interleukin 17; IL-17) and anti-inflammatory (IL-10) responses triggered by external stimuli. Inflammation in intestinal tissues can disrupt the structure and the remodeling of epithelial tight junction complexes, thus, compromising the protective barrier. The objective of the study was to determine the impact of dietary supplementation with 25-hydroxycholecalciferol (25OHD3), a hydroxylated metabolite of vitamin D, on intestinal cytokine abundance and epithelial barrier integrity over time in broilers. A randomized complete block design experiment was conducted to evaluate the effect of dietary 25OHD3 inclusion on relative protein expression of the cytokines, IL-17 and IL-10, and tight junction proteins, Zona Occludens 1 (ZO-1), and Claudin-1 (CLD-1), in broiler chicken duodenum and ileum from 3 to 21 days post-hatch. On day 0, male chicks (n = 168) were randomly assigned to raised floor pens. Experimental corn-soybean meal-based treatments were as follows: (1) a common starter diet containing 5,000 IU of D3 per kg of feed (VITD3) and (2) a common starter diet containing 2,240 IU of D3 + 2,760 IU of 25OHD3 per kg of feed (25OHD3) fed from days 0 to 21. On days 3, 6, 9, 12, 15, 18, and 21, 12 birds per treatment were euthanized to collect tissue samples for quantitative, multiplex, and fluorescent Western blot analysis. Target proteins were quantified using Image Quant TL 8.1 and expressed relative to total protein. Feeding 25OHD3 post-hatch decreased ileal IL-10 (anti-inflammatory) protein expression in 21-day-old broilers compared with VITD3 only (P = 0.0190). Broilers fed only VITD3 post-hatch had greater IL-17 (pro-inflammatory) protein expression in the ileum at 18 and 21 days-of-age (P = 0.0412) than those that fed 25OHD3. Dietary inclusion of 25OHD3 lowered the abundance of key inflammatory cytokines in the ileum of young broilers.

12.
Porcine Health Manag ; 8(1): 21, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590351

RESUMO

BACKGROUND: Gut microbial anaerobic fermentation produces short-chain fatty acids (SCFA), which are important substrates for energy metabolism and anabolic processes in mammals. SCFA can regulate the inflammatory response and increase the intestinal barrier integrity by enhancing the tight junction protein (TJp) functions, which prevent the passage of antigens through the paracellular space. The aim of this study was to evaluate the effect of in vitro supplementation with SCFA (acetate, propionate, butyrate, and lactate) at different concentrations on viability, nitric oxide (NO) release (oxidative stress parameter) in cell culture supernatants, and gene expression of TJp (occludin, zonula occludens-1, and claudin-4) and pro-inflammatory pathway-related mediators (ß-defensin 1, TNF-α, and NF-κB) in intestinal porcine epithelial cell line J2 (IPEC-J2). RESULTS: The SCFA tested showed significant effects on IPEC-J2, which proved to be dependent on the type and specific concentration of the fatty acid. Acetate stimulated cell viability and NO production in a dose-dependent manner (P < 0.05), and specifically, 5 mM acetate activated the barrier response through claudin-4, and immunity through ß-defensin 1 (P < 0.05). The same effect on these parameters was shown by propionate supplementation, especially at 1 mM (P < 0.05). Contrarily, lactate and butyrate showed different effects compared to acetate and propionate, as they did not stimulate an increase of cell viability and regulated barrier integrity through zonula occludens-1 and occludin, especially at 30 mM and 0.5 mM, respectively (P < 0.05). Upon supplementation with SCFA, the increase of NO release at low levels proved not to have detrimental effects on IPEC-J2 proliferation/survival, and in the case of acetate and propionate, such levels were associated with beneficial effects. Furthermore, the results showed that SCFA supplementation induced ß-defensin 1 (P < 0.05) that, in turn, may have been involved in the inhibition of TNF-α and NF-κB gene expression (P < 0.05). CONCLUSIONS: The present study demonstrates that the supplementation with specific SCFA in IPEC-J2 can significantly modulate the process of barrier protection, and that particularly acetate and propionate sustain cell viability, low oxidative stress activity and intestinal barrier function.

13.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35563235

RESUMO

Migraine is a common brain-disorder that affects 15% of the population. Converging evidence shows that migraine is associated with gastrointestinal disorders. However, the mechanisms underlying the interaction between the gut and brain in patients with migraine are not clear. In this study, we evaluated the role of the short-chain fatty acids (SCFAs) as sodium propionate (SP) and sodium butyrate (SB) on microbiota profile and intestinal permeability in a mouse model of migraine induced by nitroglycerine (NTG). The mice were orally administered SB and SP at the dose of 10, 30 and 100 mg/kg, 5 min after NTG intraperitoneal injections. Behavioral tests were used to evaluate migraine-like pain. Histological and molecular analyses were performed on the intestine. The composition of the intestinal microbiota was extracted from frozen fecal samples and sequenced with an Illumina MiSeq System. Our results demonstrated that the SP and SB treatments attenuated hyperalgesia and pain following NTG injection. Moreover, SP and SB reduced histological damage in the intestine and restored intestinal permeability and the intestinal microbiota profile. These results provide corroborating evidence that SB and SP exert a protective effect on central sensitization induced by NTG through a modulation of intestinal microbiota, suggesting the potential application of SCFAs as novel supportive therapies for intestinal disfunction associated with migraine.


Assuntos
Microbioma Gastrointestinal , Transtornos de Enxaqueca , Animais , Ácido Butírico/farmacologia , Ácido Butírico/uso terapêutico , Suplementos Nutricionais , Modelos Animais de Doenças , Ácidos Graxos Voláteis/efeitos adversos , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Camundongos , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/tratamento farmacológico , Nitroglicerina/efeitos adversos , Dor/tratamento farmacológico
14.
Eur J Nutr ; 61(7): 3437-3447, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35578042

RESUMO

PURPOSE: Glycyrrhizin (GL) and its metabolites 18α-glycyrrhetinic acid (18α-GA) and 18ß-glycyrrhetinic acid (18ß-GA) are used as traditional medicine and food sweeteners. As the major rout of their administration is oral way, therefore their impact on intestinal epithelial cells are investigated. METHODS: The effects of GL and its metabolites on cell viability using MTT assay, on cytotoxicity using LDH release, on integrity of intestinal epithelial cells by measuring the transepithelial electrical resistance (TEER) and Luciferase permeability tests, on the expression of tight junction proteins at mRNA and protein level by qPCR and western blot techniques, and ultimately on the rate of test compounds absorption via Caco-2 cells monolayer were investigated. RESULTS: MTT assay showed a concentration- and time-dependent decrease in metabolic activity of Caco-2 cells induced by GL, 18α-GA, and 18ß-GA, while only 18ß-GA increased the LDH leakage. The monolayer integrity of Caco-2 cells in TEER assay only was affected by 18ß-GA. The permeability of paracellular transport marker was increased by 18α-GA and 18ß-GA and not GL. In transport studies, only metabolites were able to cross from Caco-2 cells monolayer. qPCR analyses revealed that 18ß-GA upregulated the expression of claudin-1 and -4, occludin, junctional adhesion molecules and zonula occludens-1, while 18α-GA upregulated only claudin-4. The expression of claudin-4 at protein level was downregulated non-significantly at 50 µM concentration of 18ß-GA. CONCLUSION: Our results suggest that 18ß-GA may cause cellular damages at higher concentrations on gastrointestinal cells and requires a remarkable attention of the nutraceutical and pharmaceutical industries.


Assuntos
Ácido Glicirretínico , Células CACO-2 , Claudina-4/metabolismo , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/metabolismo , Ácido Glicirretínico/farmacologia , Ácido Glicirrízico/metabolismo , Ácido Glicirrízico/farmacologia , Humanos , Mucosa Intestinal/metabolismo , Permeabilidade
15.
J Ethnopharmacol ; 293: 115217, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35337920

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cigarette smoke (CS) is a common environmental irritant and a risk factor for asthma, as it induces as well as aggravates asthmatic attacks. The injured airway epithelial tight junctions (TJs) aggravate asthma. CS can aggravate asthma by activating the transient receptor potential ankyrin A1 (TRPA1) channel and enhancing TJs destruction. Houpo Mahuang decoction (HPMHD) is a classic traditional Chinese prescription for the treatment of asthma. However, its underlying action mechanism is unclear. AIM OF THE STUDY: The present study aimed to evaluate the effect of HPMHD on the asthma phenotype and the regulation of TRPA1 and TJs in a CS-induced mouse model of aggravated asthma. MATERIALS AND METHODS: Under optimized chromatographic and mass spectrometry conditions, the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) technique was used to detect and analyze the major chemical components of HPMHD. C57BL/6 female mice were randomly divided into seven groups, viz, normal saline (NS) group, ovalbumin (OVA) + CS group, dexamethasone group, HPMHD high-dose group and low-dose groups, n-butanol extract group, and ethyl acetate extract group, with 10 mice in each group. OVA sensitization and challenge, and CS exposure were used to establish the aggravated asthma model. As the main indices to evaluate the protective effect of HPMHD, the eosinophils count in peripheral blood, percentages of inflammatory cells classified and the levels of interleukin (IL)-4, IL-5, IL-13 in the bronchoalveolar lavage fluid (BALF), airway responsiveness enhanced pause (Penh), and changes in lung histopathology were determined and compared among the groups. The mRNA and protein expression of TRPA1 and TJs in lung tissue was also examined. RESULTS: Using UPLC-QTOF-MS, the chemical components of HPMHD, including ephedrine, pseudoephedrine, laetrile, and amygdalin amide, were identified by 51 signal peaks. Compared with those in the NS group, the eosinophil number in the peripheral blood and the eosinophils and neutrophils percentages in BALF of the OVA + CS group were remarkably increased. Following the inhalation of 50 µl of acetylcholine chloride (ACH) at doses of 25 and 50 mg/mL, the Penh increased significantly (p < 0.01). Moreover, in the OVA + CS group, hematoxylin and eosin (H&E) staining of lung tissue showed a significant number of infiltrated inflammatory cells, increased mucus secretion in the lumen, damaged bronchial mucosa, increased thickness of tracheal wall, and increased score of lung damage (p < 0.01). The IL-4/5/13 levels were also remarkably increased (p < 0.01). The protein as well as gene expression of both ZO-1 and occludin decreased markedly in the lung tissue, while the expression of TRPA1 and claudin-2 was increased (p < 0.05, p < 0.01). Next, the OVA + CS group and the treatment groups were compared. The inflammatory cells, Penh value, and levels of IL-4/5/13 were significantly reduced, and less lung injury was observed in the treatment groups. The gene and protein levels of TRPA1 and TJs were corrected (p < 0.05, p < 0.01); the effects on the HPMHD high-dose and ethyl acetate extract groups were particularly remarkable. CONCLUSIONS: HPMHD reduced airway hyperresponsiveness, inflammatory cell recruitment and Th2 cytokine secretion in CS-induced aggravated asthma mice, in a manner potentially dependent on regulation of the expression of TRPA1 and TJ proteins. Both the n-butanol and ethyl acetate extracts contained the active ingredients, especially the ethyl acetate extract.


Assuntos
Asma , Fumar Cigarros , Canais de Potencial de Receptor Transitório , 1-Butanol/farmacologia , Animais , Anquirinas/efeitos adversos , Anquirinas/metabolismo , Asma/induzido quimicamente , Asma/tratamento farmacológico , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Feminino , Interleucina-4/metabolismo , Pulmão , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ovalbumina/farmacologia , Canal de Cátion TRPA1 , Junções Íntimas/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
16.
Am J Physiol Regul Integr Comp Physiol ; 322(3): R192-R203, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35043679

RESUMO

Gastrointestinal complaints are often reported during ascents to high altitude (>2,500 m), though their etiology is not known. One potential explanation is injury to the intestinal barrier which has been implicated in the pathophysiology of several diseases. High-altitude exposures can reduce splanchnic perfusion and blood oxygen levels causing hypoxic and oxidative stress. These stressors might injure the intestinal barrier leading to consequences such as bacterial translocation and local/systemic inflammatory responses. The purpose of this mini-review is to 1) discuss the impact of high-altitude exposures on intestinal barrier dysfunction and 2) present medications and dietary supplements which may have relevant impacts on the intestinal barrier during high-altitude exposures. There is a small but growing body of evidence which shows that acute exposures to high altitudes can damage the intestinal barrier. Initial data also suggest that prolonged hypoxic exposures can compromise the intestinal barrier through alterations in immunological function, microbiota, or mucosal layers. Exertion may worsen high-altitude-related intestinal injury via additional reductions in splanchnic circulation and greater hypoxemia. Collectively these responses can result in increased intestinal permeability and bacterial translocation causing local and systemic inflammation. More research is needed to determine the impact of various medications and dietary supplements on the intestinal barrier during high-altitude exposures.


Assuntos
Doença da Altitude/fisiopatologia , Altitude , Hipóxia/fisiopatologia , Intestinos/fisiopatologia , Humanos , Estresse Oxidativo/fisiologia , Permeabilidade
17.
Fish Shellfish Immunol ; 120: 271-279, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34863945

RESUMO

Previous research has shown that dietary α-ketoglutarate (AKG) supplementation can promote growth performance, phosphorus metabolism, and skeletal development of juvenile mirror carp (Cyprinus carpio) fed low phosphorous diets. In the current study, we tested the hypothesis that 1% AKG dietary supplementation reduces the dietary phosphorus requirements of juvenile mirror carp. A total of 12 experimental isoproteic and isolipidic diets containing available phosphorus levels of 0.21%, 0.38%, 0.55%, 0.72%, 0.89%, and 1.07% dry matter with either 0 or 1% AKG supplementation were used in the study. A total of 1080 juvenile fish of similar initial weight (0.90 ± 0.03 g) were selected and randomly assigned to 36 tanks. There were three replicates for each experimental group, with a density of 30 fish per tank. Fish were fed to satiation for 8 weeks. The results indicated that fish fed the diet supplemented with 1% AKG showed a significant increase in final body weight (FBW), weight gain rate (WGR), feed intake (FI) and phosphorus intake (PI) compared to the diet without AKG (P < 0.05). FBW and WGR increased significantly with increasing available phosphorus levels from 0.21% to 0.89% (P < 0.05). The mRNA expression of ZO-1, claudin 11, and occludin was significantly increased by dietary AKG and phosphorus (P < 0.05). The mRNA expression of Nrf2, GPx1a, and CAT in the Nrf2 signaling pathway was significantly increased by dietary AKG and phosphorus (P < 0.05). The expression levels of IL-10 and TGF-ß2 were significantly increased by dietary AKG and phosphorus, but the expression levels of IL-1ß, IL-8, IL-10, TNF-a and NF-κB were significantly decreased with dietary AKG and phosphorus supplementation (P < 0.05). Based on second-order polynomial regression analysis of WGR against dietary phosphorus levels, the optimal dietary phosphorus level was found to be 0.79% of dry feed for juvenile mirror carp fed a diet with 1% AKG supplementation and 0.93% of dry feed without AKG supplementation. This study confirmed that AKG supplementation can reduce the phosphorus requirements of juvenile mirror carp by promoting growth performance, intestinal tight junctions, Nrf2 signaling pathways and immune response.


Assuntos
Carpas , Ácidos Cetoglutáricos/administração & dosagem , Fator 2 Relacionado a NF-E2 , Fósforo na Dieta , Junções Íntimas , Ração Animal/análise , Animais , Carpas/imunologia , Citocinas/imunologia , Dieta/veterinária , Suplementos Nutricionais , Proteínas de Peixes/genética , Imunidade , Fator 2 Relacionado a NF-E2/genética , RNA Mensageiro , Transdução de Sinais
18.
Allergol Int ; 71(1): 3-13, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34916117

RESUMO

Atopic dermatitis (AD) is the most common chronic skin inflammatory disease, with a profound impact on patients' quality of life. AD varies considerably in clinical course, age of onset and degree to which it is accompanied by allergic and non-allergic comorbidities. Skin barrier impairment in both lesional and nonlesional skin is now recognized as a critical and often early feature of AD. This may be explained by a number of abnormalities identified within both the stratum corneum and stratum granulosum layers of the epidermis. The goal of this review is to provide an overview of key barrier defects in AD, starting with a historical perspective. We will also highlight some of the commonly used methods to characterize and quantify skin barrier function. There is ample opportunity for further investigative work which we call out throughout this review. These include: quantifying the relative impact of individual epidermal abnormalities and putting this in a more holistic view with physiological measures of barrier function, as well as determining whether these barrier-specific endotypes predict clinical phenotypes (e.g. age of onset, natural history, comorbidities, response to therapies, etc). Mechanistic studies with new (and in development) AD therapies that specifically target immune pathways, Staphylococcus aureus abundance and/or skin barrier will help us understand the dynamic crosstalk between these compartments and their relative importance in AD.


Assuntos
Dermatite Atópica/imunologia , Epiderme/imunologia , Animais , Progressão da Doença , Humanos , Qualidade de Vida , Índice de Gravidade de Doença
19.
Nutrients ; 15(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36615829

RESUMO

BACKGROUND: The epithelial tight junction is an important intestinal barrier whose disruption can lead to the release of harmful intestinal substances into the circulation and cause damage to systemic injury. The maintenance of intestinal epithelial tight junctions is closely related to energy homeostasis and mitochondrial function. Nicotinamide riboside (NR) is a NAD booster that can enhance mitochondrial biogenesis in liver. However, whether NR can prevent ethanol-induced intestinal barrier dysfunction and the underlying mechanisms remain unclear. METHODS: We applied the mouse NIAAA model (chronic plus binge ethanol feeding) and Caco-2 cells to explore the effects of NR on ethanol-induced intestinal barrier dysfunction and the underlying mechanisms. NAD homeostasis and mitochondrial function were measured. In addition, knockdown of SirT1 in Caco-2 cells was further applied to explore the role of SirT1 in the protection of NR. RESULTS: We found that ethanol increased intestinal permeability, increased the release of LPS into the circulation and destroyed the intestinal epithelial barrier structure in mice. NR supplementation attenuated intestinal barrier injury. Both in vivo and in vitro experiments showed that NR attenuated ethanol-induced decreased intestinal tight junction protein expressions and maintained NAD homeostasis. In addition, NR supplementation activated SirT1 activity and increased deacetylation of PGC-1α, and reversed ethanol-induced mitochondrial dysfunction and mitochondrial biogenesis. These effects were diminished with the knockdown of SirT1 in Caco-2 cells. CONCLUSION: Boosting NAD by NR alleviates ethanol-induced intestinal epithelial barrier damage via protecting mitochondrial function in a SirT1-dependent manner.


Assuntos
Etanol , NAD , Humanos , Camundongos , Animais , Etanol/farmacologia , NAD/metabolismo , Sirtuína 1/metabolismo , Células CACO-2 , Mitocôndrias/metabolismo , Niacinamida/farmacologia , Mucosa Intestinal/metabolismo , Suplementos Nutricionais
20.
J Ocul Pharmacol Ther ; 38(1): 74-84, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34818079

RESUMO

Purpose: To investigate the impact of oxidative stress, which is a hallmark of Fuchs dystrophy, on the barrier function of the corneal endothelial cells. Methods: Experiments were carried out with cultured bovine and porcine corneal endothelial cells. For oxidative stress, cells were supplemented with riboflavin (Rf) and exposed to UV-A (15-30 min) to induce Type-1 photochemical reactions that release H2O2. The effect of the stress on the barrier function was assayed by transendothelial electrical resistance (TER) measurement. In addition, the associated changes in the organization of the microtubules, perijunctional actomyosin ring (PAMR), and ZO-1 were evaluated by immunocytochemistry, which was also repeated after direct exposure to H2O2 (100 µM, 1 h). Results: Exposure to H2O2 led to the disassembly of microtubules and the destruction of PAMR. In parallel, the contiguous locus of ZO-1 was disrupted, marking a loss of barrier integrity. Accordingly, a sustained loss in TER was induced when cells in the Rf-supplemented medium were exposed to UV-A. However, the addition of catalase (7,000 U/mL) to rapidly decompose H2O2 limited the loss in TER. Furthermore, the adverse effects on microtubules, PAMR, and ZO-1 were suppressed by including catalase, ascorbic acid (1 mM; 30 min), or pretreatment with p38 MAP kinase inhibitor (SB-203580; 10 µM, 1 h). Conclusions: Acute oxidative stress induces microtubule disassembly by a p38 MAP kinase-dependent mechanism, leading to the destruction of PAMR and loss of barrier function. The response to oxidative stress is reminiscent of the (TNF-α)-induced breakdown of barrier failure in the corneal endothelium.


Assuntos
Citoesqueleto/metabolismo , Endotélio Corneano/metabolismo , Estresse Oxidativo/fisiologia , Animais , Ácido Ascórbico/farmacologia , Bovinos , Distrofia Endotelial de Fuchs/patologia , Microtúbulos/metabolismo , Suínos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA