Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.432
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 133, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570815

RESUMO

BACKGROUND: Obesity is a serious disease with an alarmingly high incidence that can lead to other complications in both humans and dogs. Similar to humans, obesity can cause metabolic diseases such as diabetes in dogs. Natural products may be the preferred intervention for metabolic diseases such as obesity. The compound 1-deoxynojirimycin, present in Morus leaves and other sources has antiobesity effects. The possible antiobesity effect of 1-deoxynojirimycin containing Morus alba leaf-based food was studied in healthy companion dogs (n = 46) visiting the veterinary clinic without a history of diseases. Body weight, body condition score (BCS), blood-related parameters, and other vital parameters of the dogs were studied. Whole-transcriptome of blood and gut microbiome analysis was also carried out to investigate the possible mechanisms of action and role of changes in the gut microbiome due to treatment. RESULTS: After 90 days of treatment, a significant antiobesity effect of the treatment food was observed through the reduction of weight, BCS, and blood-related parameters. A whole-transcriptome study revealed differentially expressed target genes important in obesity and diabetes-related pathways such as MLXIPL, CREB3L1, EGR1, ACTA2, SERPINE1, NOTCH3, and CXCL8. Gut microbiome analysis also revealed a significant difference in alpha and beta-diversity parameters in the treatment group. Similarly, the microbiota known for their health-promoting effects such as Lactobacillus ruminis, and Weissella hellenica were abundant (increased) in the treatment group. The predicted functional pathways related to obesity were also differentially abundant between groups. CONCLUSIONS: 1-Deoxynojirimycin-containing treatment food have been shown to significantly improve obesity. The identified genes, pathways, and gut microbiome-related results may be pursued in further studies to develop 1-deoxynojirimycin-based products as candidates against obesity.


Assuntos
Diabetes Mellitus , Doenças do Cão , Microbioma Gastrointestinal , Doenças Metabólicas , Morus , Humanos , Animais , Cães , 1-Desoxinojirimicina/farmacologia , Extratos Vegetais/farmacologia , Obesidade/tratamento farmacológico , Obesidade/veterinária , Diabetes Mellitus/veterinária , Doenças Metabólicas/veterinária , Folhas de Planta
2.
Zhongguo Zhong Yao Za Zhi ; 49(3): 702-716, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621874

RESUMO

Uridine diphosphate glycosyltransferase(UGT) is involved in the glycosylation of a variety of secondary metabolites in plants and plays an important role in plant growth and development and regulation of secondary metabolism. Based on the genome of a diploid Chrysanthemum indicum, the UGT gene family from Ch. indicum was identified by bioinformatics methods, and the physical and chemical properties, subcellular localization prediction, conserved motif, phylogeny, chromosome location, gene structure, and gene replication events of UGT protein were analyzed. Transcriptome and real-time fluorescence quantitative polymerase chain reaction(PCR) were used to analyze the expression pattern of the UGT gene in flowers and leaves of Ch. indicum. Quasi-targeted metabolomics was used to analyze the differential metabolites in flowers and leaves. The results showed that a total of 279 UGT genes were identified in the Ch. indicum genome. Phylogenetic analysis showed that these UGT genes were divided into 8 subfamilies. Members of the same subfamily were distributed in clusters on the chromosomes. Tandem duplications were the main driver of the expansion of the UGT gene family from Ch. indicum. Structural domain analysis showed that 262 UGT genes had complete plant secondary metabolism signal sequences(PSPG box). The analysis of cis-acting elements indicated that light-responsive elements were the most ubiquitous elements in the promoter regions of UGT gene family members. Quasi-targeted metabolome analysis of floral and leaf tissue revealed that most of the flavonoid metabolites, including luteolin-7-O-glucoside and kaempferol-7-O-glucoside, had higher accumulation in flowers. Comparative transcriptome analysis of flower and leaf tissue showed that there were 72 differentially expressed UGT genes, of which 29 genes were up-regulated in flowers, and 43 genes were up-regulated in leaves. Correlation network and phylogenetic analysis showed that CindChr9G00614970.1, CindChr2G00092510.1, and CindChr2G00092490.1 may be involved in the synthesis of 7-O-flavonoid glycosides in Ch. indicum, and real-time fluorescence quantitative PCR analysis further confirmed the reliability of transcriptome data. The results of this study are helpful to understand the function of the UGT gene family from Ch. indicum and provide data reference and theoretical basis for further study on the molecular regulation mechanism of flavonoid glycosides synthesis in Ch. indicum.


Assuntos
Chrysanthemum , Glicosiltransferases , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Chrysanthemum/genética , Difosfato de Uridina , Filogenia , Reprodutibilidade dos Testes , Plantas/metabolismo , Flavonoides , Glicosídeos , Regulação da Expressão Gênica de Plantas
3.
Zhongguo Zhong Yao Za Zhi ; 49(3): 717-727, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621875

RESUMO

Transcriptome sequencing was employed to mine the simple sequence repeat(SSR) locus information of Saposhnikovia divaricata and design specific primers, which aimed to provide a basis for the research on the genetic diversity of S. divaricata germplasm resources. The seed purity, 1 000-seed weight, germination rate, and seed vigor were determined. MISA was used to obtain the SSR locus information from 12 606 unigene longer than 1 kb in the transcriptome database. Forty-three pairs of SSR primers designed in Primer 3 were used to analyze the polymorphism of 28 S. divaricata samples of different sources. The results showed that there were differences in the seed purity, 1 000-seed weight, germination rate, vigor, and seed length and width among S. divaricata samples of different sources. Particularly, the germination rate and seed vigor had significant differences, and HB-ZJK1, NMG-CF4, NMG-BT, NMG-HLE1, and NMG-CF2 had significantly higher 1 000-seed weight, germination rate, and seed vigor than the samples of other sources. Among the 86 233 unigene, 12 606(14.62%) unigene contained 15 958 SSR loci, with one SSR locus every 5 009 bp on average. The SSR loci were mainly single nucleotide and dinucleotide repeats, which were dominated by G/C and TC/AG, respectively. All the primers were screened by using 28 S. divaricata sample from different habitats, and the primers corresponding to the amplification products with clear bands and stable polymorphism were obtained. The clustering results of the biological characteristics and genetic diversity of the 28 S. divaricata samples were basically consistent, and the samples of the same origin(HB-AG1, HB-AG2, HB-ZJK1, and HB-ZJK2) generally gathered together and had close genetic relationship. The SSRs in S. divaricata transcriptome has high frequency, rich types, and high polymorphism, which provides candidate molecular markers for the germplasm identification, genetic map construction, and molecular-assisted breeding.


Assuntos
Apiaceae , Transcriptoma , Polimorfismo Genético , Repetições de Microssatélites/genética , Apiaceae/genética , Etiquetas de Sequências Expressas
4.
Physiol Mol Biol Plants ; 30(3): 383-399, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38633273

RESUMO

Acanthopanax gracilistylus is a deciduous plant in the family Araliaceae, which is commonly used in Chinese herbal medicine, as the root bark has functions of nourishing the liver and kidneys, removing dampness and expelling wind, and strengthening the bones and tendons. Kaurenoic acid (KA) is the main effective substance in the root bark of A. gracilistylus with strong anti-inflammatory effects. To elucidate the KA biosynthesis pathway, second-generation (DNA nanoball) and third-generation (Pacific Biosciences) sequencing were performed to analyze the transcriptomes of the A. gracilistylus leaves, roots, and stems. Among the total 505,880 isoforms, 408,954 were annotated by seven major databases. Sixty isoforms with complete open reading frames encoding 11 key enzymes involved in the KA biosynthesis pathway were identified. Correlation analysis between isoform expression and KA content identified a total of eight key genes. Six key enzyme genes involved in KA biosynthesis were validated by real-time quantitative polymerase chain reaction. Based on the sequence analysis, the spatial structure of ent-kaurene oxidase was modeled, which plays roles in the three continuous oxidations steps of KA biosynthesis. This study greatly enriches the transcriptome data of A. gracilistylus and facilitates further analysis of the function and regulation mechanism of key enzymes in the KA biosynthesis pathway. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01436-7.

5.
Diabetes Metab Syndr Obes ; 17: 1795-1808, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655491

RESUMO

Purpose: To investigate the therapeutic effect and underlying mechanism of a traditional Chinese medicine (TCM) mixture consisting of Astragalus, rhubarb, and saffron in a mouse model of diabetic kidney disease (DKD). Methods: Forty-eight db/db mice received no TCM (DKD model), low-dose TCM, medium-dose TCM, or high-dose TCM, and an additional 12 db/m mice received no TCM (normal control). Intragastric TCM or saline (controls) was administered daily for 24 weeks. Blood glucose, body weight, serum creatinine (SCr), blood urea nitrogen (BUN), blood lipids, and urinary microalbumin were measured every four weeks, and the urinary albumin excretion rate (UAER) was calculated. After 24 weeks, kidney tissues were collected for transcriptome sequencing, and the main functions of these genes were determined via functional enrichment analysis. Results: Compared with the DKD model group, the medium-dose and high-dose TCM groups had significantly decreased levels of SCr, BUN, total cholesterol, triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and UAER (all p<0.05). We identified 42 genes that potentially functioned in this therapeutic response, and the greatest effect on gene expression was in the high-dose TCM group. We also performed functional enrichment analysis to explore the potential mechanisms of action of these different genes. Conclusion: A high-dose of the Astragalus-rhubarb-saffron TCM provided the best prevention of DKD. Analysis of the kidney transcriptome suggested that this TCM mixture may prevent DKD by altering immune responses and oxygen delivery by hemoglobin.

6.
Sci Rep ; 14(1): 8644, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622163

RESUMO

Gynostemma pentaphyllum (Thunb.) Makino (G. pentaphyllum) is a medicinal and edible plant with multiple functions of liver protection, anti-tumor, anti-inflammation, balancing blood sugar and blood lipids. The nutritional value of the G. pentaphyllum plant is mainly due to its rich variety of biologically active substances, such as flavonoids, terpenes and polysaccharides. In this study, we performed a comprehensive analysis combining metabolomics and root, stem and leaf transcriptomic data of G. pentaphyllum. We used transcriptomics and metabolomics data to construct a dynamic regulatory network diagram of G. pentaphyllum flavonoids and terpenoids, and screened the transcription factors involved in flavonoids and terpenoids, including basic helix-loop-helix (bHLH), myb-related, WRKY, AP2/ERF. Transcriptome analysis results showed that among the DEGs related to the synthesis of flavonoids and terpenoids, dihydroflavonol 4-reductase (DFR) and geranylgeranyl diphosphate synthases (GGPPS) were core genes. This study presents a dynamic image of gene expression in different tissues of G. pentaphyllum, elucidating the key genes and metabolites of flavonoids and terpenoids. This study is beneficial to a deeper understanding of the medicinal plants of G. pentaphyllum, and also provides a scientific basis for further regulatory mechanisms of plant natural product synthesis pathways and drug development.


Assuntos
Flavonoides , Gynostemma , Flavonoides/metabolismo , Gynostemma/genética , Gynostemma/química , Terpenos/metabolismo , Extratos Vegetais/química , Perfilação da Expressão Gênica
7.
BMC Plant Biol ; 24(1): 284, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627650

RESUMO

BACKGROUND: Lipids found in plant seeds are essential for controlling seed dormancy, dispersal, and defenses against biotic and abiotic stress. Additionally, these lipids provide nutrition and energy and are therefore important to the human diet as edible oils. Acer truncatum, which belongs to the Aceaceae family, is widely cultivated around the world for its ornamental value. Further because its seed oil is rich in unsaturated fatty acids (UFAs)- i.e. α-linolenic acid (ALA) and nervonic acid (NA)- and because it has been validated as a new food resource in China, the importance of A. truncatum has greatly risen. However, it remains unknown how UFAs are biosynthesized during the growth season, to what extent environmental factors impact their content, and what areas are potentially optimal for their production. RESULTS: In this study, transcriptome and metabolome of A. truncatum seeds at three representative developmental stages was used to find the accumulation patterns of all major FAs. Cumulatively, 966 metabolites and 87,343 unigenes were detected; the differential expressed unigenes and metabolites were compared between stages as follows: stage 1 vs. 2, stage 1 vs. 3, and stage 2 vs. 3 seeds, respectively. Moreover, 13 fatty acid desaturases (FADs) and 20 ß-ketoacyl-CoA synthases (KCSs) were identified, among which the expression level of FAD3 (Cluster-7222.41455) and KCS20 (Cluster-7222.40643) were consistent with the metabolic results of ALA and NA, respectively. Upon analysis of the geographical origin-affected diversity from 17 various locations, we found significant variation in phenotypes and UFA content. Notably, in this study we found that 7 bioclimatic variables showed considerable influence on FAs contents in A. truncatum seeds oil, suggesting their significance as critical environmental parameters. Ultimately, we developed a model for potentially ecological suitable regions in China. CONCLUSION: This study provides a comprehensive understanding of the relationship between metabolome and transcriptome in A. truncatum at various developmental stages of seeds and a new strategy to enhance seed FA content, especially ALA and NA. This is particularly significant in meeting the increasing demands for high-quality edible oil for human consumption. The study offers a scientific basis for A. truncatum's novel utilization as a woody vegetable oil rather than an ornamental plant, potentially expanding its cultivation worldwide.


Assuntos
Acer , Transcriptoma , Humanos , Perfilação da Expressão Gênica , Acer/genética , Acer/metabolismo , Ácidos Graxos Insaturados/metabolismo , Sementes , Metaboloma , Óleos de Plantas/metabolismo
8.
J Fungi (Basel) ; 10(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38667929

RESUMO

Peptides play an essential role in plant development and immunity. Filipendula ulmaria, belonging to the Rosaceae family, is a medicinal plant which exhibits valuable pharmacological properties. F. ulmaria extracts in vitro inhibit the growth of a variety of plant and human pathogens. The role of peptides in defense against pathogens in F. ulmaria remains unknown. The objective of this study was to explore the repertoire of antimicrobial (AMPs) and defense-related signaling peptide genes expressed by F. ulmaria in response to infection with Bipolaris sorokiniana using RNA-seq. Transcriptomes of healthy and infected plants at two time points were sequenced on the Illumina HiSeq500 platform and de novo assembled. A total of 84 peptide genes encoding novel putative AMPs and signaling peptides were predicted in F. ulmaria transcriptomes. They belong to known, as well as new, peptide families. Transcriptional profiling in response to infection disclosed complex expression patterns of peptide genes and identified both up- and down-regulated genes in each family. Among the differentially expressed genes, the vast majority were down-regulated, suggesting suppression of the immune response by the fungus. The expression of 13 peptide genes was up-regulated, indicating their possible involvement in triggering defense response. After functional studies, the encoded peptides can be used in the development of novel biofungicides and resistance inducers.

9.
Plant Cell Rep ; 43(5): 117, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622429

RESUMO

KEY MESSAGE: We constructed a gene expression atlas and co-expression network for potatoes and identified several novel genes associated with various agronomic traits. This resource will accelerate potato genetics and genomics research. Potato (Solanum tuberosum L.) is the world's most crucial non-cereal food crop and ranks third in food production after wheat and rice. Despite the availability of several potato transcriptome datasets at public databases like NCBI SRA, an effort has yet to be put into developing a global transcriptome atlas and a co-expression network for potatoes. The objectives of our study were to construct a global expression atlas for potatoes using publicly available transcriptome datasets, identify housekeeping and tissue-specific genes, construct a global co-expression network and identify co-expression clusters, investigate the transcriptional complexity of genes involved in various essential biological processes related to agronomic traits, and provide a web server (StCoExpNet) to easily access the newly constructed expression atlas and co-expression network to investigate the expression and co-expression of genes of interest. In this study, we used data from 2299 publicly available potato transcriptome samples obtained from 15 different tissues to construct a global transcriptome atlas. We found that roughly 87% of the annotated genes exhibited detectable expression in at least one sample. Among these, we identified 281 genes with consistent and stable expression levels, indicating their role as housekeeping genes. Conversely, 308 genes exhibited marked tissue-specific expression patterns. We exemplarily linked some co-expression clusters to important agronomic traits of potatoes, such as self-incompatibility, anthocyanin biosynthesis, tuberization, and defense responses against multiple pathogens. The dataset compiled here constitutes a new resource (StCoExpNet), which can be accessed at https://stcoexpnet.julius-kuehn.de . This transcriptome atlas and the co-expression network will accelerate potato genetics and genomics research.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Fenótipo , Transcriptoma/genética , Genômica
10.
Int J Biol Macromol ; 267(Pt 2): 131515, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614165

RESUMO

Pneumoconiosis' pathogenesis is still unclear and specific drugs for its treatment are lacking. Analysis of series transcriptome data often uses a single comparison method, and there are few reports on using such data to predict the treatment of pneumoconiosis with traditional Chinese medicine (TCM). Here, we proposed a new method for analyzing series transcriptomic data, series difference analysis (SDA), and applied it to pneumoconiosis. By comparison with 5 gene sets including existing pneumoconiosis-related genes and gene set functional enrichment analysis, we demonstrated that the new method was not inferior to two existing traditional analysis methods. Furthermore, based on the TCM-drug target interaction network, we predicted the TCM corresponding to the common pneumoconiosis-related genes obtained by multiple methods, and combined them with the high-frequency TCM for its treatment obtained through literature mining to form a new TCM formula for it. After feeding it to pneumoconiosis modeling mice for two months, compared with the untreated group, the coat color, mental state and tissue sections of the mice in the treated group were markedly improved, indicating that the new TCM formula has a certain efficacy. Our study provides new insights into method development for series transcriptomic data analysis and treatment of pneumoconiosis.


Assuntos
Medicamentos de Ervas Chinesas , Perfilação da Expressão Gênica , Medicina Tradicional Chinesa , Pneumoconiose , Transcriptoma , Pneumoconiose/genética , Pneumoconiose/terapia , Animais , Camundongos , Medicina Tradicional Chinesa/métodos , Transcriptoma/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Masculino , Modelos Animais de Doenças
11.
BMC Plant Biol ; 24(1): 160, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429733

RESUMO

BACKGROUND: Anthocyanins are the most important compounds for nutritional quality and economic values of blood orange. However, there are few reports on the pre-harvest treatment accelerating the accumulation of anthocyanins in postharvest blood orange fruit. Here, we performed a comparative transcriptome and metabolomics analysis to elucidate the underlying mechanism involved in seasonal drought (SD) treatment during the fruit expansion stage on anthocyanin accumulation in postharvest 'Tarocco' blood orange fruit. RESULTS: Our results showed that SD treatment slowed down the fruit enlargement and increased the sugar accumulation during the fruit development and maturation period. Obviously, under SD treatment, the accumulation of anthocyanin in blood orange fruit during postharvest storage was significantly accelerated and markedly higher than that in CK. Meanwhile, the total flavonoids and phenols content and antioxidant activity in SD treatment fruits were also sensibly increased during postharvest storage. Based on metabolome analysis, we found that substrates required for anthocyanin biosynthesis, such as amino acids and their derivatives, and phenolic acids, had significantly accumulated and were higher in SD treated mature fruits compared with that of CK. Furthermore, according to the results of the transcriptome data and weighted gene coexpression correlation network analysis (WGCNA) analysis, phenylalanine ammonia-lyase (PAL3) was considered a key structural gene. The qRT-PCR analysis verified that the PAL3 was highly expressed in SD treated postharvest stored fruits, and was significantly positively correlated with the anthocyanin content. Moreover, we found that other structural genes in the anthocyanin biosynthesis pathway were also upregulated under SD treatment, as evidenced by transcriptome data and qRT-PCR analysis. CONCLUSIONS: The findings suggest that SD treatment promotes the accumulation of substrates necessary for anthocyanin biosynthesis during the fruit ripening process, and activates the expression of anthocyanin biosynthesis pathway genes during the postharvest storage period. This is especially true for PAL3, which co-contributed to the rapid accumulation of anthocyanin. The present study provides a theoretical basis for the postharvest quality control and water-saving utilization of blood orange fruit.


Assuntos
Antocianinas , Frutas , Frutas/metabolismo , Secas , Antioxidantes/metabolismo , Perfilação da Expressão Gênica
12.
Front Plant Sci ; 15: 1360919, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545393

RESUMO

Panax notoginseng is a highly valued perennial medicinal herb plant in Yunnan Province, China, and the taproots are the main medicinal parts that are rich in active substances of P. notoginseng saponins. The main purpose of this study is to uncover the physiological and molecular mechanism of Panax notoginseng saponin accumulation triggered by methyl jasmonate (MeJA) under arbuscular mycorrhizal fungi (AMF) by determining physiological indices, high-throughput sequencing and correlation analysis. Physiological results showed that the biomass and saponin contents of P. notoginseng, the concentrations of jasmonic acids (JAs) and the key enzyme activities involved in notoginsenoside biosynthesis significantly increased under AMF or MeJA, but the interactive treatment of AMF and MeJA weakened the effect of AMF, suggesting that a high concentration of endogenous JA have inhibitory effect. Transcriptome sequencing results indicated that differential expressed genes (DEGs) involved in notoginsenoside and JA biosynthesis were significantly enriched in response to AMF induction, e.g., upregulated genes of diphosphocytidyl-2-C-methyl-d-erythritol kinases (ISPEs), cytochrome P450 monooxygenases (CYP450s)_and glycosyltransferases (GTs), while treatments AMF-MeJA and salicylhydroxamic acid (SHAM) decreased the abundance of these DEGs. Interestingly, a high correlation presented between any two of saponin contents, key enzyme activities and expression levels of DEGs. Taken together, the inoculation of AMF can improve the growth and saponin accumulation of P. notoginseng by strengthening the activities of key enzymes and the expression levels of encoding genes, in which the JA regulatory pathway is a key link. This study provides references for implementing ecological planting of P. notoginseng, improving saponin accumulation and illustrating the biosynthesis mechanism.

13.
Water Res ; 254: 121430, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461607

RESUMO

Proper treatment of hypersaline and nutrient-rich food industry process water (FIPW) is challenging in conventional wastewater plants. Insufficient treatment leads to serious environmental hazards. However, bioremediation of FIPW with an indigenous microbial community can not only recover nutrients but generate biomass of diverse applications. In this study, monoculture of Halamphora coffeaeformis, together with synthetic bacteria isolated from a local wastewater plant, successfully recovered 91% of NH4+-N, 78% of total nitrogen, 95% of total phosphorus as well as 82% of total organic carbon from medium enriched with 10% FIPW. All identified organic acids and amino acids, except oxalic acid, were completely removed after 14 days treatment. A significantly higher biomass concentration (1.74 g L-1) was achieved after 14 days treatment in the medium with 10% FIPW than that in a nutrient-replete lab medium as control. The harvested biomass could be a potential feedstock for high-value biochemicals and fertilizer production, due to fucoxanthin accumulation (3 mg g-1) and a fantastic performance in P assimilation. Metagenomic analysis revealed that bacteria community in the algal system, dominated by Psychrobacter and Halomonas, also contributed to the biomass accumulation and uptake of nutrients. Transcriptomic analysis further disclosed that multiple pathways, involved in translation, folding, sorting and degradation as well as transport and catabolism, were depressed in H. coffeaeformis grown in FIPW-enriched medium, as compared to the control. Collectively, the proposed one-step strategy in this work offers an opportunity to achieve sustainable wastewater management and a way towards circular economy.


Assuntos
Diatomáceas , Microalgas , Microbiota , Águas Residuárias , Biodegradação Ambiental , Água/análise , Fósforo/análise , Bactérias/genética , Bactérias/metabolismo , Indústria Alimentícia , Nutrientes/análise , Biomassa , Microalgas/metabolismo , Nitrogênio/metabolismo
14.
Mar Environ Res ; 196: 106441, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484650

RESUMO

Scyphozoan jellyfish, known for their evolutionary position and ecological significance, are thought to exhibit relatively notable resilience to ocean acidification. However, knowledge regarding the molecular mechanisms underlying the scyphozoan jellyfish response to acidified seawater conditions is currently lacking. In this study, two independent experiments were conducted to determine the physiological and molecular responses of moon jellyfish (Aurelia coerulea) polyps to within- and trans-generational exposure to two reduced pH treatments (pH 7.8 and pH 7.6). The results revealed that the asexual reproduction of A. coerulea polyps significantly declined under acute exposure to pH 7.6 compared with that of polyps at ambient pH conditions. Transcriptomics revealed a notable upregulation of genes involved in immunity and cytoskeleton components. In contrast, genes associated with metabolism were downregulated in response to reduced pH treatments after 6 weeks of within-generational acidified conditions. However, reduced pH treatments had no significant influence on the asexual reproduction of A. coerulea polyps after exposure to acidified conditions over a total of five generations, suggesting that A. coerulea polyps may acclimate to low pH levels. Transcriptomics revealed distinct gene expression profiles between within- and trans-generational exposure groups to two reduced pH treatments. The offspring polyps of A. coerulea subjected to trans-generational acidified conditions exhibited both upregulated and downregulated expression of genes associated with metabolism. These physiological and transcriptomic characteristics of A. coerulea polyps in response to elevated CO2 levels suggest that polyps produced asexually under acidified conditions may be resilient to such conditions in the future.


Assuntos
Cnidários , Cifozoários , Animais , Água do Mar , Transcriptoma , Concentração de Íons de Hidrogênio , Cifozoários/fisiologia , Perfilação da Expressão Gênica
15.
Microb Cell Fact ; 23(1): 94, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539197

RESUMO

BACKGROUND: Surfactin, a green lipopeptide bio-surfactant, exhibits excellent surface, hemolytic, antibacterial, and emulsifying activities. However, a lack of clear understanding of the synthesis regulation mechanism of surfactin homologue components has hindered the customized production of surfactin products with different biological activities. RESULTS: In this study, exogenous valine and 2-methylbutyric acid supplementation significantly facilitated the production of C14-C15 surfactin proportions (up to 75% or more), with a positive correlation between the homologue proportion and fortified concentration. Subsequently, the branched-chain amino acid degradation pathway and the glutamate synthesis pathway are identified as critical pathways in regulating C14-C15 surfactin synthesis by transcriptome analysis. Overexpression of genes bkdAB and glnA resulted in a 1.4-fold and 1.3-fold increase in C14 surfactin, respectively. Finally, the C14-rich surfactin was observed to significantly enhance emulsification activity, achieving an EI24 exceeding 60% against hexadecane, while simultaneously reducing hemolytic activity. Conversely, the C15-rich surfactin demonstrated an increase in both hemolytic and antibacterial activities. CONCLUSION: This study presents the first evidence of a potential connection between surfactin homologue synthesis and the conversion of glutamate and glutamine, providing a theoretical basis for targeting the synthesis regulation and structure-activity relationships of surfactin and other lipopeptide compounds.


Assuntos
Ácidos Graxos , Tensoativos , Ácidos Graxos/metabolismo , Tensoativos/metabolismo , Ácido Glutâmico/metabolismo , Lipopeptídeos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Peptídeos Cíclicos/química , Bacillus subtilis/genética
16.
Animals (Basel) ; 14(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38540018

RESUMO

This study aimed to assess the effects of different dietary vitamin D3 (VD3) levels on growth and carcass performance, tibia traits, meat quality, and intestinal morphology of yellow-feathered broilers. One-day-old broilers (n = 1440) were assigned into four treatment groups with six replicates per group, and each replicate contained 60 chicks. Dietary VD3 significantly improved the growth performance and carcass traits of broilers, and only low-dose VD3 supplementation decreased the abdominal fat percentage. High-dose VD3 supplementation improved intestinal morphology in the finisher stage, while the b* value of breast muscle meat color decreased markedly under VD3 supplementation (p < 0.05). Serum Ca and P levels and the tibia composition correlated positively with dietary VD3 supplementation at the early growth stage. The weight, length, and ash contents of the tibia increased linearly with increasing dietary VD3, with maximum values achieved in the high-dose group at all three stages. Intestinal 16S rRNA sequencing and liver transcriptome analysis showed that dietary VD3 might represent an effective treatment in poultry production by regulating lipid and immune-related metabolism in the gut-liver axis, which promotes the metabolism through the absorption of calcium and phosphorus in the intestine and improves their protective humoral immunity and reduces infection mortality. Dietary VD3 positively affected the growth-immunity and bone development of broilers during the early stage, suggesting strategies to optimize poultry feeding.

17.
PeerJ ; 12: e17116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525286

RESUMO

The potato (Solanum tuberosum L.), an important field crop consumed extensively worldwide, is adversely affected by abiotic stress factors especially drought. Therefore, it is vital to understand the genetic mechanism under drought stress to decrease loose of yield and quality . This trial aimed to screen drought-responsive gene expressions of potato and determine the drought-tolerant potato cultivar. The trial pattern is a completely randomized block design (CRBD) with four replications under greenhouse conditions. Four cultivars (Brooke, Orwell, Vr808, Shc909) were irrigated with four different water regimes (control and three stress conditions), and the gene expression levels of 10 potato genes were investigated. The stress treatments as follows: Control = 100% field capacity; slight drought = 75% field capacity; moderate drought = 50% field capacity, and severe drought 25% field capacity. To understand the gene expression under drought stress in potato genotypes, RT-qPCR analysis was performed and results showed that the genes most associated with drought tolerance were the StRD22 gene, MYB domain transcription factor, StERD7, Sucrose Synthase (SuSy), ABC Transporter, and StDHN1. The StHSP100 gene had the lowest genetic expression in all cultivars. Among the cultivars, the Orwell exhibited the highest expression of the StRD22 gene under drought stress. Overall, the cultivar with the highest gene expression was the Vr808, closely followed by the Brooke cultivar. As a result, it was determined that potato cultivars Orwell, Vr808, and Brooke could be used as parents in breeding programs to develop drought tolerant potato cultivars.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Secas , Proteínas de Plantas/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica/métodos
18.
Plant Physiol Biochem ; 208: 108517, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38503190

RESUMO

Triacylglycerol (TAG) accumulation is frequently triggered in vegetative tissues experiencing heat stress, which may increases plant basal plant thermo-tolerance by sequestering the toxic lipid intermediates that contribute to membrane damage or cell death under stress conditions. However, stress-responsive TAG biosynthesis and the underlying regulatory mechanisms are not fully understood. Here, we investigated the lipidomic and transcriptomic landscape under heat stress in the leaves of sacha inchi (Plukenetia volubilis L.), an important oilseed crop in tropical regions. Under heat stress (45 °C), the content of polyunsaturated TAGs (e.g., TAG18:2 and TAG18:3) and total TAGs were significantly higher, while those of unsaturated sterol esters, including ZyE 28:4, SiE 18:2 and SiE 18:3, were dramatically lower. Transcriptome analysis showed that the expression of PvDGAT2-2, encoding a type II diacylglycerol acyltransferase (DGAT) that is critical for TAG biosynthesis, was substantially induced under heat stress. We confirmed the function of PvDGAT2-2 in TAG production by complementing a yeast mutant defective in TAG biosynthesis. Importantly, we also identified the heat-induced transcription factor PvMYB1 as an upstream activator of PvDGAT2-2 transcription. Our findings on the molecular mechanism leading to TAG biosynthesis in leaves exposed to heat stress have implications for improving the biotechnological production of TAGs in vegetative tissues, offering an alternative to seeds.


Assuntos
Óleos de Plantas , Fatores de Transcrição , Triglicerídeos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Óleos de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Resposta ao Choque Térmico/genética
19.
J Ethnopharmacol ; 328: 118058, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38513778

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Baoyuan Decoction (BYD) was initially recorded in the classic of "Bo Ai Xin Jian" in the Ming dynasty. It is traditionally used for treating weakness and cowardice, and deficiency of vital energy. In researches related to anti-fatigue effects, the reciprocal regulation of AMPK and circadian clocks likely plays an important role in anti-fatigue mechanism, while it has not yet been revealed. Therefore, we elucidated the anti-fatigue mechanism of BYD through AMPK/CRY2/PER1 pathway. AIM OF THE STUDY: To investigate the effect and mechanism of BYD in reducing fatigue, using pharmacodynamics, network pharmacology and transcriptomics through the AMPK/CRY2/PER1 signaling pathway. MATERIALS AND METHODS: Firstly, the chemical constituents of BYD were qualitatively identified by UHPLC-Q-Exactive Orbitrap/MS, establishing a comprehensive strategy with an in-house library, Xcalibur software and Pubchem combined. Secondly, a Na2SO3-induced fatigue model and 2,2'-Azobis (2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative stress model were developed to evaluate the anti-fatigue and anti-oxidant activities of BYD using AB zebrafish. The anti-inflammatory activity of BYD was evaluated using CuSO4-induced and tail cutting-induced Tg (lyz: dsRed) transgenic zebrafish inflammation models. Then, target screening was performed by Swiss ADME, GeneCards, OMIM and DrugBank databases, the network was constructed using Cytoscape 3.9.0. Transcriptome and network pharmacology technology were used to investigate the related signaling pathways and potential mechanisms after treatment with BYD, which were verified by real-time quantitative PCR (RT-qPCR). RESULTS: In total, 114 compounds from the water extract of BYD were identified as major compounds. Na2SO3-induced fatigue model and AAPH-induced oxidative stress model indicated that BYD has significant anti-fatigue and antioxidant effects. Meanwhile, BYD showed significant anti-inflammatory effects on CuSO4-induced and tail cutting-induced zebrafish inflammation models. The KEGG result of network pharmacology showed that the anti-fatigue function of BYD was mainly effected through AMPK signaling pathway. Besides, transcriptome analysis indicated that the circadian rhythm, AMPK and IL-17 signaling pathways were recommended as the main pathways related to the anti-fatigue effect of BYD. The RT-qPCR results showed that compared with a model control group, the treatment of BYD significantly elevated the expression mRNA of AMPK, CRY2 and PER1. CONCLUSION: Herein, we identified 114 chemical constituents of BYD, performed zebrafish activity validation, while demonstrated that BYD can relieve fatigue by AMPK/CRY2/PER1 signaling pathway through network pharmacology and transcriptome.


Assuntos
Proteínas Quinases Ativadas por AMP , Amidinas , Medicamentos de Ervas Chinesas , Animais , Peixe-Zebra , Estresse Oxidativo , Fadiga/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Inflamação/tratamento farmacológico , Antioxidantes , Transdução de Sinais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
20.
Plants (Basel) ; 13(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38475452

RESUMO

Panax ginseng as a traditional medicinal plant with a long history of medicinal use. Ginsenoside Ro is the only oleanane-type ginsenoside in ginseng, and has various pharmacological activities, including anti-inflammatory, detoxification, and antithrombotic activities. UDP-dependent glycosyltransferase (UGT) plays a key role in the synthesis of ginsenoside, and the excavation of UGT genes involved in the biosynthesis of ginsenoside Ro has great significance in enriching ginsenoside genetic resources and further revealing the synthesis mechanism of ginsenoside. In this work, ginsenoside-Ro-synthesis-related genes were mined using the P. ginseng reference-free transcriptome database. Fourteen hub transcripts were identified by differential expression analysis and weighted gene co-expression network analysis. Phylogenetic and synteny block analyses of PgUGAT252645, a UGT transcript among the hub transcripts, showed that PgUGAT252645 belonged to the UGT73 subfamily and was relatively conserved in ginseng plants. Functional analysis showed that PgUGAT252645 encodes a glucuronosyltransferase that catalyzes the glucuronide modification of the C3 position of oleanolic acid using uridine diphosphate glucuronide as the substrate. Furthermore, the mutation at 622 bp of its open reading frame resulted in amino acid substitutions that may significantly affect the catalytic activity of the enzyme, and, as a consequence, affect the biosynthesis of ginsenoside Ro. Results of the in vitro enzyme activity assay of the heterologous expression product in E. coli of PgUGAT252645 verified the above analyses. The function of PgUGAT252645 was further verified by the result that its overexpression in ginseng adventitious roots significantly increased the content of ginsenoside Ro. The present work identified a new UGT gene involved in the biosynthesis of ginsenoside Ro, which not only enriches the functional genes in the ginsenoside synthesis pathway, but also provides the technical basis and theoretical basis for the in-depth excavation of ginsenoside-synthesis-related genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA