Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Plant Sci ; 339: 111948, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38097046

RESUMO

Although long non-coding RNAs have been recognized to play important roles in plant, their possible functions and potential mechanism in Ginkgo biloba flavonoid biosynthesis are poorly understood. Flavonoids are important secondary metabolites and healthy components of Ginkgo biloba. They have been widely used in food, medicine, and natural health products. Most previous studies have focused on the molecular mechanisms of structural genes and transcription factors that regulate flavonoid biosynthesis. Few reports have examined the biological functions of flavonoid biosynthesis by long non-coding RNAs in G. biloba. Long noncoding RNAs associated with flavonoid biosynthesis in G. biloba have been identified through RNA sequencing, but the function of lncRNAs has not been reported. In this study, the expression levels of lnc10 and lnc11 were identified. Quantitative real-time polymerase chain reaction analysis revealed that lnc10 and lnc11 were expressed in all detected organs, and they showed significantly higher levels in immature and mature leaves than in other organs. In addition, to fully identify the function of lnc10 and lnc11 in flavonoid biosynthesis in G. biloba, lnc10 and lnc11 were cloned from G. biloba, and were transformed into Arabidopsis and overexpressed. Compared with the wild type, the flavonoid content was increased in transgenic plants. Moreover, the RNA-sequencing analysis of wild-type, lnc10-overexpression, and lnc11-overexpression plants screened out 2019 and 2552 differentially expressed genes, and the transcript levels of structural genes and transcription factors associated with flavonoid biosynthesis were higher in transgenic Arabidopsis than in the wild type, indicating that lnc10 and lnc11 activated flavonoid biosynthesis in the transgenic lines. Overall, these results suggest that lnc10 and lnc11 positively regulate flavonoid biosynthesis in G. biloba.


Assuntos
Arabidopsis , RNA Longo não Codificante , Ginkgo biloba/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/análise , Arabidopsis/genética , Arabidopsis/metabolismo , Extratos Vegetais/metabolismo , Flavonoides , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Folhas de Planta/metabolismo
2.
Biotechnol Lett ; 45(11-12): 1565-1578, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37910279

RESUMO

Tetrastigma hemsleyanum Diels et Gilg, a traditional Chinese medicine, frequently suffers from cold damage in the winter, leading to lower yields. There is a pressing need to improve cold resistance; however, the mechanisms underlying T. hemsleyanum responses to cold stress are still not clearly understood. Here, we explored the function of the flavanone 3-hydroxylase gene (ThF3H) in T. hemsleyanum under cold treatment. The open reading frame of ThF3H is 1092 bp and encodes 363 amino acid residues. In vitro, the ThF3H enzyme was expressed in E. coli and successfully catalyzed naringenin and eriodictyol into dihydrokaempferol and dihydroquercetin, respectively. ThF3H exhibited a higher affinity for naringenin than for eriodictyol, which was in accordance with an in silico molecular docking analysis. The optimal pH and temperature for ThF3H activity were 7.0 and 30 °C, respectively. In vivo, overexpression of the ThF3H gene enhanced the cold tolerance of transgenic Arabidopsis lines, which was likely due to the increase in flavonoids. Collectively, the function of a cold-related ThF3H in the flavonoid biosynthesis pathway may be helpful for improving the cold tolerance of T. hemsleyanum through molecular breeding techniques.


Assuntos
Escherichia coli , Oxigenases de Função Mista , Escherichia coli/genética , Simulação de Acoplamento Molecular , Oxigenases de Função Mista/genética , Resposta ao Choque Frio
3.
Plant Cell Tissue Organ Cult ; 152(3): 539-553, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36573085

RESUMO

The dried root of Glehnia littoralis is a traditional Chinese herbal medicine mainly used to treat lung diseases and plays an important role in fighting coronavirus disease 2019 pneumonia in China. This study focused on the key enzyme gene GlPS1 for furanocoumarin synthesis in G. littoralis. In the 35S:GlPS1 transgenic Arabidopsis study, the Arabidopsis thaliana-overexpressing GlPS1 gene was more salt-tolerant than Arabidopsis in the blank group. Metabolomics analysis showed 30 differential metabolites in Arabidopsis, which overexpressed the GlPS1 gene. Twelve coumarin compounds were significantly upregulated, and six of these coumarin compounds were not detected in the blank group. Among these differential coumarin metabolites, isopimpinellin and aesculetin have been annotated by the Kyoto Encyclopedia of Genes and Genomes and isopimpinellin was not detected in the blank group. Through structural comparison, imperatorin was formed by dehydration and condensation of zanthotoxol and a molecule of isoprenol, and the difference between them was only one isoprene. Results showed that the GlPS1 gene positively regulated the synthesis of coumarin metabolites in A. thaliana and at the same time improved the salt tolerance of A. thaliana. Supplementary Information: The online version contains supplementary material available at 10.1007/s11240-022-02427-w.

4.
Front Plant Sci ; 13: 1097719, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36743547

RESUMO

Drought substantially influences crop growth and development. NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) have received much attention for their critical roles in drought stress responses. To explore the maize NAC genes in response to drought stress, the transcriptome sequencing data of NAC TFs in two maize inbred lines, the drought tolerance line H082183 and the sensitive line Lv28, were used to screen the differentially expressed genes (DEGs). There were 129 maize NAC protein-coding genes identified, of which 15 and 20 NAC genes were differentially expressed between the two genotypes under MD and SD treatments, respectively. Meanwhile, the phylogenetic relationship of 152 non-redundant NAC family TFs in maize was generated. The maize NAC family proteins were grouped into 13 distinct subfamilies. Five drought stress-responsive NAC family members, which were designed as ZmNAP, ZmNAC19, ZmNAC4, ZmJUB1(JUBGBRUNNEN1), and ZmNAC87, were selected for further study. The expression of ZmNAP, ZmNAC19, ZmNAC4, ZmJUB1, and ZmNAC87 were significantly induced by drought, dehydration, polyethylene glycol (PEG) stress, and abscisic acid (ABA) treatments. The overexpressing Arabidopsis of these five NAC genes was generated for functional characterization, respectively. Under different concentrations of NaCl, D-mannitol stress, and ABA treatments, the sensitivity of ZmNAP-, ZmNAC19-, ZmNAC4-, ZmJUB1-, and ZmNAC87-overexpressing lines was significantly increased at the germination stage compared to the wild-type lines. The overexpression of these five NAC members significantly improved the drought stress tolerance in transgenic Arabidopsis. Yeast two-hybrid screening analysis revealed that ZmNAP may cooperatively interact with 11 proteins including ZmNAC19 to activate the drought stress response. The above results inferred that ZmNAP, ZmNAC19, ZmNAC4, ZmJUB1, and ZmNAC87 may play important roles in the plant response to drought stress and may be useful in bioengineering breeding and drought tolerance improvement.

5.
Front Plant Sci ; 12: 748146, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804090

RESUMO

The ZIP (Zn-regulated, iron-regulated transporter-like protein) transporter plays an important role in regulating the uptake, transport, and accumulation of microelements in plants. Although some studies have identified ZIP genes in wheat, the significance of this family is not well understood, particularly its involvement under Fe and Zn stresses. In this study, we comprehensively characterized the wheat ZIP family at the genomic level and performed functional verification of three TaZIP genes by yeast complementary analysis and of TaZIP13-B by transgenic Arabidopsis. Totally, 58 TaZIP genes were identified based on the genome-wide search against the latest wheat reference (IWGSC_V1.1). They were then classified into three groups, based on phylogenetic analysis, and the members within the same group shared the similar exon-intron structures and conserved motif compositions. Expression pattern analysis revealed that the most of TaZIP genes were highly expressed in the roots, and nine TaZIP genes displayed high expression at grain filling stage. When exposed to ZnSO4 and FeCl3 solutions, the TaZIP genes showed differential expression patterns. Additionally, six ZIP genes responded to zinc-iron deficiency. A total of 57 miRNA-TaZIP interactions were constructed based on the target relationship, and three miRNAs were downregulated when exposed to the ZnSO4 and FeCl3 stresses. Yeast complementation analysis proved that TaZIP14-B, TaZIP13-B, and TaIRT2-A could transport Zn and Fe. Finally, overexpression of TaZIP13-B in Arabidopsis showed that the transgenic plants displayed better tolerance to Fe/Zn stresses and could enrich more metallic elements in their seeds than wild-type Arabidopsis. This study systematically analyzed the genomic organization, gene structure, expression profiles, regulatory network, and the biological function of the ZIP family in wheat, providing better understanding of the regulatory roles of TaZIPs and contributing to improve nutrient quality in wheat crops.

6.
Plant Cell Rep ; 39(4): 553-565, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32060604

RESUMO

KEY MESSAGE: Overexpression of the tea plant gene CsbZIP18 in Arabidopsis impaired freezing tolerance, and CsbZIP18 is a negative regulator of ABA signaling and cold stress. Basic region/leucine zipper (bZIP) transcription factors play important roles in the abscisic acid (ABA) signaling pathway and abiotic stress response in plants. However, few bZIP transcription factors have been functionally characterized in tea plants (Camellia sinensis). In this study, a bZIP transcription factor, CsbZIP18, was found to be strongly induced by natural cold acclimation, and the expression level of CsbZIP18 was lower in cold-resistant cultivars than in cold-susceptible cultivars. Compared with wild-type (WT) plants, Arabidopsis plants constitutively overexpressing CsbZIP18 exhibited decreased sensitivity to ABA, increased levels of relative electrolyte leakage (REL) and reduced values of maximal quantum efficiency of photosystem II (Fv/Fm) under freezing conditions. The expression of ABA homeostasis- and signal transduction-related genes and abiotic stress-inducible genes, such as RD22, RD26 and RAB18, was suppressed in overexpression lines under freezing conditions. However, there was no significant change in the expression of genes involved in the C-repeat binding factor (CBF)-mediated ABA-independent pathway between WT and CsbZIP18 overexpression plants. These results indicate that CsbZIP18 is a negative regulator of freezing tolerance via an ABA-dependent pathway.


Assuntos
Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Camellia sinensis/genética , Resposta ao Choque Frio , Congelamento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Aclimatação/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Camellia sinensis/metabolismo , Resposta ao Choque Frio/genética , Regulação da Expressão Gênica de Plantas/genética , Complexo de Proteína do Fotossistema II/metabolismo , Filogenia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteostase/efeitos dos fármacos , Proteostase/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
7.
Plant Sci ; 290: 110298, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31779909

RESUMO

Phospholipase D (PLD) hydrolyzes the phosphodiester bond of glycerophospholipids to yield phosphatidic acid (PA) and a free headgroup. PLDs are important for plant growth, development, and responses to external stresses. However, their roles in triacylglycerol (TAG) synthesis are still unclear. Here, we report that a soybean (Glycine max) PLDγ (GmPLDγ) is involved in glycerolipid turnover and seed oil production. GmPLDγ was targeted to mitochondria and exhibited PLD activity that was activated by oleate and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. Overexpression of GmPLDγ (abbreviated GmPLDγ-OE) in Arabidopsis thaliana resulted in enhanced seed weight, elevated levels of TAGs with 18-, 20-, and 22-carbon fatty acids (FAs), and altered oil-body morphology. Furthermore, the levels of membrane lipids in vegetative tissues decreased significantly, whereas no overt changes were found in mature seeds except for a decrease in the digalactosyldiacylglycerol (DGDG) level in the GmPLDγ-OE lines. Additionally, the expression of genes involved in glycerolipid metabolism was significantly upregulated in developing siliques in GmPLDγ-OE lines. Together, our data indicate a regulatory role for GmPLDγ in TAG synthesis and fatty-acid remodeling, highlighting the importance of mitochondria-directed glycerophospholipid homeostasis in seed oil accumulation.


Assuntos
Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Glycine max/genética , Fosfolipase D/genética , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/genética , Fosfolipase D/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Sementes/metabolismo , Glycine max/metabolismo
8.
Plant Physiol Biochem ; 144: 312-323, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31606716

RESUMO

Plants are subjected to a variety of abiotic stresses during their lifetime, and drought and salt stress are some of the main causes of reduced crop yields. Previous studies have shown that AREB/ABFs within bZIP transcription factors are involved in plant drought and salt stress responses in an ABA-dependent manner. However, the properties and functions of AREB/ABFs in Fagopyrum tataricum, a cereal with good resistance to abiotic stresses, are poorly understood. In this study, a gene encoding an AREB/ABF, designated FtbZIP83, was first isolated from Tartary buckwheat. Expression analysis in Tartary buckwheat indicated that FtbZIP83 was significantly induced by abscisic acid (ABA), NaCl and polyethylene glycol (PEG). The overexpression of FtbZIP83 in Arabidopsis resulted in increased drought/salt tolerance, which was attributed not only to higher proline (Pro) contents and antioxidant enzyme activity in transgenic lines compared with controls but also to the lower reactive oxygen species (ROS) accumulation and malondialdehyde (MDA) content. In addition, we found that FtbZIP83 was able to respond to drought and salt stress by upregulating the transcript abundance of downstream ABA-inducible gene. Furthermore, promoter sequence analysis showed that ABREs were present, and the activity of the FtbZIP83 promoter in transgenic Arabidopsis after drought stress was significantly higher than that under normal conditions. Based on the potential signalling pathways involved in AREB/ABFs, we also screened for the interaction protein FtSnRK2.6/2.3, which may phosphorylate FtbZIP83. Collectively, these results provide evidence that FtbZIP83, as a positive regulator, responds to drought/salt stress via an ABA-dependent signalling pathway composed of SnRK2-AREB/ABF.


Assuntos
Secas , Fagopyrum/metabolismo , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Fagopyrum/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/genética
9.
J Plant Physiol ; 214: 81-90, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28460279

RESUMO

Tartary buckwheat (Fagopyrum tataricum) is a traditional coarse cereal that exhibits strong plasticity in its adaptation to harsh and complicated environmental stresses. In an attempt to study the strong tolerance of tartary buckwheat, the FtMYB9 gene, which encodes an R2R3-MYB transcription factor protein, was functionally investigated. FtMYB9 expression was rapidly and strongly induced by ABA, cold, salt, and drought treatments in the seedling stage. A yeast one-hybrid system assay indicated that FtMYB9 is an activator of transcriptional activity, consistent with its roles as a transcription factor. Its overexpression in plants resulted in increased sensitivity to ABA at the germination and seedling stages compared to wild type. The overexpression of FtMYB9 increased tolerance to drought and salt stresses by the activation of some stress-related genes from both ABA-independent and ABA-dependent pathways in transgenic Arabidopsis. Furthermore, enhanced proline content and the activation of the P5CS1 gene implied that FtMYB9 may be involved in proline synthesis in plants. Collectively, these results suggest that FtMYB9 functions as a novel R2R3-MYB TF which plays positive roles in salt and drought tolerance by regulating different stress-responsive signaling pathways.


Assuntos
Secas , Fagopyrum/metabolismo , Proteínas de Plantas/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Fagopyrum/efeitos dos fármacos , Fagopyrum/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Cloreto de Sódio/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Ann Bot ; 119(7): 1195-1209, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334275

RESUMO

Background and Aims: Basic region/leucine zipper (bZIP) transcription factors play vital roles in the abiotic stress response of plants. However, little is known about the function of bZIP genes in Camellia sinensis . Methods: CsbZIP6 was overexpressed in Arabidopsis thaliana . Effects of CsbZIP6 overexpression on abscisic acid (ABA) sensitivity, freezing tolerance and the expression of cold-responsive genes in arabidopsis were studied. Key Results: CsbZIP6 was induced during cold acclimation in tea plant. Constitutive overexpression of CsbZIP6 in arabidopsis lowered the plants' tolerance to freezing stress and ABA exposure during seedling growth. Compared with wild-type (WT) plants, CsbZIP6 overexpression (OE) lines exhibited increased levels of electrolyte leakage (EL) and malondialdehyde (MDA) contents, and reduced levels of total soluble sugars (TSS) under cold stress conditions. Microarray analysis of transgenic arabidopsis revealed that many differentially expressed genes (DEGs) between OE lines and WT plants could be mapped to 'response to cold' and 'response to water deprivation' terms based on Gene Ontology analysis. Interestingly, CsbZIP6 overexpression repressed most of the cold- and drought-responsive genes as well as starch metabolism under cold stress conditions. Conclusions: The data suggest that CsbZIP6 functions as a negative regulator of the cold stress response in A. thaliana , potentially by down-regulating cold-responsive genes.


Assuntos
Aclimatação/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Camellia sinensis/genética , Congelamento , Proteínas de Plantas/genética , Ácido Abscísico , Arabidopsis/genética , Camellia sinensis/fisiologia , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico
11.
Plant Physiol Biochem ; 109: 387-396, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27814568

RESUMO

Tartary buckwheat is a strongly abiotic, resistant coarse cereal, but its tolerance mechanisms for stress are largely unknown. MYB transcription factors play key roles in various physiological, biochemical and molecular responses, which can both positively and negatively regulate the stress tolerance of plants. In this study, we report that the expression of FtMYB10, a R2R3-MYB gene from Tartary buckwheat, was induced significantly by ABA and drought treatments. A seed germination test under ABA treatment indicated that transgenic lines were less sensitive to ABA. The overexpression of FtMYB10 in Arabidopsis reduced drought and salt tolerance. Further studies showed that the proline contents in the transgenic plants are markedly decreased associated with reduced expression of the P5CS1 gene under both normal and stress conditions. Furthermore, the expression of some stress-responsive genes, including DREB1/CBFs, RD29B, RD22, and several genes of the DRE/CRT class, decreased in response to FtMYB10 overexpression in Arabidopsis. These results suggest that FtMYB10 may play a key role in ABA signaling feedback regulation and act as a novel negative regulator of salt and drought stress tolerance in plants.


Assuntos
Fagopyrum/genética , Fagopyrum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácido Abscísico/farmacologia , Aclimatação/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Secas , Fagopyrum/efeitos dos fármacos , Expressão Gênica , Genes de Plantas , Filogenia , Plantas Geneticamente Modificadas , Tolerância ao Sal/genética , Homologia de Sequência de Aminoácidos , Estresse Fisiológico
12.
Biochem Biophys Res Commun ; 473(4): 1100-1105, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27074580

RESUMO

Onion (Allium cepa L.) is one of the important vegetable crops in the world, usually with a two-year life cycle. The bulbs form in the first year after sowing, then bolting and flowering are induced by low temperature in the following year. Previous studies have shown that LEAFY gene is an inflorescence tissue specific gene, and that it is also the ultimate collection channel of all flowering pathway. In this study, using homologous gene cloning and reverse transcription-PCR (RT-PCR), we isolated an inflorescence meristem specific LEAFY cDNA, AcLFY (JX275962), from onion. AcLFY contains a 1119 bp open reading frame, which encodes a putative protein of 372 amino acids, with ∼70% homology to the daffodils LEAFY and >50% homology to LEAFY proteins from other higher plants. Fluorescence quantitative results showed that AcLFY gene has the highest expression level in inflorescence meristem during early bolting, and is still expressed in leaves after the formation of flower organs. Overexpression of AcLFY gene in Arabidopsis thaliana induced early bolting and flowering, whereas knockdown of the endogenous LEAFY gene by RNAi caused a significant delay in bolting. In addition, transgenic plants also exhibited significant morphological changes in rosette leaves, branches, and plant height.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Flores/crescimento & desenvolvimento , Cebolas/fisiologia , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/química , Fatores de Transcrição/fisiologia , Clonagem Molecular/métodos , Plantas Geneticamente Modificadas/fisiologia
13.
Gene ; 532(1): 72-9, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24060295

RESUMO

Isoflavones play diverse roles in plant-microbe interactions and are potentially important for human nutrition and health. To study the regulation of isoflavonoid synthesis in soybean, the R2R3-MYB transcription factor GmMYB12B2 was isolated and characterized. Yeast expression experiments demonstrated that GmMYB12B2 showed transcriptional activity. GmMYB12B2 was localized in the nucleus when it was transiently expressed in onion epidermal cells. Real-time quantitative PCR analysis revealed that GmMYB12B2 transcription was increased in roots and mature seeds compared with other organs. The gene expression level in immature embryos was consistent with the accumulation of isoflavones. CHS8 is a key enzyme in plant flavonoid biosynthesis. Transient expression experiments in soybean calli demonstrated that CHS8 was regulated by GmMYB12B2 and produced more fluorescence. The expression levels of some key enzymes in flavonoid biosynthesis were examined in transgenic Arabidopsis lines. The results showed that the expression levels of PAL1, CHS and FLS in transgenic plants were significantly higher than those in wild type plants. However, the expression level of DFR was lower, and the expression levels of CHI, F3H and F3'H were the same in all lines. GmMYB12B2 expression caused a constitutive increase in the accumulation of flavonoids in transgenic Arabidopsis lines compared with wild type plants.


Assuntos
Arabidopsis/genética , Flavonoides/biossíntese , Flavonoides/genética , Glycine max/genética , Fatores de Transcrição/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Núcleo Celular/genética , Flavanonas/genética , Flavanonas/metabolismo , Regulação da Expressão Gênica de Plantas , Isoflavonas/metabolismo , Dados de Sequência Molecular , Cebolas/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Epiderme Vegetal/genética , Epiderme Vegetal/metabolismo , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/metabolismo , Leveduras/genética
14.
Phytother Res ; 27(12): 1834-41, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23420757

RESUMO

In the present study, the main natural estrogen-agonist/antagonist from Pigeonpea roots was studied by the estrogen receptor α-dependent signaling pathway in human prostate cancer cell. First, the natural products with estrogenic activity in Pigeonpea roots were screened by pER8-GFP transgenic Arabidopsis, and cajanol (5-hydroxy-3-(4-hydroxy-2-methoxyphenyl)-7-methoxychroman-4-one) was confirmed as the active compound. Further study showed that cajanol significantly arrested the cell cycle in the G1 and G2/M phase and induced nuclei condensation, fragmentation and the formation of apoptotic bodies. Western blotting showed that cajanol modulated the ERα-dependent PI3K pathway and induced the activation of GSK3 and CyclinD1 closely following the profile of PI3K activity. Based on above results, we proposed a mechanism through which cajanol could inhibit survival and proliferation of estrogen-responsive cells (PC-3 cells) by interfering with an ERα-associated PI3K pathway, following a process that could be dependent of the nuclear functions of the ERα. Above all, we conclude that cajanol represents a valuable natural phytoestrogen source and may potentially be applicable in health food industry.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Isoflavonas/farmacologia , Fitoestrógenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Arabidopsis , Cajanus/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina D1/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Raízes de Plantas/química , Plantas Geneticamente Modificadas , Neoplasias da Próstata/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA