Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 665
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Adv Redox Res ; 102024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38562523

RESUMO

Individuals with a history of mild traumatic brain injury (mTBI) are at an increased risk for neurodegenerative disease, suggesting that intrinsic neuroprotective mechanisms, such as the endogenous antioxidant reservoir, may be depleted long-term after mTBI. Here, we retrospectively analyzed symptoms and blood antioxidants in patients with a history of mTBI who presented to Resilience Code, a sports medicine clinic in Colorado. Significant decreases in alpha-tocopherol, selenium, linoleic acid, taurine, docosahexaenoic acid, and total omega-3 were measured in the total mTBI population versus controls. Male mTBI patients showed depletion of a larger array of antioxidants than females. Patients with a history of mTBI also reported significantly worsened emotional, energy, head, and cognitive symptoms, with males displaying more extensive symptomology. Multiple or chronic mTBI patients had worsened symptoms than single or acute/subchronic mTBI patients, respectively. Finally, male mTBI patients with the largest reductions in polyunsaturated fatty acids (PUFAs) displayed worse symptomology than male mTBI patients with less depletion of this antioxidant reservoir. These results demonstrate that antioxidant depletion persists in patients with a history of mTBI and these deficits are sex-specific and associated with worsened symptomology. Furthermore, supplementation with specific antioxidants, like PUFAs, may diminish symptom severity in patients suffering from chronic effects of mTBI.

2.
Zhongguo Zhong Yao Za Zhi ; 49(4): 902-911, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621897

RESUMO

Alzheimer's disease(AD), vascular dementia(VD), and traumatic brain injury(TBI) are more common cognitive impairment diseases characterized by high disability and mortality rates, imposing a heavy burden on individuals and their families. Although AD, VD, and TBI have different specific mechanisms, their pathogenesis is closely related to the nucleotide-binding oligome-rization domain-like receptor protein 3(NLRP3). The NLRP3 inflammasome is involved in neuroinflammatory responses, mediating microglial polarization, regulating the reduction of amyloid ß-protein(Aß) deposition, neurofibrillary tangles(NFTs) formation, autophagy regulation, and maintaining brain homeostasis, and synaptic stability, thereby contributing to the development of AD, VD, and TBI. Previous studies have shown that traditional Chinese medicine(TCM) can alleviate neuroinflammation, promote microglial polarization towards the M2 phenotype, reduce Aß deposition and NFTs formation, regulate autophagy, and maintain brain homeostasis by intervening in NLRP3 inflammasome, hence exerting a role in preventing and treating cognitive impairment-related diseases, reducing psychological and economic pressure on patients, and improving their quality of life. Therefore, this article elucidated the role of NLRP3 inflammasome in AD, VS, and TBI, and provided a detailed summary of the latest research results on TCM intervention in NLRP3 inflammasome for the prevention and treatment of these diseases, aiming to inherit the essence of TCM and provide references and foundations for clinical prevention and treatment of cognitive impairment-related diseases with TCM. Meanwhile, this also offers insights and directions for further research in TCM for the prevention and treatment of cognitive impairment-related diseases.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Peptídeos beta-Amiloides/metabolismo , Medicina Tradicional Chinesa , Qualidade de Vida , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle
3.
J Athl Train ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632834

RESUMO

CONTEXT: Medical disqualification (MDQ) following concussion is a challenging decision clinicians may encounter with little evidence-based guidance. OBJECTIVE: We aimed to 1) describe the MDQ following concussion cases athletic trainers (ATs) have been involved in, 2) describe beliefs about MDQ following concussion, and 3) explore factors that ATs believed should be involved in the MDQ following concussion process. DESIGN: Mixed methods. SETTING: Online cross-sectional survey with follow-up semi-structured interviews. PARTICIPANTS: ATs (n=502) employed at the collegiate setting completed a survey (completion rate=82.3%, n=413/502; male=175, 34.9%; female=235, 46.8%, prefer not to answer=4, 0.8%; no response=88, 17.5%; age=35.3±10.8 years). Twenty participants were also interviewed (males=13, 65.0%; females=7, 35.0%; average age=40.7±11.0years). DATA COLLECTION AND ANALYSIS: Participants completed a cross-sectional survey comprised of three sections of MDQ experience and specific case information, MDQ beliefs, and demographic items. We also interviewed participants that completed the survey and indicated involvement in at least one MDQ following concussion case. We addressed aims 1 and 2 using descriptive statistics and aim 3 with a five-cycle content analysis. RESULTS: Nearly half of respondents had been involved in an MDQ case following concussion (49.0% n=246; not involved=51.0%, n=256). ATs who had been involved in at least one MDQ case had involvement in an average of 2.3±1.9 cases (n=241). Participants often described many factors they believed should influence the MDQ decision including sport type, concussion history and recovery, health-related quality of life, and academic performance. CONCLUSIONS: Our findings highlight that nearly half of participants were involved in an MDQ case following concussion and navigated this process without guidelines. Given this, multiple factors were considered to evaluate the patient's well-being holistically. The number of ATs involved in MDQ cases following concussion and factors that guided this process warrant further research to develop evidence-based recommendations that assist clinicians in these difficult decisions.

4.
Phytomedicine ; 129: 155566, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38565001

RESUMO

BACKGROUND: Xuefu Zhuyu decoction (XFZYD) is a traditional Chinese herbal formula known for its ability to eliminate blood stasis and improve blood circulation, providing neuroprotection against severe traumatic brain injury (sTBI). However, the underlying mechanism is still unclear. PURPOSE: We aim to investigate the neuroprotective effects of XFZYD in sTBI from a novel mechanistic perspective of miRNA-mRNA. Additionally, we sought to elucidate a potential specific mechanism by integrating transcriptomics, bioinformatics, and conducting both in vitro and in vivo experiments. METHODS: The sTBI rat model was established, and the rats were treated with XFZYD for 14 days. The neuroprotective effects of XFZYD were evaluated using a modified neurological severity score, hematoxylin and eosin staining, as well as Nissl staining. The anti-inflammatory effects of XFZYD were explored using quantitative real-time PCR (qRT-PCR), Western blot analysis, and immunofluorescence. Next, miRNA sequencing of the hippocampus was performed to determine which miRNAs were differentially expressed. Subsequently, qRT-PCR was used to validate the differentially expressed miRNAs. Target core mRNAs were determined using various methods, including miRNA prediction targets, mRNA sequencing, miRNA-mRNA network, and protein-protein interaction (PPI) analysis. The miRNA/mRNA regulatory axis were verified through qRT-PCR or Western blot analysis. Finally, morphological changes in the neural synapses were observed using transmission electron microscopy and immunofluorescence. RESULTS: XFZYD exhibited significant neuroprotective and anti-inflammatory effects on subacute sTBI rats' hippocampus. The analyses of miRNA/mRNA sequences combined with the PPI network revealed that the therapeutic effects of XFZYD on sTBI were associated with the regulation of the rno-miR-191a-5p/BDNF axis. Subsequently, qRT-PCR and Western blot analysis confirmed XFZYD reversed the decrease of BDNF and TrkB in the hippocampus caused by sTBI. Additionally, XFZYD treatment potentially increased the number of synaptic connections, and the expression of the synapse-related protein PSD95, axon-related protein GAP43 and neuron-specific protein TUBB3. CONCLUSIONS: XFZYD exerts neuroprotective effects by promoting hippocampal synaptic remodeling and improving cognition during the subacute phase of sTBI through downregulating of rno-miR-191a-5p/BDNF axis, further activating BDNF-TrkB signaling.


Assuntos
Lesões Encefálicas Traumáticas , Fator Neurotrófico Derivado do Encéfalo , Medicamentos de Ervas Chinesas , Hipocampo , MicroRNAs , Plasticidade Neuronal , Fármacos Neuroprotetores , Ratos Sprague-Dawley , Animais , MicroRNAs/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Masculino , Ratos , Fármacos Neuroprotetores/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Modelos Animais de Doenças , Receptor trkB/metabolismo
5.
Front Neurol ; 15: 1321239, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562423

RESUMO

Traumatic brain injury (TBI), in any form and severity, can pose risks for developing chronic symptoms that can profoundly hinder patients' work/academic, social, and personal lives. In the past 3 decades, a multitude of pharmacological, stimulation, and exercise-based interventions have been proposed to ameliorate symptoms, memory impairment, mental fatigue, and/or sleep disturbances. However, most research is preliminary, thus limited influence on clinical practice. This review aims to systematically appraise the evidence derived from randomized controlled trials (RCT) regarding the effectiveness of pharmacological, stimulation, and exercise-based interventions in treating chronic symptoms due to TBI. Our search results indicate that despite the largest volume of literature, pharmacological interventions, especially using neurostimulant medications to treat physical, cognitive, and mental fatigue, as well as daytime sleepiness, have yielded inconsistent results, such that some studies found improvements in fatigue (e.g., Modafinil, Armodafinil) while others failed to yield the improvements after the intervention. Conversely, brain stimulation techniques (e.g., transcranial magnetic stimulation, blue light therapy) and exercise interventions were effective in ameliorating mental health symptoms and cognition. However, given that most RCTs are equipped with small sample sizes, more high-quality, larger-scale RCTs is needed.

6.
Neurotrauma Rep ; 5(1): 159-171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463415

RESUMO

Persons who have experienced traumatic brain injury (TBI) may encounter a range of changes in their physical, mental, and cognitive functions as well as high fatigue levels. To gain a comprehensive understanding of the challenges faced by persons after TBI, we conducted multi-domain assessments among community-dwelling persons with a history of TBI and compared them with age- and sex-matched controls from the Northeastern Taiwan Community Medicine Research Cohort between 2019 and 2021. A total of 168 persons with TBI and 672 non-TBI controls were not different in terms of demographics, comorbidities, and physiological features. However, compared with the non-TBI group, the TBI group had a distinct lifestyle that involved increased reliance on analgesics (6.9% vs. 15.0%, respectively; p = 0.001) and sleep aids (p = 0.008), which negatively affected their quality of life. Moreover, they consumed more coffee (p < 0.001), tea (p < 0.001), cigarettes (p = 0.002), and betel nuts (p = 0.032) than did the non-TBI group. Notably, the use of coffee had a positive effect on the quality of life of the TBI group (F = 4.034; p = 0.045). Further, compared with the non-TBI group, the TBI group had increased risks of sarcopenia (p = 0.003), malnutrition (p = 0.003), and anxiety (p = 0.029) and reduced blood levels of vitamin D (29.83 ± 10.39 vs. 24.20 ± 6.59 ng/mL, respectively; p < 0.001). Overall, the TBI group had a reduced health-related quality of life, with significant challenges related to physical health, mental well-being, social interactions, pain management, and fatigue levels. Moreover, the TBI group experienced poorer sleep quality and efficiency than did the non-TBI group. In conclusion, persons who have sustained brain injuries that require comprehensive and holistic care that includes lifestyle modification, mental and physical healthcare plans, and increased long-term support from their communities. ClinicalTrials.gov (identifier: NCT04839796).

7.
Adv Neurobiol ; 36: 445-468, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468047

RESUMO

Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique able to depict the magnetic susceptibility produced by different substances, such as deoxyhemoglobin, calcium, and iron. The main application of SWI in clinical neuroimaging is detecting microbleedings and venous vasculature. Quantitative analyses of SWI have been developed over the last few years, aimed to offer new parameters, which could be used as neuroimaging biomarkers. Each technique has shown pros and cons, but no gold standard exists yet. The fractal dimension (FD) has been investigated as a novel potential objective parameter for monitoring intratumoral space-filling properties of SWI patterns. We showed that SWI patterns found in different tumors or different glioma grades can be represented by a gradient in the fractal dimension, thereby enabling each tumor to be assigned a specific SWI fingerprint. Such results were especially relevant in the differentiation of low-grade versus high-grade gliomas, as well as from high-grade gliomas versus lymphomas.Therefore, FD has been suggested as a potential image biomarker to analyze intrinsic neoplastic architecture in order to improve the differential diagnosis within clinical neuroimaging, determine appropriate therapy, and improve outcome in patients.These promising preliminary findings could be extended into the field of neurotraumatology, by means of the application of computational fractal-based analysis for the qualitative and quantitative imaging of microbleedings in traumatic brain injury patients. In consideration of some evidences showing that SWI signals are correlated with trauma clinical severity, FD might offer some objective prognostic biomarkers.In conclusion, fractal-based morphometrics of SWI could be further investigated to be used in a complementary way with other techniques, in order to form a holistic understanding of the temporal evolution of brain tumors and follow-up response to treatment, with several further applications in other fields, such as neurotraumatology and cerebrovascular neurosurgery as well.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Fractais , Neoplasias Encefálicas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Biomarcadores
8.
Mol Neurobiol ; 61(10): 7732-7750, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38427213

RESUMO

Inflammation in the nervous system is one of the key features of many neurodegenerative diseases. It is increasingly being identified as a critical pathophysiological primitive mechanism associated with chronic neurodegenerative diseases following traumatic brain injury (TBI). Phytochemicals have a wide range of clinical properties due to their antioxidant and anti-inflammatory effects. Currently, there are few drugs available for the treatment of neurodegenerative diseases other than symptomatic relief. Numerous studies have shown that plant-derived compounds, in particular polyphenols, protect against various neurodegenerative diseases and are safe for consumption. Polyphenols exert protective effects on TBI via restoration of nuclear factor kappa B (NF-κB), toll-like receptor-4 (TLR4), and Nod-like receptor family proteins (NLRPs) pathways. In addition, these phytochemicals and their derivatives upregulate the phosphatidylinositol-3-Kinase/Protein Kinase B (PI3K/AKT) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways, which have critical functions in modulating TBI symptoms. There is supporting evidence that medicinal plants and phytochemicals are protective in different TBI models, though future clinical trials are needed to clarify the precise mechanisms and functions of different polyphenolic compounds in TBI.


Assuntos
Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Compostos Fitoquímicos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Animais , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Polifenóis/farmacologia , Polifenóis/uso terapêutico
9.
J Neurotrauma ; 41(11-12): 1299-1309, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38468511

RESUMO

Concussion is a common injury in the adolescent and young adult populations. Although branched chain amino acid (BCAA) supplementation has shown improvements in neurocognitive and sleep function in pre-clinical animal models of mild-to-moderate traumatic brain injury (TBI), to date, no studies have been performed evaluating the efficacy of BCAAs in concussed adolescents and young adults. The goal of this pilot trial was to determine the efficacy, tolerability, and safety of varied doses of oral BCAA supplementation in a group of concussed adolescents and young adults. The study was conducted as a pilot, double-blind, randomized controlled trial of participants ages 11-34 presenting with concussion to outpatient clinics (sports medicine and primary care), urgent care, and emergency departments of a tertiary care pediatric children's hospital and an urban tertiary care adult hospital, between June 24, 2014 and December 5, 2020. Participants were randomized to one of five study arms (placebo and 15 g, 30 g, 45 g, and 54 g BCAA treatment daily) and followed for 21 days after enrollment. Outcome measures included daily computerized neurocognitive tests (processing speed, the a priori primary outcome; and attention, visual learning, and working memory), symptom score, physical and cognitive activity, sleep/wake alterations, treatment compliance, and adverse events. In total, 42 participants were randomized, 38 of whom provided analyzable data. We found no difference in our primary outcome of processing speed between the arms; however, there was a significant reduction in total symptom score (decrease of 4.4 points on a 0-54 scale for every 500 g of study drug consumed, p value for trend = 0.0036, [uncorrected]) and return to physical activity (increase of 0.503 points on a 0-5 scale for every 500 g of study drug consumed, p value for trend = 0.005 [uncorrected]). There were no serious adverse events. Eight of 38 participants reported a mild (not interfering with daily activity) or moderate (limitation of daily activity) adverse event; there were no differences in adverse events by arm, with only two reported mild adverse events (both gastrointestinal) in the highest (45 g and 54 g) BCAA arms. Although limited by slow enrollment, small sample size, and missing data, this study provides the first demonstration of efficacy, as well as safety and tolerability, of BCAAs in concussed adolescents and young adults; specifically, a dose-response effect in reducing concussion symptoms and a return to baseline physical activity in those treated with higher total doses of BCAAs. These findings provide important preliminary data to inform a larger trial of BCAA therapy to expedite concussion recovery.


Assuntos
Aminoácidos de Cadeia Ramificada , Concussão Encefálica , Suplementos Nutricionais , Humanos , Projetos Piloto , Masculino , Feminino , Adolescente , Método Duplo-Cego , Adulto Jovem , Aminoácidos de Cadeia Ramificada/administração & dosagem , Aminoácidos de Cadeia Ramificada/uso terapêutico , Concussão Encefálica/tratamento farmacológico , Concussão Encefálica/terapia , Adulto , Criança , Resultado do Tratamento
10.
Cells ; 13(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474349

RESUMO

Traumatic Brain Injury (TBI) remains a significant global health challenge, lacking effective pharmacological treatments. This shortcoming is attributed to TBI's heterogeneous and complex pathophysiology, which includes axonal damage, mitochondrial dysfunction, oxidative stress, and persistent neuroinflammation. The objective of this study is to analyze transcranial photobiomodulation (PBM), which employs specific red to near-infrared light wavelengths to modulate brain functions, as a promising therapy to address TBI's complex pathophysiology in a single intervention. This study reviews the feasibility of this therapy, firstly by synthesizing PBM's cellular mechanisms with each identified TBI's pathophysiological aspect. The outcomes in human clinical studies are then reviewed. The findings support PBM's potential for treating TBI, notwithstanding variations in parameters such as wavelength, power density, dose, light source positioning, and pulse frequencies. Emerging data indicate that each of these parameters plays a role in the outcomes. Additionally, new research into PBM's effects on the electrical properties and polymerization dynamics of neuronal microstructures, like microtubules and tubulins, provides insights for future parameter optimization. In summary, transcranial PBM represents a multifaceted therapeutic intervention for TBI with vast potential which may be fulfilled by optimizing the parameters. Future research should investigate optimizing these parameters, which is possible by incorporating artificial intelligence.


Assuntos
Lesões Encefálicas Traumáticas , Terapia com Luz de Baixa Intensidade , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Inteligência Artificial , Neurônios , Axônios
11.
BMC Complement Med Ther ; 24(1): 78, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321432

RESUMO

BACKGROUND: Traumatic brain injury (TBI) adversely affects both young and old and is a growing public health concern. The common functional, psychological, and cognitive changes associated with TBI and recent trends in its management, such as recommending sub-threshold aerobic activity, and multi-modal treatment strategies including vestibular rehabilitation, suggest that Tai Chi/Qigong could be beneficial for TBI. Tai Chi and Qigong are aerobic mind-body practices with known benefits for maintaining health and mitigating chronic disease. To date, no systematic review has been published assessing the safety and effectiveness of Tai Chi/Qigong for traumatic injury. METHODS: The following databases were searched: MEDLINE, CINAHL Cochrane Library, Embase, China National Knowledge Infrastructure Database, Wanfang Database, Chinese Scientific Journal Database, and Chinese Biomedical Literature Database. All people with mild, moderate, or severe TBI who were inpatients or outpatients were included. All Types of Tai Chi and Qigong, and all comparators, were included. All measured outcomes were included. A priori, we chose "return to usual activities" as the primary outcome measure as it was patient-oriented. Cochrane-based risk of bias assessments were conducted on all included trials. Quality of evidence was assessed using the grading of recommendation, assessment, development, and evaluation (GRADE) system. RESULTS: Five trials were assessed; three randomized controlled trials (RCTs) and two non-RCTs; only two trials were conducted in the last 5 years. No trial measured "return to normal activities" or vestibular status as an outcome. Four trials - two RCTs and two non-RCTS - all found Tai Chi improved functional, psychological and/or cognitive outcomes. One RCT had a low risk of bias and a high level of certainty; one had some concerns. One non-RCTs had a moderate risk of bias and the other a serious risk of bias. The one Qigong RCT found improved psychological outcomes. It had a low risk of bias and a moderate level of certainty. Only one trial reported on adverse events and found that none were experienced by either the exercise or control group. CONCLUSION: Based on the consistent finding of benefit in the four Tai Chi trials, including one RCT that had a high level of certainty, there is a sufficient signal to merit conducting a large, high quality multi-centre trial on Tai Chi for TBI and test it against current trends in TBI management. Based on the one RCT on TBI and Qigong, an additional confirmatory RCT is indicated. Further research is indicated that reflects current management strategies and includes adverse event documentation in both the intervention and control groups. However, these findings suggest that, in addition to Tai Chi's known health promotion and chronic disease mitigation benefits, its use for the treatment of injury, such as TBI, is potentially a new frontier. SYSTEMATIC REVIEW REGISTRATION: PROSPERO [ CRD42022364385 ].


Assuntos
Lesões Encefálicas Traumáticas , Qigong , Tai Chi Chuan , Humanos , Doença Crônica , Exercício Físico
12.
Arch Phys Med Rehabil ; 105(7): 1268-1274, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38369228

RESUMO

OBJECTIVE: To assess psychosocial treatment preferences and factors that may affect treatment participation among young adults with a recent concussion and co-occurring anxiety. DESIGN: In-depth, semi-structured individual qualitative interviews, followed by thematic analysis using a hybrid deductive-inductive approach. SETTING: Academic medical center in the US Northeast. PARTICIPANTS: Seventeen young adults (18-24y) who sustained a concussion within the past 3-10 weeks and reported at least mild anxiety (≥5 on the Generalized Anxiety Disorder-7 questionnaire). INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Primary outcomes include preferences for program content (eg, topics and skills), delivery modality, format, and barriers and facilitators to participation. RESULTS: We identified 4 domains characterizing participants' perceptions of and preferences for treatment. (1) Program content: Participants preferred a program early after injury that included psychoeducation and coping skills (eg, activity pacing, deep breathing, mindfulness). (2) Therapeutic processes: Participants preferred a person-centered approach in which clinicians normalized anxiety postconcussion and reassured them of recovery. (3) Program logistics: Participants endorsed that a brief, virtual program would be acceptable. They preferred access to program components through multiple modalities (eg, audio, video) and accommodations to manage concussion symptoms. (4) Barriers and facilitators to participation: Barriers included acute concussion symptoms (eg, screen sensitivity), time constraints, and forgetting sessions. Facilitators included a program that is flexible (format, scheduling), personalized (self-chosen mode for reminders, measure of accountability), and accessible (ie, advertising through health care professionals or social media). CONCLUSIONS: Participants need psychosocial support that normalizes their experiences and provides education and coping tools. Treatments should be accessible, flexible, and person centered. Psychosocial treatments meeting these preferences may help optimize the recovery of young adults with recent concussion and anxiety.


Assuntos
Ansiedade , Concussão Encefálica , Preferência do Paciente , Pesquisa Qualitativa , Humanos , Masculino , Feminino , Adulto Jovem , Concussão Encefálica/psicologia , Concussão Encefálica/reabilitação , Concussão Encefálica/terapia , Preferência do Paciente/psicologia , Adolescente , Ansiedade/etiologia , Adaptação Psicológica , Entrevistas como Assunto , Educação de Pacientes como Assunto
13.
Nutrients ; 16(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38398823

RESUMO

Sport-related concussion incidence has increased in many team-based sports, such as rugby, Gaelic (camogie, hurling, football), and hockey. Concussion disrupts athletes' brain function, causing an "energy crisis" that requires energy and nutrient support to restore function and heal. Performance dietitians and nutritionists play a role in supporting athletes' post-injury nutritional demands. This study aimed to investigate Irish performance dietitians' and nutritionists' knowledge and implementation of nutritional strategies to manage and support athletes' recovery following concussion. In-depth, semi-structured interviews were conducted with seventeen (n = 17) Irish performance dietitians and nutritionists recruited from the Sport and Exercise Nutrition register and other sporting body networks across Ireland. Participants practised or had practised with amateur and/or professional athletes within the last ten years. All interviews and their transcripts were thematically analysed to extract relevant insights. These data provided valuable insights revealing performance dietitians and nutritionists: (1) their awareness of concussion events and (2) their use of nutritional supports for concussion management. Furthermore, the research highlighted their implementation of 'novel nutritional protocols' specifically designed to support and manage athletes' concussion recovery. There was a clear contrast between participants who had an awareness and knowledge of the importance of nutrition for brain recovery after sport-related concussion(s) and those who did not. Participants presenting with a practical understanding mentioned re-emphasising certain foods and supplements they were already recommending to athletes in the event of a concussion. Performance dietitians and nutritionists were keeping up to date with nutrition research on concussions, but limited evidence has prevented them from implementing protocols in practice. Meanwhile, participants mentioned trialling/recommending nutritional protocols, such as carbohydrate reloading, reducing omega-6 intake, and acutely supplementing creatine, omega-3 fish oils high in Docosahexaenoic acid, and probiotics to support brain healing. Performance dietitians' and nutritionists' use of nutrition protocols with athletes following concussion was linked to their knowledge and the limited scientific evidence available. Nutrition implementation, therefore, may be overlooked or implemented with uncertainty, which could negatively affect athletes' recovery following sports-related concussions.


Assuntos
Concussão Encefálica , Nutricionistas , Humanos , Concussão Encefálica/terapia , Suplementos Nutricionais , Atletas , Esportes de Equipe
14.
Phytomedicine ; 125: 155321, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237514

RESUMO

BACKGROUND: Traumatic Brain Injury (TBI) poses a considerable public health challenge, resulting in mortality, disability, and economic strain. Dehydroevodiamine (DEDM) is a natural compound derived from a traditional Chinese herbal medicine. Prior studies have substantiated the neuroprotective attributes of this compound in the context of TBI. Nevertheless, a comprehensive comprehension of the exact mechanisms responsible for its neuroprotective effects remains elusive. It is imperative to elucidate the precise intrinsic mechanisms underlying the neuroprotective actions of DEDM. PURPOSE: The aim of this investigation was to elucidate the mechanism underlying DEDM treatment in TBI utilizing both in vivo and in vitro models. Specifically, our focus was on comprehending the impact of DEDM on the Sirtuin1 (SIRT1) / Forkhead box O3 (FOXO3a) / Bcl-2-like protein 11 (Bim) pathway, a pivotal player in TBI-induced cell death attributed to oxidative stress. STUDY DESIGN AND METHODS: We established a TBI mouse model via the weight drop method. Following continuous intraperitoneal administration, we assessed the neurological dysfunction using the Modified Neurological Severity Score (mNSS) and behavioral assay, followed by sample collection. Secondary brain damage in mice was evaluated through Nissl staining, brain water content measurement, Evans blue detection, and Western blot assays. We scrutinized the expression levels of oxidative stress-related indicators and key proteins for apoptosis. The intricate mechanism of DEDM in TBI was further explored through immunofluorescence, Co-immunoprecipitation (Co-IP) assays, real-time quantitative PCR (RT-qPCR), dual-luciferase assays and western blotting. Additionally, we further investigated the specific therapeutic mechanism of DEDM in an oxidative stress cell model. RESULTS: The results indicated that DEDM effectively ameliorated oxidative stress and apoptosis post-TBI, mitigating neurological dysfunction and brain injury in mice. DEDM facilitated the deacetylation of FOXO3a by up-regulating the expression of the deacetylase SIRT1, consequently suppressing Bim expression. This mechanism contributed to the alleviation of neurological injury and symptom improvement in TBI-afflicted mice. Remarkably, SIRT1 emerged as a central mediator in the overall treatment mechanism. CONCLUSIONS: DEDM exerted significant neuroprotective effects on TBI mice by modulating the SIRT1/FOXO3a/Bim pathway. Our innovative research provides a basis for further exploration of the clinical therapeutic potential of DEDM in the context of TBI.


Assuntos
Alcaloides , Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Camundongos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Sirtuína 1/metabolismo , Proteína 11 Semelhante a Bcl-2/farmacologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Apoptose , Modelos Animais de Doenças
15.
J Neurotrauma ; 41(1-2): 222-243, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-36950806

RESUMO

Sodium selenate (SS) activates protein phosphatase 2 (PP2A) and reduces phosphorylated tau (pTAU) and late post-traumatic seizures after lateral fluid percussion injury (LFPI). In EpiBioS4Rx Project 2, a multi-center international study for post-traumatic targets, biomarkers, and treatments, we tested the target relevance and modification by SS of pTAU forms and PP2A and in the LFPI model, at two sites: Einstein and Melbourne. In Experiment 1, adult male rats were assigned to LFPI and sham (both sites) and naïve controls (Einstein). Motor function was monitored by neuroscores. Brains were studied with immunohistochemistry (IHC), Western blots (WBs), or PP2A activity assay, from 2 days to 8 weeks post-operatively. In Experiment 2, LFPI rats received SS for 7 days (SS0.33: 0.33 mg/kg/day; SS1: 1 mg/kg/day, subcutaneously) or vehicle (Veh) post-LFPI and pTAU, PR55 expression, or PP2A activity were studied at 2 days and 1 week (on treatment), or 2 weeks (1 week off treatment). Plasma selenium and SS levels were measured. In Experiment 1 IHC, LFPI rats had higher cortical pTAU-Ser202/Thr205-immunoreactivity (AT8-ir) and pTAU-Ser199/202-ir at 2 days, and pTAU-Thr231-ir (AT180-ir) at 2 days, 2 weeks, and 8 weeks, ipsilaterally to LFPI, than controls. LFPI-2d rats also had higher AT8/total-TAU5-ir in cortical extracts ipsilateral to the lesion (WB). PP2A (PR55-ir) showed time- and region-dependent changes in IHC, but not in WB. PP2A activity was lower in LFPI-1wk than in sham rats. In Experiment 2, SS did not affect neuroscores or cellular AT8-ir, AT180-ir, or PR55-ir in IHC. In WB, total cortical AT8/total-TAU-ir was lower in SS0.33 and SS1 LFPI rats than in Veh rats (2 days, 1 week); total cortical PR55-ir (WB) and PP2A activity were higher in SS1 than Veh rats (2 days). SS dose dependently increased plasma selenium and SS levels. Concordant across-sites data confirm time and pTAU form-specific cortical increases ipsilateral to LFPI. The discordant SS effects may either suggest SS-induced reduction in the numbers of cells with increased pTAU-ir, need for longer treatment, or the involvement of other mechanisms of action.


Assuntos
Lesões Encefálicas Traumáticas , Selênio , Ratos , Masculino , Animais , Ácido Selênico/farmacologia , Fosforilação , Proteínas tau/metabolismo , Córtex Cerebral/metabolismo
16.
CNS Neurosci Ther ; 30(3): e14231, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37183394

RESUMO

INTRODUCTION: Spatial changes of amine metabolites and histopathology of the whole brain help to reveal the mechanism of traumatic brain injury (TBI) and treatment. METHODS: A newly developed liquid microjunction surface sampling-tandem mass tag-ultra performance liquid chromatography-mass spectrometry technique is applied to profile brain amine metabolites in five brain regions after impact-induced TBI at the subacute stage. H&E, Nissl, and immunofluorescence staining are performed to spatially correlate microscopical changes to metabolic alterations. Then, bioinformatics, molecular docking, ELISA, western blot, and immunofluorescence are integrated to uncover the mechanism of Xuefu Zhuyu decoction (XFZYD) against TBI. RESULTS: Besides the hippocampus and cortex, the thalamus, caudate-putamen, and fiber tracts also show differentiated metabolic changes between the Sham and TBI groups. Fourteen amine metabolites (including isomers such as L-leucine and L-isoleucine) are significantly altered in specific regions. The metabolic changes are well matched with the degree of neuronal damage, glia activation, and neurorestoration. XFZYD reverses the dysregulation of several amine metabolites, such as hippocampal Lys-Phe/Phe-Lys and dopamine. Also, XFZYD enhances post-TBI angiogenesis in the hippocampus and the thalamus. CONCLUSION: This study reveals the local amine-metabolite and histological changes in the subacute stage of TBI. XFZYD may promote TBI recovery by normalizing amine metabolites and spatially promoting dopamine production and angiogenesis.


Assuntos
Lesões Encefálicas Traumáticas , Dopamina , Humanos , Simulação de Acoplamento Molecular , Dopamina/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Metabolômica
17.
Artigo em Chinês | WPRIM | ID: wpr-1022681

RESUMO

Objective To explore the efficacy of early hyperbaric oxygen therapy(HBOT)combined with median nerve electrical stimulation(MNES)in the treatment of severe traumatic brain injury(sTBI)and its impact on hemodynamics,coma degree,and neurological function of patients.Methods A total of 78 patients with sTBI admitted to the General Hospital of Western Theater Command from March 2020 to October 2021 were selected as the research subjects.The patients were randomly divided into the control group and the observation group,with 39 patients in each group.The patients in both groups underwent basic treatments such as water,electrolyte and acid-base balance,nutritional support,anti-infection,and decompressive craniectomy.On this basis,patients in the control group received early HBOT,while patients in the observation group received both HBOT and MNES.Their clinical efficacy was compared between the two groups.Before and after treatment,dual-channel transcranial Doppler ultrasound was performed to detect hemodynamic indicators such as peak systolic blood flow velocity(Vs),mean blood flow velocity(Vm),and pulsatility index(PI)in the middle cerebral artery of patients in the two groups.The Glasgow Coma Scale(GCS)score was used to evaluate the degree of coma of patients in the two groups,the National Institutes of Health Stroke Scale(NIHSS)score was used to assess the neurological deficits of patients in the two groups,and the enzyme-linked immunosorbent assay was used to measure the levels of central nervous system specific protein(S100-β),glial fibrillary acidic protein(GFAP),and myelin basic protein(MBP).Complications during treatment of patients in the two groups were recorded,and their incidence was compared.Results The total effective rate of patients in the control and observation groups was 79.49%(31/39)and 92.31%(36/39),respectively.The total effective rate in the observation group was significantly higher than that in the control group(x2=8.971,P<0.05).There was no significant difference in Vm,Vs,and PI between the two groups before treatment(P>0.05).After treatment,the Vm and Vs in both groups were significantly higher than those before treatment,while the PI was significantly lower than that before treatment(P<0.05);and the Vm and Vs in the observation group were signifi-cantly higher than that those in the control group,while the PI was significantly lower than that in the control group(P<0.05).There was no significant difference in GCS and NIHSS scores between the two groups before treatment(P>0.05).After treatment,the GCS score in both groups was significantly higher than that before treatment,while the NIHSS score was significantly lower than that before treatment(P<0.05);and the GCS score in the observation group was significantly higher than that in the control group,while the NIHSS score was significantly lower than that in the control group(P<0.05).There was no significant difference in S100-β,GFAP,and MBP levels between the two groups before treatment(P>0.05).After treatment,the S100-β,GFAP,and MBP levels in both groups were significantly lower than those before treatment(P<0.05),and the S100-β,GFAP,and MBP levels in the observation group were significantly lower than those in the control group(P<0.05).During treatment,the incidence of complications in the control and observation groups was 23.08%(9/39)and 20.51%(8/39),respectively,showing no significant difference(x2=2.328,P>0.05).Conclusion Early HBOT combined with MNES shows good efficacy in treating sTBI,which can effectively improve the patients'hemodynamic level,alleviate the severity of coma,enhance neurological function,and promote early recovery of consciousness,without increased risk of complications.

18.
Antioxidants (Basel) ; 12(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38136154

RESUMO

Traumatic brain injury (TBI) is a leading cause of morbidity and mortality in young adults, characterized by primary and secondary injury. Primary injury is the immediate mechanical damage, while secondary injury results from delayed neuronal death, often linked to mitochondrial damage accumulation. Hyperbaric oxygen therapy (HBOT) has been proposed as a potential treatment for modulating secondary post-traumatic neuronal death. However, the specific molecular mechanism by which HBOT modulates secondary brain damage through mitochondrial protection remains unclear. Spatial learning, reference memory, and motor performance were measured in rats before and after Controlled Cortical Impact (CCI) injury. The HBOT (2.5 ATA) was performed 4 h following the CCI and twice daily (12 h intervals) for four consecutive days. Mitochondrial functions were assessed via high-resolution respirometry on day 5 following CCI. Moreover, IHC was performed at the end of the experiment to evaluate cortical apoptosis, neuronal survival, and glial activation. The current result indicates that HBOT exhibits a multi-level neuroprotective effect. Thus, we found that HBOT prevents cortical neuronal loss, reduces the apoptosis marker (cleaved-Caspase3), and modulates glial cell proliferation. Furthermore, HBO treatment prevents the reduction in mitochondrial respiration, including non-phosphorylation state, oxidative phosphorylation, and electron transfer capacity. Additionally, a superior motor and spatial learning performance level was observed in the CCI group treated with HBO compared to the CCI group. In conclusion, our findings demonstrate that HBOT during the critical period following the TBI improves cognitive and motor damage via regulating glial proliferation apoptosis and protecting mitochondrial function, consequently preventing cortex neuronal loss.

19.
Cells ; 12(22)2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37998324

RESUMO

Traumatic brain injury (TBI) affects millions of people of all ages around the globe. TBI is notoriously hard to diagnose at the point of care, resulting in incorrect patient management, avoidable death and disability, long-term neurodegenerative complications, and increased costs. It is vital to develop timely, alternative diagnostics for TBI to assist triage and clinical decision-making, complementary to current techniques such as neuroimaging and cognitive assessment. These could deliver rapid, quantitative TBI detection, by obtaining information on biochemical changes from patient's biofluids. If available, this would reduce mis-triage, save healthcare providers costs (both over- and under-triage are expensive) and improve outcomes by guiding early management. Herein, we utilize Raman spectroscopy-based detection to profile a panel of 18 raw (human, animal, and synthetically derived) TBI-indicative biomarkers (N-acetyl-aspartic acid (NAA), Ganglioside, Glutathione (GSH), Neuron Specific Enolase (NSE), Glial Fibrillary Acidic Protein (GFAP), Ubiquitin C-terminal Hydrolase L1 (UCHL1), Cholesterol, D-Serine, Sphingomyelin, Sulfatides, Cardiolipin, Interleukin-6 (IL-6), S100B, Galactocerebroside, Beta-D-(+)-Glucose, Myo-Inositol, Interleukin-18 (IL-18), Neurofilament Light Chain (NFL)) and their aqueous solution. The subsequently derived unique spectral reference library, exploiting four excitation lasers of 514, 633, 785, and 830 nm, will aid the development of rapid, non-destructive, and label-free spectroscopy-based neuro-diagnostic technologies. These biomolecules, released during cellular damage, provide additional means of diagnosing TBI and assessing the severity of injury. The spectroscopic temporal profiles of the studied biofluid neuro-markers are classed according to their acute, sub-acute, and chronic temporal injury phases and we have further generated detailed peak assignment tables for each brain-specific biomolecule within each injury phase. The intensity ratios of significant peaks, yielding the combined unique spectroscopic barcode for each brain-injury marker, are compared to assess variance between lasers, with the smallest variance found for UCHL1 (σ2 = 0.000164) and the highest for sulfatide (σ2 = 0.158). Overall, this work paves the way for defining and setting the most appropriate diagnostic time window for detection following brain injury. Further rapid and specific detection of these biomarkers, from easily accessible biofluids, would not only enable the triage of TBI, predict outcomes, indicate the progress of recovery, and save healthcare providers costs, but also cement the potential of Raman-based spectroscopy as a powerful tool for neurodiagnostics.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Animais , Humanos , Análise Espectral Raman , Ubiquitina Tiolesterase , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas/diagnóstico , Biomarcadores
20.
Neuropsychol Rehabil ; : 1-31, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38006578

RESUMO

Traumatic brain injury (TBI) is a type of acquired brain injury (ABI) that happens when a sudden, external, physical assault damages the brain. TBI can cause long-term cognitive impairments and other lifestyle changes that may affect psychological wellbeing. Among the psychological challenges people recovering from TBI often face is the subjective loss of their pre-injury identity. Quantitative and qualitative research suggests that spirituality can play a positive role in recovery from TBI, increasing the quality of life and overall mental health. However, thus far, the research into this topic has not directly addressed the relationship between identity and spirituality after TBI. The present study sought to do this by thematically analyzing 22 public podcasts featuring interviews of people recovering from TBI telling their stories. The authors review the spiritual themes discussed in the podcasts and then propose a hypothesis about how, through a sense of connection to something self-transcendent, spirituality may enable people to test new meanings and identities, relatively free from the consequences of discrepancy in meaning and identity after TBI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA