RESUMO
Fluoroquinolones (FQs) are highly effective for treating tularaemia, a zoonosis caused by Francisella tularensis, but failures and relapses remain common in patients with treatment delay or immunocompromised status. FQ-resistant strains of F. tularensis harboring mutations in the quinolone-resistance determining region (QRDR) of gyrA and gyrB, the genes encoding subunits A and B of DNA gyrase, have been selected in vitro. Such mutants have never been isolated from humans as this microorganism is difficult to culture. In this study, the presence of FQ-resistant mutants of F. tularensis was assessed in tularaemia patients using combined culture- and PCR-based approaches. We analyzed 42 F. tularensis strains and 82 tissue samples collected from 104 tularaemia cases, including 32 (30.7%) with FQ treatment failure or relapse. Forty F. tularensis strains and 55 clinical samples were obtained before any FQ treatment, while 2 strains and 15 tissue samples were collected after treatment. FQ resistance was evaluated by the minimum inhibitory concentration (MIC) for the bacterial strains, and by newly developed PCR-based methods targeting the gyrA and gyrB QRDRs for both the bacterial strains and the clinical samples. None of the F. tularensis strains displayed an increased MIC compared with FQ-susceptible controls. Neither gyrA nor gyrB QRDR mutation was found in bacterial strains and tissue samples tested, including those from patients with FQ treatment failure or relapse. Further phenotypic and genetic resistance traits should be explored to explain the poor clinical response to FQ treatment in such tularaemia patients.
Assuntos
Antibacterianos/farmacologia , DNA Girase/genética , Farmacorresistência Bacteriana , Fluoroquinolonas/farmacologia , Francisella tularensis/efeitos dos fármacos , Mutação , Tularemia/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , Feminino , Fluoroquinolonas/uso terapêutico , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Falha de Tratamento , Tularemia/tratamento farmacológicoRESUMO
Human infections with Francisella tularensis can be acquired via numerous routes, including ingestion, inhalation, arthropod bite or direct contact with infected animals. Since 1991, there have been 25 reported cases of tularaemia in North Carolina, most of which were associated with rabbit hunting or cat bites. We present two adults cases of pulmonary and oropharyngeal tularaemia and review the reported cases since 1991-2013. We also present the fifth case of pulmonary empyema. While cavitary pneumonias are primarily treated with drainage, we illustrate a case of cavitary pneumonia associated with tularaemia successfully treated with oral ciprofloxacin after drainage. Tularaemia should be considered in patients with a perplexing radiographic image, animal exposure and lack of response to conventional empiric broad-spectrum antibiotics. Even in serious cases of pneumonic tularaemia, fluoroquinolones may provide a suitable alternative to aminoglycosides.
Assuntos
Antibacterianos/uso terapêutico , Francisella tularensis/isolamento & purificação , Tularemia/diagnóstico , Animais , Mordeduras e Picadas , Gatos , Ciprofloxacina/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , North Carolina , Saúde Pública , Quinolinas/uso terapêutico , Tularemia/tratamento farmacológico , Tularemia/microbiologia , ZoonosesRESUMO
Francisella tularensis is the etiological agent of tularaemia and a CDC class A biological threat agent. Few antibiotic classes are currently useful in treating tularaemia, including the aminoglycosides gentamicin and streptomycin, fluoroquinolones, and tetracyclines. However, treatment failures and relapses remain frequent and F. tularensis strains resistant to antibiotics have been easily selected in vitro. In this study, we evaluated the activity of new synthetic bis-indole derivatives against this pathogen. Minimum inhibitory concentrations (MICs) of four compounds (dcm01 to dcm04) were determined for the reference strains F. tularensis subsp. holarctica LVS NCTC10857, F. tularensis subsp. novicida CIP56.12 and F. philomiragia ATCC25015, and for 41 clinical strains of F. tularensis subsp. holarctica isolated in France. Minimal bactericidal concentrations (MBCs) were determined for the dcm02 and dcm04 compounds for the LVS and two clinical strains. Killing curves were also determined for the same three strains exposed to dcm04. All tested bis-indole compounds were bacteriostatic against F. tularensis subsp. holarctica strains, with a MIC90 of 8 µg/mL for dcm01, dcm02, and dcm03, and 2 µg/mL for dcm04. Only one strain was resistant to both dcm01 and dcm03, with MICs > 32 µg/mL. In contrast, F. tularensis subsp. novicida was resistant to all derivatives and F. philomiragia was only susceptible to dcm02 and dcm04, with MICs of 16 and 4 µg/mL, respectively. MBC and killing curve experiments revealed significant bactericidal activity (i.e., 3-log reduction of the bacterial inoculum) of the dcm02 and dcm04 compounds only for the LVS strain. In conclusion, we have identified novel synthetic bis-indole compounds that are active against F. tularensis subsp. holarctica. They may be drug candidates for the development of new therapeutic alternatives for tularaemia treatment. Their further characterization is needed, especially identification of their bacterial targets.