Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 607
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 320, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654155

RESUMO

BACKGROUND: As a newly class of endogenous phytohormones, strigolactones (SLs) regulate crop growth and yield formation by interacting with other hormones. However, the physiological mechanism of SLs affect the yield by regulating the balance of endogenous hormones of Tartary buckwheat is still unclear. RESULTS: In this study, a 2-year field experiment was conducted on Tartary buckwheat (Jinqiao 2) to study the effects of different concentrations (0, 10, and 20 µmol/L) of artificial synthetic analogs of SLs (rac-GR24) and inhibitor of SL synthesis (Tis-108) on the growth, endogenous-hormone content, and yield of Tartary buckwheat. The main-stem branch number, grain number per plant, grain weight per plant, and yield of Tartary buckwheat continuously decreased with increased rac-GR24 concentration, whereas the main-stem diameter and plant height initially increased and then decreased. Rac-GR24 treatment significantly increased the content of SLs and abscisic acid (ABA) in grains, and it decreased the content of Zeatin (Z) + Zeatin nucleoside (ZR). Conversely, Tis-108 treatment decreased the content of SLs and ABA but increased the content of Z + ZR. Results of correlation analysis showed that the content of ABA and SLs, the ratio of SLs/(Z + ZR), SLs/ABA, and ABA/(Z + ZR) were significantly negatively correlated with the yield of Tartary buckwheat, and that Z + ZR content was significantly positively correlated with the yield. Regression analysis further showed that ABA/ (Z + ZR) can explain 58.4% of the variation in yield. CONCLUSIONS: In summary, by adjusting the level of endogenous SLs in Tartary buckwheat, the balance of endogenous hormones in grains can be changed, thereby exerting the effect on yield. The results can provide a new agronomic method for the high-yield cultivation of Tartary buckwheat.


Assuntos
Fagopyrum , Lactonas , Reguladores de Crescimento de Plantas , Fagopyrum/efeitos dos fármacos , Fagopyrum/crescimento & desenvolvimento , Fagopyrum/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Lactonas/metabolismo , Compostos Heterocíclicos com 3 Anéis/metabolismo , Ácido Abscísico/metabolismo
2.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1494-1505, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621933

RESUMO

Mentha canadensis is a traditional Chinese herb with great medicinal and economic value. Abscisic acid(ABA) receptor PYLs have important roles in plant growth and development and response to adversity. The M. canadensis McPYL4 gene was cloned, and its protein characteristics, gene expression, and protein interactions were analyzed, so as to provide genetic resources for genetic improvement and molecular design breeding for M. canadensis resistance. Therefore, the protein characteristics, subcellular localization, gene expression pattern, and protein interactions of McPYL4 were analyzed by bioinformatics analysis, transient expression of tobacco leaves, RT-qPCR, and yeast two-hybrid(Y2H) techniques. The results showed that the McPYL4 gene was 621 bp in length, encoding 206 amino acids, and its protein had the conserved structural domain of SRPBCC and was highly homologous with Salvia miltiorrhiza SmPYL4. McPYL4 protein was localized to the cell membrane and nucleus. The McPYL4 gene was expressed in all tissue of M. canadensis, with the highest expression in roots, followed by leaves, and it showed a pattern of up-regulation followed by down-regulation in leaves 1-8. In both leaves and roots, the McPYL4 gene responded to the exogenous hormones ABA, MeJA, and the treatments of drought, AlCl_3, NaCl, CdCl_2, and CuCl_2. Moreover, McPYL4 was up-regulated for expression in both leaves and roots under the MeJA treatment, as well as in leaves treated with AlCl_3 stress for 1 h, whereas McPYL4 showed a tendency to be down-regulated in both leaves and roots under other treatments. Protein interactions showed that McPYL4 interacted with AtABI proteins in an ABA-independent manner. This study demonstrated that McPYL4 responded to ABA, JA, and several abiotic stress treatments, and McPYL4 was involved in ABA signaling in M. canadensis and thus in the regulation of leaf development and various abiotic stresses in M. canadensis.


Assuntos
Ácido Abscísico , Mentha , Ácido Abscísico/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Secas
3.
Plant Physiol Biochem ; 208: 108473, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38430784

RESUMO

Alternative splicing (AS) was an important post-transcriptional mechanism that involved in plant resistance to adversity stress. WRKY transcription factors function as transcriptional activators or repressors to modulate plant growth, development and stress response. However, the role of alternate splicing of WRKY in cold tolerance is poorly understood in tea plants. In this study, we found that the CsWRKY21 transcription factor, a member of the WRKY IId subfamily, was induced by low temperature. Subcellular localization and transcriptional activity assays showed that CsWRKY21 localized to the nucleus and had no transcriptional activation activity. Y1H and dual-luciferase reporter assays showed that CsWRKY21 suppressed expression of CsABA8H and CsUGT by binding with their promoters. Transient overexpression of CsABA8H and CsUGT reduced abscisic acid (ABA) content in tobacco leaves. Furthermore, we discovered that CsWRKY21 undergoes AS in the 5'UTR region. The AS transcript CsWRKY21-b was induced at low temperature, up to 6 folds compared to the control, while the full-length CsWRKY21-a transcript did not significantly change. Western blot analysis showed that the retention of introns in the 5'UTR region of CsWRKY21-b led to higher CsWRKY21 protein content. These results revealed that alternative splicing of CsWRKY21 involved in cold tolerance of tea plant by regulating the protein expression level and then regulating the content of ABA, and provide insights into molecular mechanisms of low temperature defense mediated by AS in tea plant.


Assuntos
Processamento Alternativo , Proteínas de Plantas , Processamento Alternativo/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões 5' não Traduzidas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Temperatura Baixa , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Chá , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico
4.
Anal Methods ; 16(9): 1347-1356, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38334707

RESUMO

Saffron (Crocus sativus L.) is a valuable Chinese herb with high medicinal value. Saffron pistils are used as medicine, so increasing the number of flowers can increase the yield. Plant hormones have essential roles in the growth and development of saffron, as well as the response to biotic and abiotic stresses (especially in floral initiation), which may directly affect the number of flowers. Quantitative analysis of plant hormones provides a basis for more efficient research on their synthesis, transportation, metabolism, and action. However, starch (which interferes with extraction) is present in high levels, and hormone levels are extremely low, in saffron corms, thereby hampering accurate determination of plant-hormone levels in saffron. Herein, we screened an efficient and convenient pre-treatment method for plant materials containing abundant amounts of starch. Also, we proposed an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the quantification of abscisic acid (ABA) and auxin (IAA). Then, the method was applied for the detection of hormone-content differences between flowering and non-flowering top buds, as well as between lateral and top buds. Our method showed high sensitivity, reproducibility, and reliability. Specifically, good linearity in the range 2-100 ng ml-1 was achieved in the determination of ABA and IAA, and the correlation coefficient (R2) was >0.9982. The relative standard deviation was 2.956-14.51% (intraday) and 9.57-18.99% (interday), and the recovery range was 89.04-101.1% (n = 9). The matrix effect was 80.38-90.50% (n = 3). The method was thoroughly assessed employing various "green" chemistry evaluation tools: Blue Applicability Grade Index (BAGI), Complementary Green Analytical Procedure Index (Complex GAPI) and Red Green Blue 12 Algorithm (RGB12). These tools revealed the good greenness, analytical performance, applicability, and overall sustainability alignment of our method. Quantitative results showed that, compared with saffron with a flowering phenotype cultivated at 25 °C, the contents of IAA and ABA in the terminal buds of saffron cultivated at 16 °C decreased significantly. When cultivated at 25 °C, the IAA and ABA contents in the terminal buds of saffron were 1.54- and 4.84-times higher than those in the lateral buds, respectively. A simple, rapid, and accurate UPLC-MS/MS method was established to determine IAA and ABA contents. Using this method, a connection between the contents of IAA and ABA and the flowering phenotype was observed in the quantification results. Our data lay a foundation for studying the flowering mechanism of saffron.


Assuntos
Crocus , Plantas Medicinais , Reguladores de Crescimento de Plantas/análise , Reguladores de Crescimento de Plantas/metabolismo , Crocus/química , Crocus/genética , Reprodutibilidade dos Testes , Cromatografia Líquida , Espectrometria de Massas em Tandem , Plantas Medicinais/metabolismo , Ácido Abscísico/análise , Ácido Abscísico/metabolismo , Amido , Hormônios
5.
Planta ; 259(3): 66, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332379

RESUMO

MAIN CONCLUSION: Optimal levels of indole-3-butyric acid (IBA) applied at the stem base promote adventitious root (AR) initiation and primordia formation, thus promoting the rooting of leafy micro-cuttings of tetraploid Robinia pseudoacacia. Tetraploid Robinia pseudoacacia L. is a widely cultivated tree in most regions of China that has a hard-rooting capability, propagated by stem cuttings. This study utilizes histological, physiological, and transcriptomic approaches to explore how root primordia are induced after indole butyric acid (IBA) treatment of micro-cuttings. IBA application promoted cell divisions in some cells within the vasculature, showing subcellular features associated with adventitious root (AR) founder cells. The anatomical structure explicitly showed that AR initiated from the cambium layer and instigate the inducible development of AR primordia. Meanwhile, the hormone data showed that similar to that of indole-3-acetic acid, the contents of trans-zeatin and abscisic acid peaked at early stages of AR formation and increased gradually in primordia formation across the subsequent stages, suggesting their indispensable roles in AR induction. On the contrary, 24-epibrassinolide roughly maintained at extremely high levels during primordium initiation thoroughly, indicating its presence was involved in cell-specific reorganization during AR development. Furthermore, antioxidant activities transiently increased in the basal region of micro-cuttings and may serve as biochemical indicators for distinct rooting phases, potentially aiding in AR formation. Transcriptomic analysis during the early stages of root formation shows significant downregulation of the abscisic acid and jasmonate signaling pathways, while ethylene and cytokinin signaling seems upregulated. Network analysis of genes involved in carbon metabolism and photosynthesis indicates that the basal region of the micro-cuttings undergoes rapid reprogramming, which results in the breakdown of sugars into pyruvate. This pyruvate is then utilized to fuel the tricarboxylic acid cycle, thereby sustaining growth through aerobic respiration. Collectively, our findings provide a time-course morphophysiological dissection and also suggest the regulatory role of a conserved auxin module in AR development in these species.


Assuntos
Ácido Abscísico , Robinia , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Robinia/genética , Tetraploidia , Ácidos Indolacéticos/metabolismo , Perfilação da Expressão Gênica , Piruvatos/metabolismo , Raízes de Plantas/metabolismo
6.
Mol Plant Pathol ; 25(2): e13438, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38393695

RESUMO

Pectin has been extensively studied in animal immunity, and exogenous pectin as a food additive can provide protection against inflammatory bowel disease. However, the utility of pectin to improve immunity in plants is still unstudied. Here, we found exogenous application of pectin triggered stomatal closure in Arabidopsis in a dose- and time-dependent manner. Additionally, pectin activated peroxidase and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase to produce reactive oxygen species (ROS), which subsequently increased cytoplasmic Ca2+ concentration ([Ca2+ ]cyt ) and was followed by nitric oxide (NO) production, leading to stomatal closure in an abscisic acid (ABA) and salicylic acid (SA) signalling-dependent mechanism. Furthermore, pectin enhanced the disease resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) with mitogen-activated protein kinases (MPKs) MPK3/6 activated and upregulated expression of defence-responsive genes in Arabidopsis. These results suggested that exogenous pectin-induced stomatal closure was associated with ROS and NO production regulated by ABA and SA signalling, contributing to defence against Pst DC3000 in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Pectinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estômatos de Plantas/genética , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo
7.
Ultrason Sonochem ; 104: 106821, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387222

RESUMO

Ultrasonic seed (US) treatment could alter seed germination mechanism, however, US induced alterations in morph-physiological attributes and yield of fragrant rice were rarely reported. In the present study, the seeds of three fragrant rice cultivars viz., Xiangyaxiangzhan, Meixiangzhan 2, Ruanhuayou 6100 and one non-fragrant rice viz., Wufengyou 615 were exposed to ultrasonic waves at 20-40 kHz for 1.5 min (T) whereas the seeds without exposure were taken as control (CK). Results showed that US treatment caused minor cracks on seed surface while improved seed germination rate (1.79 %-11.09 %) and 3-indoleacetic acid (IAA) (3.36 %-46.91 %). Furthermore, peroxidase (POD) activity and methionine sulfoxide reductase activity was increased by 29.15 %-74.13 % and 11.26 %-20.87 %, respectively; however, methionine sulfoxide reductase related protein repairing gene MSRA4 was down-regulated by 17.93 % -41.04 % under T, compared to CK. Besides, US treatment also improved soluble protein in flag leaf (0.92 %-40.79 %), photosynthesis (3.37 %-16.46 %), biomass (5.17 %-31.87 %), as well as 2-acetyl-1-pyrroline content (4.77 %-15.48 %) in rice grains. In addition, multivariate analysis showed that the dry weight at the maturity stage were significantly related to the POD, glutathione reductase (GR) activity, IAA, and abscisic acid (ABA) content while germination rate was positively related to the GR activity, ABA content, and yield, but which were negatively related to the IAA and gibberellic acid content.


Assuntos
Oryza , Sementes , Sementes/metabolismo , Oryza/metabolismo , Germinação , Metionina Sulfóxido Redutases/metabolismo , Ultrassom , Antioxidantes/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo
8.
Zhongguo Zhong Yao Za Zhi ; 49(2): 354-360, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403311

RESUMO

This study aimed to examine the morphological, physiological, and biochemical alterations occurring in Notopterygium incisum seeds throughout their developmental stages, with the objective of establishing a theoretical foundation for the cultivation of superior quality seeds. The experimental materials utilized in this study were the seeds of N. incisum at various stages of development following anthesis. Through the employment of morphological observation and plant physiology techniques, the external morphology, nutrients, enzyme activity, and endogenous hormones of the seeds were assessed. The results revealed a transition in seed coat color from light green to brown during the growth and development of N. incisum seeds. Additionally, as the seeds matured, a decrease in water content was observed. Conversely, starch content exhibited a progressive increase, while sucrose content displayed fluctuations. At 7 days after anthesis, the soluble sugar content attained its highest level of 4.52 mg·g~(-1), whereas the soluble protein content reached its maximum of 6.00 mg·g~(-1) at 14 days after anthesis and its minimum of 4.94 mg·g~(-1) at 42 days after anthesis. The activity of superoxide dismutase(SOD) exhibited an initial increase, followed by a decrease, and eventually reached a stable state. Conversely, the activities of catalase(CAT) and peroxidase(POD) demonstrated a decrease initially, followed by an increase, and then another decrease. The levels of the four endogenous hormones, namely gibberellin(GA_3), zeatin riboside(ZR), auxin(IAA), and abscisic acid(ABA), in the seeds displayed significant variations, with IAA and ABA exhibiting considerably higher levels compared to the other hormones. The levels of plant growth-promoting hormones, represented by IAA, generally displayed a pattern of initial increase followed by a subsequent decrease during seed development, while the plant growth-inhibiting hormone ABA showed the opposite trend. The findings indicate that the alterations in nutrient composition, antioxidant enzyme activity, and endogenous hormone levels vary throughout the maturation process of N. incisum seeds. These observations hold relevance for the cultivation of N. incisum seeds.


Assuntos
Giberelinas , Reguladores de Crescimento de Plantas , Ácido Abscísico , Sementes , Hormônios/metabolismo , Germinação/fisiologia
9.
Plant Sci ; 341: 111996, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38272070

RESUMO

During the sunflower seed production process, the role of artificial shading treatment (ST) in seed development and subsequent seed germination remains largely unknown. In the present study, sunflower mother plants were artificially shaded during 1-34 (full period-ST, FST), 1-22 (early period-ST, EST), and 22-34 (late period-ST, LST) days after pollination (DAP), to examine the effects of parental shading on subsequent seed germination. Both FST and EST significantly reduced the photosynthetic efficiency of sunflower, manifested as decreased seed dry weight and unfavorable seed germination. On the contrary, LST remarkably increased seed dry weight and promoted subsequent seed germination and seedling establishment. LST enhanced the activities of several key enzymes involved in triglyceride anabolism and corresponding-genes expression, which in turn increased the total fatty acid contents and altered the fatty acid composition. During early germination, the key enzyme activities involved in triglyceride disintegration and corresponding-gene expressions in LST seeds were apparently higher than those in seeds without the shading treatment (WST). Consistently, LST seeds had significant higher contents of ATP and soluble sugar. Moreover, enzyme activities related to abscisic acid (ABA) biosynthesis and corresponding gene expressions decreased within LST seeds, whereas the enzyme activities and corresponding gene expressions associated with gibberellin (GA) biosynthesis were increased. These results were also evidenced by the reduced ABA content but elevated GA level within LST seeds, giving rise to higher GA/ABA ratio. Our findings suggested that LST could promote sunflower seed development and subsequent seed germination as well as seedling establishment through modulating the dynamic metabolism of triglycerides, fatty acid and GA/ABA balance.


Assuntos
Helianthus , Plântula , Germinação/genética , Helianthus/genética , Helianthus/metabolismo , Ácido Abscísico/metabolismo , Sementes/metabolismo , Giberelinas/metabolismo , Ácidos Graxos/metabolismo , Triglicerídeos/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255910

RESUMO

Nuclear factor Y (NF-Y) is a class of transcription factors consisting of NF-YA, NF-YB and NF-YC subunits, which are widely distributed in eukaryotes. The NF-YC subunit regulates plant growth and development and plays an important role in the response to stresses. However, there are few reports on this gene subfamily in tea plants. In this study, nine CsNF-YC genes were identified in the genome of 'Longjing 43'. Their phylogeny, gene structure, promoter cis-acting elements, motifs and chromosomal localization of these gene were analyzed. Tissue expression characterization revealed that most of the CsNF-YCs were expressed at low levels in the terminal buds and at relatively high levels in the flowers and roots. CsNF-YC genes responded significantly to gibberellic acid (GA) and abscisic acid (ABA) treatments. We further focused on CsNF-YC6 because it may be involved in the growth and development of tea plants and the regulation of response to abiotic stresses. The CsNF-YC6 protein is localized in the nucleus. Arabidopsis that overexpressed CsNF-YC6 (CsNF-YC6-OE) showed increased seed germination and increased root length under ABA and GA treatments. In addition, the number of cauline leaves, stem lengths and silique numbers were significantly higher in overexpressing Arabidopsis lines than wild type under long-day growth conditions, and CsNF-YC6 promoted primary root growth and increased flowering in Arabidopsis. qPCR analysis showed that in CsNF-YC6-OE lines, flowering pathway-related genes were transcribed at higher levels than wild type. The investigation of the CsNF-YC gene has unveiled that CsNF-YC6 plays a pivotal role in plant growth, root and flower development, as well as responses to abiotic stress.


Assuntos
Arabidopsis , Camellia sinensis , Giberelinas , Camellia sinensis/genética , Ácido Abscísico/farmacologia , Chá
11.
J Exp Bot ; 75(5): 1390-1406, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37975812

RESUMO

Age affects the production of secondary metabolites, but how developmental cues regulate secondary metabolism remains poorly understood. The achiote tree (Bixa orellana L.) is a source of bixin, an apocarotenoid used in diverse industries worldwide. Understanding how age-dependent mechanisms control bixin biosynthesis is of great interest for plant biology and for economic reasons. Here we overexpressed miRNA156 (miR156) in B. orellana to comprehensively study the effects of the miR156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) module on age-dependent bixin biosynthesis in leaves. Overexpression of miR156 in annatto plants (miR156ox) reduced BoSPL transcript levels, impacted leaf ontogeny, lessened bixin production, and increased abscisic acid levels. Modulation of expression of BoCCD4-4 and BoCCD1, key genes in carotenoid biosynthesis, was associated with diverting the carbon flux from bixin to abscisic acid in miR156ox leaves. Proteomic analyses revealed an overall low accumulation of most secondary metabolite-related enzymes in miR156ox leaves, suggesting that miR156-targeted BoSPLs may be required to activate several secondary metabolic pathways. Our findings suggest that the conserved BomiR156-BoSPL module is deployed to regulate leaf dynamics of bixin biosynthesis, and may create novel opportunities to fine-tune bixin output in B. orellana breeding programs.


Assuntos
Ácido Abscísico , Bixaceae , Extratos Vegetais , Bixaceae/genética , Bixaceae/metabolismo , Ácido Abscísico/metabolismo , Proteômica , Melhoramento Vegetal , Carotenoides/metabolismo
12.
Protoplasma ; 261(3): 553-570, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38159129

RESUMO

Drought is a major limiting factor for rice (Oryza sativa L.) production globally, and a cost-effective seed priming technique using bio-elicitors has been found to have stress mitigating effects. Till date, mostly phytohormones have been preferred as bio-elicitors, but the present study is a novel attempt to demonstrate the favorable role of micronutrients-phytohormone cocktail, i.e., iron (Fe), zinc (Zn), and methyl jasmonate (MJ) via seed priming method in mitigating the deleterious impacts of drought stress through physio-biochemical and molecular manifestations. The effect of cocktail/priming was studied on the relative water content, chlorophyll a/b and carotenoid contents, proline content, abscisic acid (ABA) content, and on the activities of ascorbate peroxidase (APX), superoxide dismutase (SOD), NADPH oxidase (Nox), and catalase (CAT). The expressions of drought-responsive genes OsZn-SOD, OsFe-SOD, and Nox1 were found to be modulated under drought stress in contrasting rice genotypes -N-22 (Nagina-22, drought-tolerant) and PS-5 (Pusa Sugandh-5, drought-sensitive). A progressive rise in carotenoids (10-19%), ABA (18-50%), proline (60-80%), activities of SOD (27-62%), APX (46-61%), CAT (50-80%), Nox (16-30%), and upregulated (0.9-1.6-fold) expressions of OsZn-SOD, OsFe-SOD, and Nox1 genes were found in the primed plants under drought condition. This cocktail would serve as a potential supplement in modern agricultural practices utilizing seed priming technique to mitigate drought stress-induced oxidative burst in food crops.


Assuntos
Acetatos , Ciclopentanos , Oryza , Oxilipinas , Oryza/genética , Antioxidantes/metabolismo , Resistência à Seca , Clorofila A/metabolismo , Estresse Oxidativo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Carotenoides/metabolismo , Superóxido Dismutase/metabolismo , Secas , Sementes/metabolismo , Prolina/metabolismo
13.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139361

RESUMO

In potatoes, tuber secondary growth, especially sprouting, deforms the tubers and severely lowers their commercial value. Tuber sprouting is induced by signal substances, such as gibberellin (GA), which are transported to the tuber from the plant body. The molecular mechanism underlying GA-induced sprouting remains ambiguous. Here, we tried to recreate tuber secondary growth using in vitro stemmed microtubers (MTs) (with the nodal stem attached) and MT halves (with the nodal stem entirely removed). Our experiments showed that GA alone could initiate the sprouting of stemmed microtubers; however, GA failed to initiate MT halves unless 6-benzyladenine, a synthetic cytokinin CK, was co-applied. Here, we analyzed the transcriptional profiles of sprouting buds using these in vitro MTs. RNA-seq analysis revealed a downregulation of cytokinin-activated signaling but an upregulation of the "Zeatin biosynthesis" pathway, as shown by increased expression of CYP735A, CISZOG, and UGT85A1 in sprouting buds; additionally, the upregulation of genes, such as IAA15, IAA22, and SAUR50, associated with auxin-activated signaling and one abscisic acid (ABA) negative regulator, PLY4, plays a vital role during sprouting growth. Our findings indicate that the role of the nodal stem is synonymous with CK in sprouting growth, suggesting that CK signaling and homeostasis are critical to supporting GA-induced sprouting. To effectively control tuber sprouting, more effort is required to be devoted to these critical genes.


Assuntos
Citocininas , Solanum tuberosum , Citocininas/metabolismo , Solanum tuberosum/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Perfilação da Expressão Gênica , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Tubérculos/metabolismo
14.
Plant Signal Behav ; 18(1): 2291618, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38100609

RESUMO

Drought stress adversely affects plant growth, often leading to total crop failure. Upon sensing soil water deficits, plants switch on biosynthesis of abscisic acid (ABA), a stress hormone for drought adaptation. Here, we used exogenous ABA application to dark-grown sorghum cell suspension cultures as an experimental system to understand how a drought-tolerant crop responds to ABA. We evaluated intracellular and secreted proteins using isobaric tags for relative and absolute quantification. While the abundance of only ~ 7% (46 proteins) intracellular proteins changed in response to ABA, ~32% (82 proteins) of secreted proteins identified in this study were ABA responsive. This shows that the extracellular matrix is disproportionately targeted and suggests it plays a vital role in sorghum adaptation to drought. Extracellular proteins responsive to ABA were predominantly defense/detoxification and cell wall-modifying enzymes. We confirmed that sorghum plants exposed to drought stress activate genes encoding the same proteins identified in the in vitro cell culture system with ABA. Our results suggest that ABA activates defense and cell wall remodeling systems during stress response. This could underpin the success of sorghum adaptation to drought stress.


Assuntos
Ácido Abscísico , Sorghum , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Sorghum/metabolismo , Água/metabolismo , Grão Comestível/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
15.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003632

RESUMO

Illicium difengpi (Schisandraceae), which is an endemic, medicinal, and endangered species found in small and isolated populations that inhabit karst mountain areas, has evolved strategies to adapt to arid environments and is thus an excellent material for exploring the mechanisms of tolerance to severe drought. In experiment I, I. difengpi plants were subjected to three soil watering treatments (CK, well-watered treatment at 50% of the dry soil weight for 18 days; DS, drought stress treatment at 10% of the dry soil weight for 18 days; DS-R, drought-rehydration treatment at 10% of the dry soil weight for 15 days followed by rewatering to 50% of the dry soil weight for another 3 days). The effects of the drought and rehydration treatments on leaf succulence, phytohormones, and phytohormonal signal transduction in I. difengpi plants were investigated. In experiment II, exogenous abscisic acid (ABA, 60 mg L-1) and zeatin riboside (ZR, 60 mg L-1) were sprayed onto DS-treated plants to verify the roles of exogenous phytohormones in alleviating drought injury. Leaf succulence showed marked changes in response to the DS and DS-R treatments. The relative concentrations of ABA, methyl jasmonate (MeJA), salicylic acid glucoside (SAG), and cis-zeatin riboside (cZR) were highly correlated with relative leaf succulence. The leaf succulence of drought-treated I. difengpi plants recovered to that observed with the CK treatment after exogenous application of ABA or ZR. Differentially expressed genes involved in biosynthesis and signal transduction of phytohormones (ABA and JA) in response to drought stress were identified by transcriptomic profiling. The current study suggested that the phytohormones ABA, JA, and ZR may play important roles in the response to severe drought and provides a preliminary understanding of the physiological mechanisms involved in phytohormonal regulation in I. difengpi, an endemic, medicinal, and highly drought-tolerant plant found in extremely small populations in the karst region of South China.


Assuntos
Illicium , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Schisandraceae , Secas , Ácido Abscísico , Solo
17.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895047

RESUMO

Giant goldenrod (Solidago gigantea Aiton) is one of the most invasive plant species occurring in Europe. Since little is known about the molecular mechanisms contributing to its invasiveness, we examined the natural dynamics of the content of rhizome compounds, which can be crucial for plant resistance and adaptation to environmental stress. We focused on rhizomes because they are the main vector of giant goldenrod dispersion in invaded lands. Water-soluble sugars, proline, and abscisic acid (ABA) were quantified in rhizomes, as well as ABA in the rhizosphere from three different but geographically close natural locations in Poland (50°04'11.3″ N, 19°50'40.2″ E) under extreme light, thermal, and soil conditions, in early spring, late summer, and late autumn. The genetic diversity of plants between locations was checked using the random amplified polymorphic DNA (RAPD) markers. Sugar and proline content was assayed spectrophotometrically, and abscisic acid (ABA) with the ELISA immunomethod. It can be assumed that the accumulation of sugars in giant goldenrod rhizomes facilitated the process of plant adaptation to adverse environmental conditions (high temperature and/or water scarcity) caused by extreme weather in summer and autumn. The same was true for high levels of proline and ABA in summer. On the other hand, the lowering of proline and ABA in autumn did not confirm the previous assumptions about their synthesis in rhizomes during the acquisition of frost resistance by giant goldenrod. However, in the location with intensive sunlight and most extreme soil conditions, a constant amount of ABA in rhizomes was noticed as well as its exudation into the rhizosphere. This research indicates that soluble sugars, proline, and ABA alterations in rhizomes can participate in the mechanism of acclimation of S. gigantea to specific soil and meteorological conditions in the country of invasion irrespective of plant genetic variation.


Assuntos
Ácido Abscísico , Solidago , Rizoma , Açúcares , Prolina , Solo , Técnica de Amplificação ao Acaso de DNA Polimórfico , Tempo (Meteorologia) , Aclimatação
18.
Biomolecules ; 13(10)2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37892236

RESUMO

Half of the world's population depends on rice plant cultivation, yet environmental stresses continue to substantially impact the production of one of our most valuable staple foods. The aim of this study was to investigate the changes in the transcriptome of the IAC1131 rice genotype when exposed to a suite of multiple abiotic stresses, either with or without pre-treatment with the plant hormone ABA (Abscisic acid). Four groups of IAC1131 rice plants were grown including control plants incubated with ABA, non-ABA-incubated control plants, stressed plants incubated with ABA, and non-ABA-incubated stressed plants, with leaf samples harvested after 0 days (control) and 4 days (stressed). We found that high concentrations of ABA applied exogenously to the control plants under normal conditions did not alter the IAC1131 transcriptome profile significantly. The observed changes in the transcriptome of the IAC1131 plants in response to multiple abiotic stress were made even more pronounced by ABA pre-treatment, which induced the upregulation of a significant number of additional genes. Although ABA application impacted the plant transcriptome, multiple abiotic stress was the dominant factor in modifying gene expression in the IAC1131 plants. Exogenous ABA application may mitigate the effects of stress through ABA-dependent signalling pathways related to biological photosynthesis functions. Pre-treatment with ABA alters the photosynthesis function negatively by reducing stomatal conductance, therefore helping plants to conserve the energy required for survival under unfavourable environmental conditions.


Assuntos
Oryza , Transcriptoma , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas
19.
Parasitol Res ; 122(12): 2835-2846, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37725257

RESUMO

The protozoan Toxoplasma gondii (T. gondii) is a zoonotic disease agent causing systemic infection in warm-blooded intermediate hosts including humans. During the acute infection, the parasite infects host cells and multiplies intracellularly in the asexual tachyzoite stage. In this stage of the life cycle, invasion, multiplication, and egress are the most critical events in parasite replication. T. gondii features diverse cell organelles to support these processes, including the apicoplast, an endosymbiont-derived vestigial plastid originating from an alga ancestor. Previous studies have highlighted that phytohormones can modify the calcium-mediated secretion, e.g., of adhesins involved in parasite movement and cell invasion processes. The present study aimed to elucidate the influence of different plant hormones on the replication of asexual tachyzoites in a human foreskin fibroblast (HFF) host cell culture. T. gondii replication was measured by the determination of T. gondii DNA copies via qPCR. Three selected phytohormones, namely abscisic acid (ABA), gibberellic acid (GIBB), and kinetin (KIN) as representatives of different plant hormone groups were tested. Moreover, the influence of typical cell culture media components on the phytohormone effects was assessed. Our results indicate that ABA is able to induce a significant increase of T. gondii DNA copies in a typical supplemented cell culture medium when applied in concentrations of 20 ng/µl or 2 ng/µl, respectively. In contrast, depending on the culture medium composition, GIBB may potentially serve as T. gondii growth inhibitor and may be further investigated as a potential treatment for toxoplasmosis.


Assuntos
Toxoplasma , Toxoplasmose , Humanos , Reguladores de Crescimento de Plantas/farmacologia , Toxoplasmose/parasitologia , Ácido Abscísico/farmacologia , DNA
20.
Plant Signal Behav ; 18(1): 2251750, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37639213

RESUMO

Accumulating experimental data have shown that endogenous hormones play important roles in regulating seed dormancy and germination. Zanthoxylum nitidum is a medicinal plant that propagates via seeds, which require a long dormancy period for normal germination, and complex changes in metabolites occur during the germination process. However, the regulatory network of endogenous hormones and metabolites during the germination of Z. nitidum seeds remains unclear. This study investigated the dynamic changes in the levels of metabolites and endogenous hormones during the germination of Z. nitidum seeds. The results revealed an increase in the levels of gibberellin 3 (GA3), 12-oxophytodienoic acid (OPDA), 1-aminocyclopropane-1-carboxylic acid (ACC) and trans-zeatin (TZ) and decrease in the levels of abscisic acid (ABA), jasmonic acid (JA), N-[(-)-jasmonoyl]-(S)-isoleucine (JA-Ile) and trans-zeatin riboside (TZR). Overall, 112 differential metabolites (DAMs) were screened from 3 seed samples (Sa, Sb and Sc), most of which are related to primary metabolism. A total of 16 DAMs (including 3 monosaccharides, 3 phosphate lipids, 3 carboxylic acids, 1 amino acid, 2 pyrimidines, and 4 nucleotides) were identified in the three sample comparison pairs (Sa vs Sb, Sa vs Sc, and Sb vs Sc); these DAMs were significantly enriched in purine metabolism; glycerophospholipid metabolism, citrate cycle (TCA cycle), alanine, aspartate and glutamate metabolism and pyruvate metabolism. OPDA, ACC and GAs were significantly positively correlated with upregulated metabolites, whereas ABA and JA were significantly positively correlated with downregulated metabolites. Finally, a hypothetical metabolic network of endogenous hormones that regulate seed germination was constructed. This study deepens our understanding of the importance of endogenous hormonal profiles that mediate seed germination.


Assuntos
Germinação , Zanthoxylum , Ácido Abscísico , Aminoácidos , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA