Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Food Funct ; 15(8): 4475-4489, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38563737

RESUMO

The objective of this study was to investigate the anti-obesity effects and underlying mechanism of Lacticaseibacillus rhamnosus HF01 fermented yogurt (HF01-Y). Herein, obesity was induced in mice through a high-fat diet and the changes in the gut microbiota were evaluated using 16S rRNA gene sequencing, combined with the expression levels of the liver AMPK signaling pathway to analyze the potential relationship between HF01-Y-mediated gut microbiota and obesity. The results showed that supplementation with HF01-Y improved obesity-related phenotypes in mice, including reduced body weight, improved serum lipid profiles, and decreased hepatic lipid droplet formation. In addition, HF01-Y altered the composition of the gut microbiota in obese mice, significantly upregulated norank_f__Muribaculaceae, unclassified_c__Clostridia, Blautia, unclassified_o__Bacteroidales, and Rikenellaceae_RC9_gut_group, while downregulating unclassified_f__Desulfovibrionaceae, Colidextribacter, and unclassified_f__Oscillospiraceae. These alterations led to an increase of the cecum butyric acid content, which in turn indirectly promoted the activation of the AMPK signaling pathway, subsequently, inhibited fat synthesis, and promoted fatty acid oxidation related gene expression. Therefore, HF01-Y was likely to alleviate hepatic fat and relieve obesity by modulating the gut microbiota-butyric acid-hepatic lipid metabolism axis, ultimately promoting host health.


Assuntos
Ácido Butírico , Dieta Hiperlipídica , Microbioma Gastrointestinal , Lacticaseibacillus rhamnosus , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Obesidade , Iogurte , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Masculino , Metabolismo dos Lipídeos/efeitos dos fármacos , Iogurte/microbiologia , Obesidade/metabolismo , Obesidade/dietoterapia , Obesidade/microbiologia , Ácido Butírico/metabolismo , Fígado/metabolismo , Fígado Gorduroso/metabolismo , Fermentação , Humanos , Probióticos/farmacologia
2.
Sci Rep ; 14(1): 8505, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605045

RESUMO

The 2-hydroxy-4-(methylthio) butanoic acid isopropyl ester (HMBi), a rumen protective methionine, has been extensively studied in dairy cows and beef cattle and has been shown to regulate gastrointestinal microbiota and improve production performance. However, knowledge of the application of HMBi on cashmere goats and the simultaneous study of rumen and hindgut microbiota is still limited. In this study, HMBi supplementation increased the concentration of total serum protein, the production of microbial protein in the rumen and feces, as well as butyrate production in the feces. The results of PCoA and PERMANOVA showed no significant difference between the rumen microbiota, but there was a dramatic difference between the fecal microbiota of the two groups of Cashmere goats after the HMBi supplementation. Specifically, in the rumen, HMBi significantly increased the relative abundance of some fiber-degrading bacteria (such as Fibrobacter) compared with the CON group. In the feces, as well as a similar effect as in the rumen (increasing the relative abundance of some fiber-degrading bacteria, such as Lachnospiraceae FCS020 group and ASV32), HMBi diets also increased the proliferation of butyrate-producing bacteria (including Oscillospiraceae UCG-005 and Christensenellaceae R-7 group). Overall, these results demonstrated that HMBi could regulate the rumen and fecal microbial composition of Liaoning cashmere goats and benefit the host.


Assuntos
Ésteres , Microbiota , Animais , Bovinos , Feminino , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo , Ésteres/metabolismo , Rúmen/microbiologia , Fermentação , Cabras , Dieta/veterinária , Fezes , Bactérias/metabolismo , Suplementos Nutricionais , Ração Animal/análise , Lactação/fisiologia
3.
Cell Commun Signal ; 22(1): 215, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570836

RESUMO

More than 80% of patients with myasthenia gravis (MG) are positive for anti-acetylcholine receptor (AChR) antibodies. Regulatory T cells (Tregs) suppress overproduction of these antibodies, and patients with AChR antibody-positive MG (AChR MG) exhibit impaired Treg function and reduced Treg numbers. The gut microbiota and their metabolites play a crucial role in maintaining Treg differentiation and function. However, whether impaired Tregs correlate with gut microbiota activity in patients with AChR MG remains unknown. Here, we demonstrate that butyric acid-producing gut bacteria and serum butyric acid level are reduced in patients with AChR MG. Butyrate supplementation effectively enhanced Treg differentiation and their suppressive function of AChR MG. Mechanistically, butyrate activates autophagy of Treg cells by inhibiting the mammalian target of rapamycin. Activation of autophagy increased oxidative phosphorylation and surface expression of cytotoxic T-lymphocyte-associated protein 4 on Treg cells, thereby promoting Treg differentiation and their suppressive function in AChR MG. This observed effect of butyrate was blocked using chloroquine, an autophagy inhibitor, suggesting the vital role of butyrate-activated autophagy in Tregs of patients with AChR MG. We propose that gut bacteria derived butyrate has potential therapeutic efficacy against AChR MG by restoring impaired Tregs.


Assuntos
Microbioma Gastrointestinal , Miastenia Gravis , Humanos , Receptores Colinérgicos/metabolismo , Linfócitos T Reguladores , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo , Miastenia Gravis/metabolismo , Autoanticorpos/metabolismo
4.
J Transl Med ; 22(1): 222, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429821

RESUMO

BACKGROUND: Colonoscopy is a classic diagnostic method with possible complications including abdominal pain and diarrhoea. In this study, gut microbiota dynamics and related metabolic products during and after colonoscopy were explored to accelerate gut microbiome balance through probiotics. METHODS: The gut microbiota and fecal short-chain fatty acids (SCFAs) were analyzed in four healthy subjects before and after colonoscopy, along with seven individuals supplemented with Clostridium butyricum. We employed 16S rRNA sequencing and GC-MS to investigate these changes. We also conducted bioinformatic analysis to explore the buk gene, encoding butyrate kinase, across C. butyricum strains from the human gut. RESULTS: The gut microbiota and fecal short-chain fatty acids (SCFAs) of four healthy subjects were recovered on the 7th day after colonoscopy. We found that Clostridium and other bacteria might have efficient butyric acid production through bioinformatic analysis of the buk and assessment of the transcriptional level of the buk. Supplementation of seven healthy subjects with Clostridium butyricum after colonoscopy resulted in a quicker recovery and stabilization of gut microbiota and fecal SCFAs on the third day. CONCLUSION: We suggest that supplementation of Clostridium butyricum after colonoscopy should be considered in future routine clinical practice.


Assuntos
Clostridium butyricum , Microbioma Gastrointestinal , Microbiota , Humanos , Clostridium butyricum/genética , Clostridium butyricum/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ácidos Graxos Voláteis/metabolismo , Colonoscopia , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo
5.
Int Immunopharmacol ; 131: 111852, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38492338

RESUMO

BACKGROUND: We recently found that butyrate could ameliorate inflammation of alcoholic liver disease (ALD) in mice. However, the exact mechanism remains incompletely comprehended. Here, we examined the role of butyrate on ALD-associated inflammation through macrophage (Mψ) regulation and polarization using in vivo and in vitro experiments. METHODS: For in vivo experiments, C57BL/6J mice were fed modified Lieber-DeCarli liquid diets supplemented with or without ethanol and sodium butyrate (NaB). After 6 weeks of treatment, mice were euthanized and associated indicators were analyzed. For in vitro experiments, lipopolysaccharide (LPS)-induced inflammatory murine RAW264.7 cells were treated with NaB or miR-155 inhibitor/mimic to verify the anti-inflammatory effect and underlying mechanism. RESULTS: The administration of NaB alleviated pathological damage and associated inflammation, including LPS, tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1ß levels in ALD mice. NaB intervention restored the imbalance of macrophage polarization by inhibiting inducible nitric oxide synthase (iNOS) and elevating arginase-1 (Arg-1). Moreover, NaB reduced histone deacetylase-1 (HDAC1), nuclear factor kappa-B (NF-κB), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), and miR-155 expression in ALD mice, but also increased peroxisome proliferator-activated receptor-γ (PPAR-γ). Thus, MiR-155 was identified as a strong regulator of ALD. To further penetrate the role of miR-155, LPS-stimulated RAW264.7 cells co-cultured with NaB were treated with the specific inhibitor or mimic. Intriguingly, miR-155 was capable of negatively regulated inflammation with NaB intervention by targeting SOCS1, SHIP1, and IRAK-M genes. CONCLUSION: Butyrate suppresses the inflammation in mice with ALD by regulating macrophage polarization via the HDAC1/miR-155 axis, which may potentially contribute to the novel therapeutic treatment for the disease.


Assuntos
Hepatite Alcoólica , Hepatopatias Alcoólicas , MicroRNAs , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Hepatopatias Alcoólicas/patologia , Inflamação/metabolismo , Macrófagos , Ácido Butírico/farmacologia , Ácido Butírico/uso terapêutico , Ácido Butírico/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , MicroRNAs/metabolismo
6.
Food Funct ; 15(5): 2628-2644, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38358014

RESUMO

As one of the most significant pathological changes of diabetic nephropathy (DN), tubulointerstitial fibrosis (TIF) had a close relationship with tubulointerstitial inflammation (TI), and the occurrence of TI could have resulted from the disrupted tight junctions (TJs) of renal tubular epithelial cells (RTECs). Studies have demonstrated that sodium butyrate (NaB), a typical short chain fatty acid (SCFA), played an important regulatory role in intestinal TJs and inflammation. In this study, our in vivo and in vitro results showed that accompanied by TI, renal tubular TJs were gradually disrupted in the process of DN-related TIF. In HG and LPS co-cultured HK-2 cells and db/db mice, NaB treatment regained the TJs of RTECs via the sphingosine 1-phosphate receptor-1 (S1PR1)/AMPK signaling pathway, relieving inflammation. Small interfering RNA of S1PR1, S1PR1 antagonist W146 and agonist SEW2871, and AMPK agonist AICAR were all used to further confirm the essential role of the S1PR1/AMPK signaling pathway in NaB's TJ protection in RTECs in vitro. Finally, NaB administration not only improved the renal function and TIF, but also relieved the TI of db/db mice. These findings suggested that the use of NaB might be a potential adjuvant treatment strategy for DN-associated TIF, and this protective effect was linked to the TJ modulation of RTECs via the S1PR1/AMPK signaling pathway, leading to the improvement of TI.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Camundongos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Junções Íntimas/metabolismo , Células Epiteliais/metabolismo , Fibrose , Diabetes Mellitus/metabolismo
7.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338944

RESUMO

We aimed to test how the postbiotic butyrate impacts select gut bacteria, small intestinal epithelial integrity, and microvascular endothelial activation during acute ethanol exposure in mice and primary human intestinal microvascular endothelial cells (HIMECs). Supplementation during an acute ethanol challenge with or without tributyrin, a butyrate prodrug, was delivered to C57BL/6 mice. A separate group of mice received 3 days of clindamycin prior to the acute ethanol challenge. Upon euthanasia, blood endotoxin, cecal bacteria, jejunal barrier integrity, and small intestinal lamina propria dendritic cells were assessed. HIMECs were tested for activation following exposure to ethanol ± lipopolysaccharide (LPS) and sodium butyrate. Tributyrin supplementation protected a butyrate-generating microbe during ethanol and antibiotic exposure. Tributyrin rescued ethanol-induced disruption in jejunal epithelial barrier, elevated plasma endotoxin, and increased mucosal vascular addressin cell-adhesion molecule-1 (MAdCAM-1) expression in intestinal microvascular endothelium. These protective effects of tributyrin coincided with a tolerogenic dendritic response in the intestinal lamina propria. Lastly, sodium butyrate pre- and co-treatment attenuated the direct effects of ethanol and LPS on MAdCAM-1 induction in the HIMECs from a patient with ulcerative colitis. Tributyrin supplementation protects small intestinal epithelial and microvascular barrier integrity and modulates microvascular endothelial activation and dendritic tolerizing function during a state of gut dysbiosis and acute ethanol challenge.


Assuntos
Células Endoteliais , Etanol , Camundongos , Humanos , Animais , Etanol/farmacologia , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Mucosa Intestinal/metabolismo
8.
J Sci Food Agric ; 104(7): 4058-4069, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38270478

RESUMO

BACKGROUND: Intestinal development and function are critical to maintaining sustained broiler growth. The present study aimed to evaluate the effects of coated sodium butyrate (CSB) and vitamin D3 (VD3) on the intestinal immunity, barrier, oxidative stress and microflora in early-stage broilers. In total, 192 one-day-old broilers were assigned to a 2 × 2 factorial design including two dietary supplements at two different levels, in which the main effects were VD3 (3000 or 5000 IU kg-1) and CSB (0 or 1 g kg-1). RESULTS: The results showed that CSB supplementation increased ileal goblet cells (GCs) numbers, villus height and decreased crypt depth in broilers. CSB increased ileal proliferating cell nuclear antigen expression and high-level VD3 decreased cluster of differentiation 3 expression. CSB reduced serum d-lactate, endotoxin (ET), adrenocorticotropic hormone, corticosterone and malondialdehyde (MDA) concentrations and increased total antioxidant capacity (T-AOC) level. Meanwhile, high-level VD3 decreased serum ET concentration. Furthermore, CSB increased ileal T-AOC, lysozyme (LYZ) and transforming growth factor (TGF)-ß and decreased MDA, whereas high-level VD3 decreased ileal MDA and increased secretory immunoglobulin A. CSB up-regulated ileal claudin1, superoxide dismutase 1, TGF-ß and LYZ mRNA expression and down-regulated interleukin-1ß mRNA expression. CSB combined with high-level VD3 increased ileal Faecalibaculum abundance. Spearman correlation analysis showed that Faecalibaculum was related to the immune and barrier function. CONCLUSION: Dietary supplementation with CSB and high-level VD3 improved early gut health in broilers by promoting intestinal development, enhancing antioxidant capacity, strengthening barrier function and enhancing the favorable composition of the gut bacterial flora. © 2024 Society of Chemical Industry.


Assuntos
Antioxidantes , Dieta , Animais , Dieta/veterinária , Antioxidantes/metabolismo , Galinhas/metabolismo , Ácido Butírico/metabolismo , Colecalciferol/farmacologia , Suplementos Nutricionais/análise , RNA Mensageiro/metabolismo , Ração Animal/análise
9.
NPJ Biofilms Microbiomes ; 9(1): 99, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38092763

RESUMO

Spinal cord injury (SCI) can reshape gut microbial composition, significantly affecting clinical outcomes in SCI patients. However, mechanisms regarding gut-brain interactions and their clinical implications have not been elucidated. We hypothesized that short-chain fatty acids (SCFAs), intestinal microbial bioactive metabolites, may significantly affect the gut-brain axis and enhance functional recovery in a mouse model of SCI. We enrolled 59 SCI patients and 27 healthy control subjects and collected samples. Thereafter, gut microbiota and SCFAs were analyzed using 16 S rDNA sequencing and gas chromatography-mass spectrometry, respectively. We observed an increase in Actinobacteriota abundance and a decrease in Firmicutes abundance. Particularly, the SCFA-producing genera, such as Faecalibacterium, Megamonas, and Agathobacter were significantly downregulated among SCI patients compared to healthy controls. Moreover, SCI induced downregulation of acetic acid (AA), propionic acid (PA), and butyric acid (BA) in the SCI group. Fecal SCFA contents were altered in SCI patients with different injury course and injury segments. Main SCFAs (AA, BA, and PA) were administered in combination to treat SCI mice. SCFA supplementation significantly improved locomotor recovery in SCI mice, enhanced neuronal survival, promoted axonal formation, reduced astrogliosis, and suppressed microglial activation. Furthermore, SCFA supplementation downregulated NF-κB signaling while upregulating neurotrophin-3 expression following SCI. Microbial sequencing and metabolomics analysis showed that SCI patients exhibited a lower level of certain SCFAs and related bacterial strains than healthy controls. SCFA supplementation can reduce inflammation and enhance nourishing elements, facilitating the restoration of neurological tissues and the improvement of functional recuperation. Trial registration: This study was registered in the China Clinical Trial Registry ( www.chictr.org.cn ) on February 13, 2017 (ChiCTR-RPC-17010621).


Assuntos
Disbiose , Traumatismos da Medula Espinal , Humanos , Camundongos , Animais , Disbiose/microbiologia , Ácidos Graxos Voláteis , Ácido Acético/metabolismo , Bactérias/genética , Bactérias/metabolismo , Ácido Butírico/metabolismo
10.
Front Cell Infect Microbiol ; 13: 1271912, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886667

RESUMO

The Chinese soft-shelled turtle (Pelodiscus sinensis) has become increasingly susceptible to frequent diseases with the intensification of farming, which severely impacts the development of the aquaculture industry. Sodium butyrate (SB) is widely used as a feed additive due to its promotion of growth, enhancement of immune function, and antioxidative properties. This study aimed to investigate the effects of dietary SB on the growth performance, immune function, and intestinal microflora of Chinese soft-shelled turtles. A total of 300 Chinese soft-shelled turtles (mean weight: 11.36 ± 0.21g) were randomly divided into four groups with three parallel sets in each group. Each group was fed a diet supplemented with 0%, 0.005%, 0.01%, or 0.02% SB for 60 days. The results demonstrated an upward trend in weight gain rate (WGR) and specific growth rate (SGR) with increasing SB supplementation, and the experimental group fed with 0.02% SB showed a significant increase in WGR and SGR compared to other groups (P< 0.05). These levels of SB also decreased the levels of feed conversion ratio (FCR) and the total cholesterol (TC) content of Chinese soft-shelled turtles, and the 0.02% SB was significantly lower than that of other groups (P< 0.05). The activity of complement protein in vivo increased with increases in SB content, and the activities of complement C3 and C4 reached the highest level with 0.02% SB. The species abundance of the experimental group D fed with 0.02% SB was significantly higher than that of other groups (P< 0.05). Furthermore, the relative abundance of Clostridium sensu stricto 1 was significantly increased with 0.02% SB (P< 0.05). In conclusion, adding 0.02% SB to the diet improves the growth performance, feed digestion ability, and intestinal microbiota of Chinese soft-shelled turtles.


Assuntos
Microbioma Gastrointestinal , Sódio na Dieta , Tartarugas , Animais , Ácido Butírico/metabolismo , Tartarugas/metabolismo , Sódio na Dieta/metabolismo , Dieta/veterinária , Imunidade
11.
Dis Model Mech ; 16(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756598

RESUMO

Motor neuron (MN) loss is the primary pathological hallmark of amyotrophic lateral sclerosis (ALS). Histone deacetylase 4 (HDAC4) is one of several factors involved in nerve-muscle communication during MN loss, hindering muscle reinnervation, as shown in humans and in animal models of ALS, and may explain the differential progression observed in patients with ALS - rapid versus slow progression. In this work, we inhibited HDAC4 activity through the administration of a pan-histone deacetylase inhibitor, sodium butyrate, in an in vivo model of chronic spinal MN death induced by AMPA-mediated excitotoxicity. We infused AMPA into the spinal cord at low and high doses, which mimic the rapid and slow progression observed in humans, respectively. We found that muscle HDAC4 expression was increased by high-dose infusion of AMPA. Treatment of animals with sodium butyrate further decreased expression of muscle HDAC4, although non-significantly, and did not prevent the paralysis or the MN loss induced by AMPA infusion. These results inform on the role of muscle HDAC4 in MN degeneration in vivo and provide insights for the search for more suitable therapeutic strategies.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Animais , Esclerose Lateral Amiotrófica/patologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo , Neurônios Motores/patologia , Medula Espinal/patologia
12.
Acta Vet Scand ; 65(1): 44, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770986

RESUMO

BACKGROUND: Sodium butyrate (SB) is a short-chain fatty acid and a safe antibiotic alternative. During 35 days, this study compared the impact of coated SB (Butirex C4) and lincomycin (Lincomix) on broiler growth, gut health, and litter hygiene in 1200 one-day-old Ross-308 broiler chicks that were randomly assigned into 5-dietary groups with 5-replications each. Groups divided as follows: T1: Basal diet (control), T2: Basal diet with buffered SB (1 kg/ton starter feed, 0.5 kg/ton grower-finisher feeds), T3: Basal diet with 100 g/ton lincomycin, T4: Basal diet with buffered SB (0.5 kg/ton starter feed, 0.25 kg/ton grower-finisher feeds) + 50 g/ton lincomycin, and T5: Basal diet with buffered SB (1 kg/ton starter feed, 0.5 kg/ton grower-finisher feeds) + 50 g/ton lincomycin. Birds were housed in a semi-closed deep litter house, where feed and water were available ad libitum. Results were statistically analyzed using ANOVA and Tukey's post hoc tests. RESULTS: Combined dietary supplementation with SB and lincomycin (T4 and T5) significantly enhanced body weights, weight gains, feed conversion ratio, and profitability index. Also, carcasses in T4 and T5 exhibited the highest dressing, breast, thigh, and liver yields. T5 revealed the best blood biochemical indices, while T3 showed significantly elevated liver and kidney function indices. T4 and T5 exhibited the highest expression levels of IGF-1 and TLR4 genes, the greatest villi length of the intestinal mucosa, and the lowest levels of litter moisture and nitrogen. Clostridia perfringens type A alpha-toxin gene was confirmed in birds' caeca, with the lowest clostridial counts defined in T4. CONCLUSIONS: Replacing half the dose of lincomycin (50 g/ton) with 0.5 or 1 kg/ton coated SB as a dietary supplement mixture showed the most efficient privileges concerning birds' performance and health.


Assuntos
Galinhas , Receptor 4 Toll-Like , Animais , Ácido Butírico/metabolismo , Lincomicina/farmacologia , Fator de Crescimento Insulin-Like I/genética , Dieta/veterinária , Suplementos Nutricionais , Ração Animal/análise
13.
Animal ; 17(11): 100899, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37558584

RESUMO

Increased ruminal butyrate production is considered to have mostly positive impacts on rumen macro- and microanatomy and its functions. However, excessive ruminal butyrate production may also affect the rumen negatively. Forty-two growing rams were allocated into six treatments and fed a diet with low (22.5% of diet DM; LOW) or high (60% of diet DM; HIGH) inclusion of concentrates in combination with no, low (1.6% of diet DM) or high (3.2% of diet DM) sodium butyrate (SB) supplementation to obtain low or high reticuloruminal (RR) pH with different concentrations of butyrate. Both absolute (L/day) and relative (% of BW) water intake increased linearly with increasing dose of SB (P ≤ 0.02). The RR fluid pH was lower for HIGH compared to LOW treatments (P < 0.01) but was not affected by SB supplementation (P = 0.35). Total short-chain fatty acid concentration, propionate and valerate concentrations in the RR fluid were higher for HIGH compared to LOW treatments (P ≤ 0.01), but were not affected by SB supplementation (P ≥ 0.22). Reticuloruminal butyrate was higher for HIGH compared to LOW treatments and increased linearly with increasing dose of SB (P < 0.01). High concentrate inclusion in the diet (P < 0.01) decreased and SB supplementation tended to (P = 0.10) decrease fibrolytic activity in the RR. Increasing doses of SB linearly decreased acetate, isovalerate and NH3-N concentrations in RR fluid, and RR digesta DM weight (g DM/kg BW; P ≤ 0.02). Relative RR and rumen tissue weights (g/kg BW) were higher for LOW compared to HIGH (P ≤ 0.03) treatments but were not affected by SB inclusion in the diet (P ≥ 0.35). Also, there was no impact of concentrates or SB inclusion in the diet on ruminal epithelium DM weight (mg/cm2), either in the ventral or dorsal sac of the rumen (P ≥ 0.14). Under conditions of the current study, SB supplementation in the diet decreased RR digesta DM concentration and weight, acetate, isovalerate and NH3-N concentration in the RR fluid, and tended to reduce fibrolytic activity in the RR. At least part of this response could be due to increased intake of water, and consequently passage of digesta from the RR to lower regions of the gastrointestinal tract.


Assuntos
Ração Animal , Ácidos Graxos Voláteis , Ovinos , Animais , Masculino , Ácido Butírico/metabolismo , Fermentação , Ração Animal/análise , Ácidos Graxos Voláteis/metabolismo , Dieta/veterinária , Acetatos/farmacologia , Carneiro Doméstico , Suplementos Nutricionais , Rúmen/metabolismo , Digestão
14.
J Hazard Mater ; 459: 132013, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37467604

RESUMO

Deoxynivalenol (DON) is one of the most plentiful trichothecenes occurring in food and feed, which brings severe health hazards to both animals and humans. This study aims to investigate whether sodium butyrate (NaB) can protect the porcine intestinal barrier from DON exposure through promoting mitochondrial homeostasis. In a 4-week feeding experiment, 28 male piglets were allocated according to a 2 by 2 factorial arrangement of treatments with the main factors including supplementation of DON (< 0.8 vs. 4.0 mg/kg) and NaB (0.0 vs. 2 g/kg) in a corn/soybean-based diet. Dietary NaB supplementation mitigated the damaged mitochondrial morphology within the jejunal mucosa and the disrupted gut epithelial tight junctions irritated by DON. In IPEC-J2 cells, we found efficient recovery of the intestinal epithelial barrier occurred following NaB administration. This intestinal barrier reparation was facilitated by NaB-induced PCK2-mediated glyceroneogenesis and restoration of mitochondrial structure and function. In conclusion, we elucidated a mechanism of PCK2-mediated improvement of mitochondrial function by NaB to repair porcine intestinal barrier disruption during chronic DON exposure. Our findings highlight the promise of NaB for use in protecting against DON-induced gut epithelial tight junction disruption in piglets.


Assuntos
Tricotecenos , Humanos , Suínos , Animais , Masculino , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo , Tricotecenos/toxicidade , Mucosa Intestinal/metabolismo , Mitocôndrias , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo
15.
Poult Sci ; 102(7): 102740, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37186967

RESUMO

Gut health is important for digestion and absorption of nutrient for animals. The purpose of this study was to investigate the therapeutic effect of enzymes and probiotics alone or in combination on the gut health of broilers fed with newly harvested corn diets. A total of 624 Arbor Acres Plus male broiler chickens were randomly divided into 8 treatment groups (PC: normal corn diet, NC: newly harvested corn diet, DE: NC + glucoamylase, PT: NC + protease, XL: NC + xylanase, BCC: NC + Pediococcus acidilactici BCC-1, DE + PT: NC + glucoamylase + protease, XL+BCC: NC + xylanase + Pediococcus acidilactici BCC-1). Each group was divided into 6 replicates, with 13 birds each. On d 21, intestinal morphological, intestinal tight junction and aquaporins gene expression, cecal short-chain fatty acid concentrations, and microflora were measured. Compared with the newly harvested corn diets (NC), supplemental glucoamylase (DE) significantly increased the relative abundance of Lachnospiraceae (P < 0.05) and decreased the relative abundance of Moraxellaceae (P < 0.05). Supplemental protease (PT) significantly increased the relative abundance of Barnesiella (P < 0.05), but the relative abundance of Campylobacter decreased by 44.4%. Supplemental xylanase (XL) significantly increased the jejunal mRNA expressions of MUC2, Claudin-1, and Occludin (P < 0.01), as well as the cecal digesta contents of acetic acid, butyric acid, and valeric acid (P < 0.01). Supplemental DE combined with PT increased the ileal mRNA expressions of aquaporins (AQP) 2, AQP5, and AQP7 (P < 0.01). Supplemental BCC significantly increased the jejunal villus height and crypt depth (P < 0.01), the jejunal mRNA expressions of MUC2, Claudin-1 and Occludin (P < 0.01), and the relative abundance of Bacteroides (P < 0.05). Supplemental xylanase in combination with BCC significantly increased jejunal villus height and crypt depth (P < 0.01), the ileal mRNA expressions of AQP2, AQP5 and AQP7 (P < 0.01), and the cecal digesta contents of acetic acid, butyric acid, and valeric acid (P < 0.01). This suggests that inclusions of supplemental protease (12,000 U/kg), glucoamylase (60,000 U/kg), or Pediococcus acidilactici BCC-1 (109 cfu/kg) individually or in combination with xylanase (4,800 U/kg) in the newly harvested corn diets can alleviate diarrhea in broilers, and be beneficial for the gut health.


Assuntos
Galinhas , Probióticos , Animais , Masculino , Galinhas/metabolismo , Zea mays/metabolismo , Ácido Butírico/metabolismo , Glucana 1,4-alfa-Glucosidase/metabolismo , Glucana 1,4-alfa-Glucosidase/farmacologia , Aquaporina 2/metabolismo , Claudina-1/metabolismo , Ocludina/metabolismo , Dieta/veterinária , Probióticos/farmacologia , Peptídeo Hidrolases/metabolismo , RNA Mensageiro/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Suplementos Nutricionais
16.
Cell Commun Signal ; 21(1): 95, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143096

RESUMO

The higher prevalence of metabolic syndrome (MetS) in women after menopause is associated with a decrease in circulating 17ß-oestradiol. To explore novel treatments for MetS in women with oestrogen deficiency, we studied the effect of exogenous butyrate on diet-induced obesity and metabolic dysfunctions using ovariectomized (OVX) mice as a menopause model. Oral administration of sodium butyrate (NaB) reduced the body fat content and blood lipids, increased whole-body energy expenditure, and improved insulin sensitivity. Additionally, NaB induced oestrogen receptor alpha (ERα) expression, activated the phosphorylation of AMPK and PGC1α, and improved mitochondrial aerobic respiration in cultured skeletal muscle cells. In conclusion, oral NaB improves metabolic parameters in OVX mice with diet-induced obesity. Oral supplementation with NaB might provide a novel therapeutic approach to treating MetS in women with menopause. Video Abstract.


Assuntos
Receptor alfa de Estrogênio , Síndrome Metabólica , Camundongos , Feminino , Animais , Receptor alfa de Estrogênio/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Músculo Esquelético/metabolismo , Dieta Hiperlipídica , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Síndrome Metabólica/tratamento farmacológico , Ácido Butírico/metabolismo , Ácido Butírico/farmacologia , Ácido Butírico/uso terapêutico , Receptores de Estrogênio/metabolismo , Camundongos Endogâmicos C57BL
17.
Clin Epigenetics ; 15(1): 86, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179374

RESUMO

Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disorder characterized by chronic low-grade inflammation. Previous studies have demonstrated that the gut microbiome can affect the host tissue cells' mRNA N6-methyladenosine (m6A) modifications. This study aimed to understand the role of intestinal flora in ovarian cells inflammation by regulating mRNA m6A modification particularly the inflammatory state in PCOS. The gut microbiome composition of PCOS and Control groups was analyzed by 16S rRNA sequencing, and the short chain fatty acids were detected in patients' serum by mass spectrometry methods. The level of butyric acid was found to be decreased in the serum of the obese PCOS group (FAT) compared to other groups, and this was correlated with increased Streptococcaceae and decreased Rikenellaceae based on the Spearman's rank test. Additionally, we identified FOSL2 as a potential METTL3 target using RNA-seq and MeRIP-seq methodologies. Cellular experiments demonstrated that the addition of butyric acid led to a decrease in FOSL2 m6A methylation levels and mRNA expression by suppressing the expression of METTL3, an m6A methyltransferase. Additionally, NLRP3 protein expression and the expression of inflammatory cytokines (IL-6 and TNF-α) were downregulated in KGN cells. Butyric acid supplementation in obese PCOS mice improved ovarian function and decreased the expression of local inflammatory factors in the ovary. Taken together, the correlation between the gut microbiome and PCOS may unveil crucial mechanisms for the role of specific gut microbiota in the pathogenesis of PCOS. Furthermore, butyric acid may present new prospects for future PCOS treatments.


Assuntos
Síndrome do Ovário Policístico , Humanos , Camundongos , Animais , Feminino , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Ácido Butírico/metabolismo , RNA Ribossômico 16S/metabolismo , Metilação de DNA , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Ácidos Graxos Voláteis/metabolismo , Células da Granulosa , RNA Mensageiro/genética , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , Antígeno 2 Relacionado a Fos/genética , Antígeno 2 Relacionado a Fos/metabolismo
18.
J Dairy Sci ; 106(10): 6894-6902, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37210371

RESUMO

The objective of this study was to assess the growth, apparent total-tract digestibility of nutrients, the prevalence of coccidia, and purine derivatives in postweaning heifers when limit-fed a diet supplemented with sodium butyrate (SB). A 12 wk randomized complete block experiment was conducted using 24 Holstein heifers (92.8 d ± 1.9 d of age and initial body weight [BW] of 99.6 ± 15.2 kg [mean ± standard deviation]). Treatments were 100 g soybean meal (control; CON) and 0.75 g of SB/kg of BW + 100 g soybean meal (SB). Diets were formulated to contain 16.4% crude protein, 2.27 Mcal/kg metabolizable energy (ME), and fed at a feed out rate of 2.15% of BW on a dry matter basis. Intakes were recorded daily while growth measurements and BW were recorded weekly. Urine and fecal samples were taken every 2 wk. On d 42 through d 49 an apparent total-tract digestibility phase took place using acid detergent insoluble ash as a marker. Growth measurements were similar among treatments except CON heifers grew longer and tended to be taller at the withers. A trend was observed for CON animals to have lower levels of coccidian oocytes by week. Heifers fed SB had lower blood glucose levels and higher levels of ketones in their blood. Urinary volume was greater for heifers fed SB throughout the 12 wk study. Total purine derivatives were greater in CON heifers. Dry matter, organic matter and acid detergent fiber digestibilities were greater for heifers fed SB compared with CON heifers. Crude protein, neutral detergent fiber, and ash digestibilities tended to be greater in heifers fed SB than in CON heifers. These results suggested no growth benefit of supplementing SB to limit-fed heifers; however, apparent total-tract fiber, ash, and crude protein digestibilities were improved in the SB fed heifers likely due to improved ruminal and intestinal development.


Assuntos
Doenças dos Bovinos , Coccidiose , Bovinos , Animais , Feminino , Ácido Butírico/metabolismo , Digestão , Detergentes/metabolismo , Ração Animal/análise , Dieta/veterinária , Nutrientes , Peso Corporal , Vitaminas/metabolismo , Coccidiose/metabolismo , Coccidiose/veterinária , Purinas , Rúmen/metabolismo , Doenças dos Bovinos/metabolismo
19.
Poult Sci ; 102(5): 102241, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36972670

RESUMO

Sodium butyrate is a commonly used feed additive and can reduce ammonia (NH3) emissions from laying hens, but the mechanism of this effect is unknown. In this study, the sodium butyrate and cecal content of Lohmann pink laying hens were measured, and in vitro fermentation experiments and NH3-producing bacteria coculture experiments were carried out to explore the relationship between NH3 emissions and its associated microbiota metabolism. Sodium butyrate was found to significantly reduce NH3 emission from the cecal microbial fermentation of Lohmann pink laying hens (P < 0.05). The concentration of NO3--N in the fermentation broth of the sodium butyrate-supplemented group increased significantly, and the concentration of NH4+-N decreased significantly (P < 0.05). Moreover, sodium butyrate significantly reduced the abundance of harmful bacteria and increased the abundance of beneficial bacteria in the cecum. The culturable NH3-producing bacteria consisted mainly of Escherichia and Shigella, such as Escherichia fergusonii, Escherichia marmotae and Shigella flexnerii. Among them, E. fergusonii had the highest potential for NH3 production. The coculture experiment showed that sodium butyrate can significantly downregulate the expression of the lpdA, sdaA, gcvP, gcvH and gcvT genes of E. fergusonii (P < 0.05), thus reducing the NH3 emission produced by the bacteria during metabolism. In general, sodium butyrate regulated NH3-producing bacteria to reduce NH3 production in the cecum of laying hens. These results are of great significance for NH3 emission reduction in the layer breeding industry and for future research.


Assuntos
Amônia , Galinhas , Animais , Feminino , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo , Amônia/metabolismo , Galinhas/fisiologia , Ceco/metabolismo , Bactérias/metabolismo
20.
Fish Shellfish Immunol ; 133: 108545, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36642352

RESUMO

IL-22 has been characterized as a critical cytokine in maintaining barrier integrity and host immunity. So far, it has been known that IL-22 is mainly produced by lymphoid lineage cells. In the present study, we have thoroughly investigated butyrate-induced production and function of IL-22 in fish macrophages. Our results demonstrated that short-chain fatty acids (SCFAs), major microbiota-derived metabolites, promoted the expression of IL-22 in head kidney macrophages (HKMs) of turbot (Scophthalmus maximus L.). Interestingly, butyrate-mediated intracellular bacterial killing in HKMs diminished when IL-22 expression was interfered. Furthermore, the turbot fed the diet containing sodium butyrate (NaB) exhibited significantly lower mortality after bacterial infection, compared to the fish fed a basal diet. At the meantime, a higher level of IL-22 expression and bactericidal activity was detected in HKMs from the turbot fed NaB-supplemented diet. In addition, NaB treatment promoted the expression of antimicrobial peptides (AMPs) ß-defensins in zebrafish (Danio rerio). However, butyrate-induced expression of AMPs was reduced in IL-22 mutant zebrafish compared to wild-type (WT) fish. Meanwhile, NaB treatment was incapable to protect IL-22 mutant fish from bacterial infection as it did in WT zebrafish. Importantly, our results demonstrated that IL-22 expression was remarkably suppressed in macrophage-depleted zebrafish, indicating that macrophage might be a cell source of IL-22 production in vivo. In conclusion, all these findings collectively revealed that SCFAs regulated the production and function of IL-22 in fish macrophages, which facilitated host resistance to bacterial invasion.


Assuntos
Interleucinas , Peixe-Zebra , Animais , Interleucinas/genética , Interleucinas/metabolismo , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo , Macrófagos , Ácidos Graxos Voláteis/metabolismo , Bactérias , Interleucina 22
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA