Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Plant J ; 116(6): 1748-1765, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37715733

RESUMO

The plant citrate transporters, functional in mineral nutrient uptake and homeostasis, usually belong to the multidrug and toxic compound extrusion transporter family. We identified and functionally characterized a rice (Oryza sativa) citrate transporter, OsCT1, which differs from known plant citrate transporters and is structurally close to rice silicon transporters. Domain analysis depicted that OsCT1 carries a bacterial citrate-metal transporter domain, CitMHS. OsCT1 showed citrate efflux activity when expressed in Xenopus laevis oocytes and is localized to the cell plasma membrane. It is highly expressed in the shoot and reproductive tissues of rice, and its promoter activity was visible in cells surrounding the vasculature. The OsCT1 knockout (KO) lines showed a reduced citrate content in the shoots and the root exudates, whereas overexpression (OE) line showed higher citrate exudation from their roots. Further, the KO and OE lines showed variations in the manganese (Mn) distribution leading to changes in their agronomical traits. Under deficient conditions (Mn-sufficient conditions followed by 8 days of 0 µm MnCl2 · 4H2 O treatment), the supply of manganese towards the newer leaf was found to be obstructed in the KO line. There were no significant differences in phosphorus (P) distribution; however, P uptake was reduced in the KO and increased in OE lines at the vegetative stage. Further, experiments in Xenopus oocytes revealed that OsCT1 could efflux citrate with Mn. In this way, we provide insights into a mechanism of citrate-metal transport in plants and its role in mineral homeostasis, which remains conserved with their bacterial counterparts.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Manganês/metabolismo , Fósforo/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ácido Cítrico/metabolismo , Minerais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Adv Nutr ; 14(3): 555-569, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36906146

RESUMO

Kidney stone disease (KSD) (alternatively nephrolithiasis or urolithiasis) is a global health care problem that affects people in almost all of developed and developing countries. Its prevalence has been continuously increasing with a high recurrence rate after stone removal. Although effective therapeutic modalities are available, preventive strategies for both new and recurrent stones are required to reduce physical and financial burdens of KSD. To prevent kidney stone formation, its etiology and risk factors should be first considered. Low urine output and dehydration are the common risks of all stone types, whereas hypercalciuria, hyperoxaluria, and hypocitraturia are the major risks of calcium stones. In this article, up-to-date knowledge on strategies (nutrition-based mainly) to prevent KSD is provided. Important roles of fluid intake (2.5-3.0 L/d), diuresis (>2.0-2.5 L/d), lifestyle and habit modifications (for example, maintain normal body mass index, fluid compensation for working in high-temperature environment, and avoid cigarette smoking), and dietary management [for example, sufficient calcium at 1000-1200 mg/d, limit sodium at 2 or 3-5 g/d of sodium chloride (NaCl), limit oxalate-rich foods, avoid vitamin C and vitamin D supplements, limit animal proteins to 0.8-1.0 g/kg body weight/d but increase plant proteins in patients with calcium and uric acid stone and those with hyperuricosuria, increase proportion of citrus fruits, and consider lime powder supplementation] are summarized. Moreover, uses of natural bioactive products (for example, caffeine, epigallocatechin gallate, and diosmin), medications (for example, thiazides, alkaline citrate, other alkalinizing agents, and allopurinol), bacterial eradication, and probiotics are also discussed.


Assuntos
Cálcio , Cálculos Renais , Humanos , Cálculos Renais/etiologia , Cálculos Renais/prevenção & controle , Ácido Cítrico/metabolismo , Citratos/urina , Fatores de Risco
3.
Physiol Plant ; 174(5): e13786, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36169530

RESUMO

Plants in nature commonly encounter combined stress scenarios. The response to combined stressors is often unpredictable from the response to single stresses. To address stress interference in roots, we applied salinity, heat, and high light to hydroponically grown sugar beet. Two main patterns of metabolomic acclimation were apparent. High salt of 300 mM NaCl considerably lowered metabolite amounts, for example, those of most amino acids, γ-amino butyric acid (GABA), and glucose. Very few metabolites revealed the opposite trend with increased contents at high salts, mostly organic acids such as citric acid and isocitric acid, but also tryptophan, tyrosine, and the compatible solute proline. High temperature (31°C vs. 21°C) also frequently lowered root metabolite pools. The individual effects of salinity and heat were superimposed under combined stress. Under high light and high salt conditions, there was a significant decline in root chloride, mannitol, ribulose 5-P, cysteine, and l-aspartate contents. The results reveal the complex interaction pattern of environmental parameters and urge researchers to elaborate in much more detail and width on combinatorial stress effects to bridge work under controlled growth conditions to growth in nature, and also to better understand acclimation to the consequences of climate change.


Assuntos
Beta vulgaris , Beta vulgaris/metabolismo , Cloreto de Sódio/farmacologia , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Cloretos/metabolismo , Cisteína/metabolismo , Triptofano , Ácido Aspártico , Sais/metabolismo , Sais/farmacologia , Salinidade , Prolina/metabolismo , Redes e Vias Metabólicas , Ácido gama-Aminobutírico/farmacologia , Manitol/farmacologia , Ácido Cítrico/metabolismo , Glucose/metabolismo , Tirosina/metabolismo , Tirosina/farmacologia , Açúcares/metabolismo , Raízes de Plantas/metabolismo , Estresse Fisiológico
4.
Sci Total Environ ; 851(Pt 1): 158190, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35995174

RESUMO

In the rhizosphere, plant root exudates (REs) serve as a bridge between plant and soil functional microorganisms, which play a key role in the redox cycle of iron (Fe). This study examined the effects of periodic flooding and cadmium (Cd) on plant REs, the rhizosphere bacterial community structure, and the formation of root Fe plaques in the typical mangrove plant Kandelia obovata, as well as the relationship between REs and Fe redox cycling bacteria. Based on two-way analysis of variance, flooding and Cd had a considerable effect on the REs of K. obovata. DOC, NH4+-N, NO3--N, dissolved inorganic phosphorus, acetic acid, and malonic acid concentrations in REs of K. obovata increased considerably with the increase of Cd concentration under 5 and 10 h flooding conditions. Fe plaque development in the plant root was stimulated by flooding and Cd, although flooding was more effective. After Cd treatment, the ways in which Fe-oxidizing bacteria (FeOB) and Fe-reducing bacteria (FeRB) were enriched in the rhizosphere and rhizoplane of plants were different. Thiobacillus and Sideroxydans (dominant FeOB) were more abundant in the plant rhizosphere, whereas Acinetobacter (dominant FeRB) was more abundant in the rhizoplane. Cd considerably decreased the relative abundance of unclassified_f_Gallionellaceae in the rhizosphere and rhizoplane but dramatically enhanced the relative abundance of Thiobacillus, Shewanella, and unclassified_f_Geobacteraceae. Unclassified_f_Geobacteraceae and Thiobacillus exhibited substantial positive correlations with citric acid and DOC in REs in the rhizosphere and rhizoplane but strong negative correlations with Sideroxydans. The findings indicate that Cd and flooding treatments may play a role in the production and breakdown of Fe plaque in K. obovata roots by affecting the relative abundance of Fe redox cycling bacteria in the rhizosphere and rhizoplane.


Assuntos
Rhizophoraceae , Poluentes do Solo , Bactérias/metabolismo , Cádmio/análise , Ácido Cítrico/metabolismo , Exsudatos e Transudatos/química , Exsudatos e Transudatos/metabolismo , Ferro/análise , Fósforo/análise , Exsudatos de Plantas/análise , Raízes de Plantas/metabolismo , Rizosfera , Plântula/metabolismo , Solo/química , Poluentes do Solo/análise
5.
J Investig Med High Impact Case Rep ; 10: 23247096221114518, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35866199

RESUMO

A 62-year-old man with a past medical history of recently diagnosed type II diabetes mellitus presented for multiple episodes of nephrolithiasis after stopping Diet Mountain Dew ingestion. Stone analysis confirmed calcium oxalate stones. It was theorized that the high citrate in Diet Mountain Dew was protective against his newly recurrent nephrolithiasis. For lifestyle preference, the patient chose lemonade-flavored Crystal Light-known to be high in citrate-instead of potassium citrate 30-40 mEq supplementation. To date, the patient's nephrolithiasis has not recurred. Potassium citrate is a preventive strategy against calcium oxalate stones in patients with suspected or confirmed hypocitraturia. Citrate binds calcium, therefore, preventing the interaction between calcium and oxalate. Alternative supplementation strategies, such as citrus-flavored sodas (eg, Diet Mountain Dew), powdered drinks (eg, Crystal Light), and natural juices (eg, lemon juice), may be plausible alternatives to potassium citrate. Patient lifestyle and the risks and benefits to a particular supplemental choice must be considered for every patient.


Assuntos
Diabetes Mellitus Tipo 2 , Cálculos Renais , Cálcio , Oxalato de Cálcio/metabolismo , Citratos , Ácido Cítrico/metabolismo , Dieta , Humanos , Cálculos Renais/metabolismo , Cálculos Renais/prevenção & controle , Citrato de Potássio
6.
Sci Rep ; 12(1): 5102, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332173

RESUMO

Low fluid intake, low urinary citrate excretion, and high oxidative stress are main causative factors of calcium oxalate (CaOx) nephrolithiasis. HydroZitLa contains citrate and natural antioxidants and is developed to correct these three factors simultaneously. Antioxidants theoretically can prolong the lifespan of organisms. In this study, we preclinically investigated the antilithogenic, lifespan-extending and anti-aging effects of HydroZitLa in HK-2 cells, male Wistar rats, and Caenorhabditis elegans. HydroZitLa significantly inhibited CaOx crystal aggregation in vitro and reduced oxidative stress in HK-2 cells challenged with lithogenic factors. For experimental nephrolithiasis, rats were divided into four groups: ethylene glycol (EG), EG + HydroZitLa, EG + Uralyt-U, and untreated control. CaOx deposits in kidneys of EG + HydroZitLa and EG + Uralyt-U rats were significantly lower than those of EG rats. Intrarenal expression of 4-hydroxynonenal in EG + HydroZitLa rats was significantly lower than that of EG rats. The urinary oxalate levels of EG + HydroZitLa and EG + Uralyt-U rats were significantly lower than those of EG rats. The urinary citrate levels of EG + HydroZitLa and EG + Uralyt-U rats were restored to the level in normal control rats. In C. elegans, HydroZitLa supplementation significantly extended the median lifespan of nematodes up to 34% without altering feeding ability. Lipofuscin accumulation in HydroZitLa-supplemented nematodes was significantly lower than that of non-supplemented control. Additionally, HydroZitLa inhibited telomere shortening, p16 upregulation, and premature senescence in HK-2 cells exposed to lithogenic stressors. Conclusions, HydroZitLa inhibited oxidative stress and CaOx formation both in vitro and in vivo. HydroZitLa extended the lifespan and delayed the onset of aging in C. elegans and human kidney cells. This preclinical evidence suggests that HydroZitLa is beneficial for inhibiting CaOx stone formation, promoting longevity, and slowing down aging.


Assuntos
Oxalato de Cálcio , Cálculos Renais , Animais , Antioxidantes/metabolismo , Caenorhabditis elegans/metabolismo , Oxalato de Cálcio/metabolismo , Ácido Cítrico/metabolismo , Etilenoglicol/farmacologia , Feminino , Humanos , Rim/metabolismo , Cálculos Renais/metabolismo , Longevidade , Masculino , Nefrolitíase , Ratos , Ratos Wistar
7.
Environ Sci Pollut Res Int ; 29(22): 33002-33012, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35020149

RESUMO

Perennial ryegrass (Lolium perenne L.) was planted in uranium-contaminated soil mixtures supplemented with different amounts of citric acid to investigate the defense strategies of perennial ryegrass against U and the enhanced mechanism of citric acid on the remediation efficiency in the laboratory. The uranium content in the plant tissues showed that the roots were the predominant tissue for uranium accumulation. In both root and shoot cells, the majority of U was located in the cell wall fraction. Furthermore, antioxidant enzymes were also stimulated when exposed to U stress. These results suggested that perennial ryegrass had evolved defense strategies, such as U sequestration in root tissue, compartmentalization in the cell wall, and antioxidant enzyme systems, to minimize uranium stress. For an enhanced mechanism, the optimal concentration of citric acid was 5 mmol/kg, and the removal efficiency of U in the shoots and roots increased by 47.37% and 30.10%, respectively. The treatment with 5 mmol/kg citric acid had the highest contents of photosynthetic pigment and soluble protein, the highest activity of antioxidant enzymes, and the lowest content of MDA (malondialdehyde) and relative electrical conductivity. Moreover, the TEM (transmission electron microscope) results revealed that after 5 mmol/kg citric acid was added, the cell structure of plant branches partially returned to normal, the number of mitochondria increased, chloroplast surfaces seemed normal, and the cell wall became visible. The damage to the cell ultrastructure of perennial ryegrass was significantly alleviated by treatment with 5 mmol/kg citric acid. All the results above indicated that perennial ryegrass could accumulate uranium with elevated uranium tolerance and enrichment ability with 5 mmol/kg citric acid.


Assuntos
Lolium , Poluentes do Solo , Urânio , Antioxidantes/metabolismo , Biodegradação Ambiental , Ácido Cítrico/metabolismo , Lolium/metabolismo , Solo , Poluentes do Solo/análise , Urânio/metabolismo
8.
BMC Plant Biol ; 21(1): 525, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34758730

RESUMO

BACKGROUND: Phosphorus is one of the essential elements for plant growth and development, but available phosphorus (Pi) content in many soil types is low. As a fast-growing tree species for timber production, Chinese fir is in great demand of Pi, and the lack of Pi in soil restricts the increase of productivity of Chinese fir plantation. Root morphology and the synthesis and secretion of organic acids play an important role in the uptake of phosphorus, but the molecular mechanisms of Chinese fir root responses to Pi deficiency are largely unexplored. In this study, seedlings of Yang 061 clone were grown under three Pi supply levels (0, 5 and 10 mg·L-1 P) and morphological attributes, organic acid content and enzyme activity were measured. The transcriptome data of Chinese fir root system were obtained and the expression levels of phosphorus responsive genes and organic acid synthesis related genes on citric acid and glyoxylate cycle pathway were determined. RESULTS: We annotated 50,808 Unigenes from the transcriptome of Chinese fir roots. Among differentially expressed genes, seven genes of phosphate transporter family and 17 genes of purple acid phosphatase family were up-regulated by Pi deficiency, two proteins of SPX domain were up-regulated and one was down-regulated. The metabolic pathways of the citric acid and glyoxylate cycle pathway were mapped, and the expression characteristics of the related Unigenes under different phosphorus treatments were analyzed. The genes involved in malic acid and citric acid synthesis were up-regulated, and the activities of the related enzymes were significantly enhanced under long-term Pi stress. The contents of citric acid and malic acid in the roots of Chinese fir increased after 30 days of Pi deficiency. CONCLUSION: Chinese fir roots showed increased expression of genes related with phosphorus starvation, citrate and malate synthesis genes, increased content of organic acids, and enhanced activities of related enzymes under Pi deficiency. The results provide a new insight for revealing the molecular mechanism of adaption to Pi deficiency and the pathway of organic acid synthesis in Chinese fir roots.


Assuntos
Cunninghamia/metabolismo , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Ácido Cítrico/metabolismo , Cunninghamia/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Malatos/metabolismo , Redes e Vias Metabólicas , Doenças das Plantas/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
9.
J Microbiol Biotechnol ; 31(2): 298-303, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33397831

RESUMO

Comparative genomic analysis was performed on eight species of lactic acid bacteria (LAB)-Lactococcus (L.) lactis, Lactobacillus (Lb.) plantarum, Lb. casei, Lb. brevis, Leuconostoc (Leu.) mesenteroides, Lb. fermentum, Lb. buchneri, and Lb. curvatus-to assess their glutamic acid production pathways. Glutamic acid is important for umami taste in foods. The only genes for glutamic acid production identified in the eight LAB were for conversion from glutamine in L. lactis and Leu. mesenteroides, and from glucose via citrate in L. lactis. Thus, L. lactis was considered to be potentially the best of the species for glutamic acid production. By biochemical analyses, L. lactis HY7803 was selected for glutamic acid production from among 17 L. lactis strains. Strain HY7803 produced 83.16 pmol/µl glutamic acid from glucose, and exogenous supplementation of citrate increased this to 108.42 pmol/µl. Including glutamic acid, strain HY7803 produced more of 10 free amino acids than L. lactis reference strains IL1403 and ATCC 7962 in the presence of exogenous citrate. The differences in the amino acid profiles of the strains were illuminated by principal component analysis. Our results indicate that L. lactis HY7803 may be a good starter strain for glutamic acid production.


Assuntos
Ácido Glutâmico/biossíntese , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Ácido Cítrico/metabolismo , Genoma Bacteriano , Genômica
10.
Ecotoxicol Environ Saf ; 211: 111942, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33476850

RESUMO

In this work, the internalization and distribution of citric acid-coated magnetite nanoparticles (here, Fe3O4-NPs) in soybean and alfalfa tissues and their effects on plant growth were studied. Both legumes were germinated in pots containing an inert growing matrix (vermiculite) to which Hoagland solution without (control, C), with Fe3O4-NPs (50 and 100 mgironL-1, NP50 and NP100), or with the same amount of soluble iron supplied as Fe-EDTA (Fe50, Fe100) was added once before sowing. Then, plants were watered with the standard nutrient solution. The observation of superparamagnetic signals in root tissues at harvest (26 days after emergence) indicated Fe3O4-NPs uptake by both legumes. A weak superparamagnetic signal was also present in the stems and leaves of alfalfa plants. These findings suggest that Fe3O4-NPs are readily absorbed but not translocated (soybean) or scarcely translocated (alfalfa) from the roots to the shoots. The addition of both iron sources resulted in increased root weight; however, only the addition of Fe3O4-NPs resulted in significantly higher root surface; shoot weight also increased significantly. As a general trend, chlorophyll content enhanced in plants grown in vermiculite supplemented with extra iron at pre-sowing; the greatest increase was observed with NP50. The only antioxidant enzyme significantly affected by our treatments was catalase, whose activity increased in the roots and shoots of both species exposed to Fe3O4-NPs. However, no symptoms of oxidative stress, such as increased lipid peroxidation or reactive oxygen species accumulation, were evidenced in any of these legumes. Besides, no evidence of cell membrane damage or cell death was found. Our results suggest that citric acid-coated Fe3O4-NPs are not toxic to soybean and alfalfa; instead, they behave as plant growth stimulators.


Assuntos
Ácido Cítrico/química , Glycine max/crescimento & desenvolvimento , Nanopartículas de Magnetita/química , Medicago sativa/crescimento & desenvolvimento , Clorofila/metabolismo , Ácido Cítrico/metabolismo , Germinação , Ferro/metabolismo , Nanopartículas de Magnetita/toxicidade , Medicago sativa/metabolismo , Nanopartículas/metabolismo , Desenvolvimento Vegetal , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Glycine max/metabolismo
11.
Oxid Med Cell Longev ; 2020: 4264815, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204395

RESUMO

Pistacia lentiscus shows a long range of biological activities, and it has been used in traditional medicine for treatment of various kinds of diseases. Moreover, related essential oil keeps important health-promoting properties. However, less is known about P. lentiscus hydrosol, a main by-product of essential oil production, usually used for steam distillation itself or discarded. In this work, by using ultra-high-resolution ESI(+)-FT-ICR mass spectrometry, a direct identification of four main classes of metabolites of P. lentiscus hydrosol (i.e., terpenes, amino acids, peptides, and condensed heterocycles) was obtained. Remarkably, P. lentiscus hydrosol exhibited an anti-inflammatory activity by suppressing the secretion of IL-1ß, IL-6, and TNF-α proinflammatory cytokines in lipopolysaccharide- (LPS-) activated primary human monocytes. In LPS-triggered U937 cells, it inhibited NF-κB, a key transcription factor in inflammatory cascade, regulating the expression of both the mitochondrial citrate carrier and the ATP citrate lyase genes. These two main components of the citrate pathway were downregulated by P. lentiscus hydrosol. Therefore, the levels of ROS, NO, and PGE2, the inflammatory mediators downstream the citrate pathway, were reduced. Results shed light on metabolic profile and anti-inflammatory properties of P. lentiscus hydrosol, suggesting its potential as a therapeutic agent.


Assuntos
Anti-Inflamatórios/farmacologia , Ácido Cítrico/metabolismo , Inflamação/tratamento farmacológico , Monócitos/efeitos dos fármacos , NF-kappa B/metabolismo , Pistacia/química , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Metaboloma/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Células U937
12.
J Dairy Sci ; 103(12): 11449-11460, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33222857

RESUMO

Our objective was to determine the temporal effects of increasing supply of propionate on propionate metabolism in liver tissue of dairy cows in the postpartum (PP) period. A total of 6 dairy cows [primiparous: n = 3, 9.00 ± 1.00 d PP (mean ± SD) and multiparous: n = 3; 4.67 ± 1.15 d PP] were biopsied for liver explants in a block-design experiment. Explants were treated with 3 concentrations of [13C3]sodium propionate of 1, 2, or 4 mM. Explants were incubated in 2 mL of Medium 199 supplemented with 1% BSA, 0.6 mM oleic acid, 2 mM sodium l-lactate, 0.2 mM sodium pyruvate, and 0.5 mMl-glutamine at 38°C and sampled at 0.5, 15, and 60 min. Increasing the concentration of [13C3]propionate increased total 13C% enrichment of propionyl coenzyme A (CoA), succinate, fumarate, malate, and citrate with time. Concentration of propionate did not affect total 13C% enrichment of hepatic glucose or acetyl CoA, but total 13C% enrichment increased with time for hepatic glucose. The 13C labeling from propionate was incorporated into acetyl CoA, but increased concentrations of propionate did not result in greater labeling of acetyl CoA. However, increases in 13C% enrichment of [M+4]citrate and [M+5]citrate concentrations of [13C3]propionate indicate propionate conversion to acetyl CoA and subsequent entry of acetyl CoA into the tricarboxylic acid cycle in dairy cows in the PP period. This research presents evidence that despite an increase in hepatic acetyl CoA concentration and general consensus on the upregulation of gluconeogenesis of dairy cows during the PP period, carbon derived from propionate contributes to the pool of acetyl CoA, which increases as concentration of propionate increases, in addition to stimulating oxidation of acetyl CoA from other sources. Because of the hypophagic effects of propionate, but importance of propionate as a glucose precursor, a balance of propionate supply to dairy cows could lead to improvements in dry matter intake, and subsequently, health and production in dairy cows.


Assuntos
Bovinos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Período Pós-Parto/metabolismo , Propionatos/administração & dosagem , Acetilcoenzima A/metabolismo , Animais , Ácido Cítrico/metabolismo , Ciclo do Ácido Cítrico , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Feminino , Fumaratos/metabolismo , Gluconeogênese , Glucose/metabolismo , Lactação/fisiologia , Malatos/metabolismo , Propionatos/metabolismo
13.
Sci Rep ; 10(1): 15970, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994443

RESUMO

Plant roots are able to exude vast amounts of metabolites into the rhizosphere in response to phosphorus (P) deficiency. Causing noteworthy costs in terms of energy and carbon (C) for the plants. Therefore, it is suggested that exudates reacquisition by roots could represent an energy saving strategy of plants. This study aimed at investigating the effect of P deficiency on the ability of hydroponically grown tomato plants to re-acquire specific compounds generally present in root exudates by using 13C-labelled molecules. Results showed that P deficient tomato plants were able to take up citrate (+ 37%) and malate (+ 37%), particularly when compared to controls. While glycine (+ 42%) and fructose (+ 49%) uptake was enhanced in P shortage, glucose acquisition was not affected by the nutritional status. Unexpectedly, results also showed that P deficiency leads to a 13C enrichment in both tomato roots and shoots over time (shoots-+ 2.66‰, roots-+ 2.64‰, compared to control plants), probably due to stomata closure triggered by P deficiency. These findings highlight that tomato plants are able to take up a wide range of metabolites belonging to root exudates, thus maximizing C trade off. This trait is particularly evident when plants grew in P deficiency.


Assuntos
Exsudatos e Transudatos/química , Fósforo/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Isótopos de Carbono/química , Ácido Cítrico/química , Ácido Cítrico/metabolismo , Exsudatos e Transudatos/metabolismo , Frutose/química , Frutose/metabolismo , Glicina/química , Glicina/metabolismo , Hidroponia/métodos , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Malatos/química , Malatos/metabolismo , Raízes de Plantas/química
14.
Anal Chem ; 92(18): 12538-12547, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32786495

RESUMO

Mass spectrometry imaging (MSI) is an established analytical tool capable of defining and understanding complex tissues by determining the spatial distribution of biological molecules. Three-dimensional (3D) cell culture models mimic the pathophysiological environment of in vivo tumors and are rapidly emerging as a valuable research tool. Here, multimodal MSI techniques were employed to characterize a novel aggregated 3D lung adenocarcinoma model, developed by the group to mimic the in vivo tissue. Regions of tumor heterogeneity and the hypoxic microenvironment were observed based on the spatial distribution of a variety of endogenous molecules. Desorption electrospray ionization (DESI)-MSI defined regions of a hypoxic core and a proliferative outer layer from metabolite distribution. Targeted metabolites (e.g., lactate, glutamine, and citrate) were mapped to pathways of glycolysis and the TCA cycle demonstrating tumor metabolic behavior. The first application of imaging mass cytometry (IMC) with 3D cell culture enabled single-cell phenotyping at 1 µm spatial resolution. Protein markers of proliferation (Ki-67) and hypoxia (glucose transporter 1) defined metabolic signaling in the aggregoid model, which complemented the metabolite data. Laser ablation inductively coupled plasma (LA-ICP)-MSI analysis localized endogenous elements including magnesium and copper, further differentiating the hypoxia gradient and validating the protein expression. Obtaining a large amount of molecular information on a complementary nature enabled an in-depth understanding of the biological processes within the novel tumor model. Combining powerful imaging techniques to characterize the aggregated 3D culture highlighted a future methodology with potential applications in cancer research and drug development.


Assuntos
Adenocarcinoma de Pulmão/diagnóstico , Ácido Cítrico/análise , Glutamina/análise , Ácido Láctico/análise , Neoplasias Pulmonares/diagnóstico , Adenocarcinoma de Pulmão/metabolismo , Ácido Cítrico/metabolismo , Glutamina/metabolismo , Humanos , Ácido Láctico/metabolismo , Neoplasias Pulmonares/metabolismo , Imagem Multimodal , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Células Tumorais Cultivadas
15.
Poult Sci ; 99(7): 3428-3436, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32616236

RESUMO

During the first week after hatch, young chicks are vulnerable to pathogens as the immune system is not fully developed. The objectives of this study were to determine if supplementing the starter diet with a microencapsulated feed additive containing citric and sorbic acids, thymol, and vanillin affects in vitro functional activity of peripheral blood leukocytes (PBLs). Day-old chicks (n = 800) were assigned to either a control diet (0 g/metric ton [MT]) or a diet supplemented with 500 g/MT of the microencapsulated additive. At 4 D of age, peripheral blood was collected (100 birds per treatment), and heterophils and monocytes isolated (n = 4). Heterophils were assayed for the ability to undergo degranulation and production of an oxidative burst response while nitric oxide production was measured in monocytes. Select cytokine and chemokine mRNA expression levels were also determined. Statistical analysis was performed using Student t test comparing the supplemented diet to the control (P ≤ 0.05). Heterophils isolated from chicks fed the microencapsulated citric and sorbic acids, thymol, and vanillin had higher (P ≤ 0.05) levels of degranulation and oxidative burst responses than those isolated from chicks on the control diet. Heterophils from the supplemented chicks also had greater (P ≤ 0.05) expression of IL10, IL1ß, and CXCL8 mRNA than those from control-fed chicks. Similarly, nitric oxide production was significantly (P ≤ 0.05) higher in monocytes isolated from birds fed the supplement. The cytokine and chemokine profile in monocytes from the supplement-fed chicks showed a significant (P ≤ 0.05) drop in IL10 mRNA expression while IL1ß, IL4, and CXCL8 were unchanged. In conclusion, 4 D of supplementation with a microencapsulated blend made up of citric and sorbic acids, thymol, and vanillin enhanced the in vitro PBL functions of degranulation, oxidative burst, and nitric oxide production compared with the control diet. Collectively, the data suggest feeding broiler chicks a diet supplemented with a microencapsulated blend of citric and sorbic acids, thymol, and vanillin may prime key immune cells making them more functionally efficient and acts as an immune-modulator to boost the inefficient and undeveloped immune system of young chicks.


Assuntos
Benzaldeídos/metabolismo , Galinhas/sangue , Ácido Cítrico/metabolismo , Composição de Medicamentos/veterinária , Leucócitos/metabolismo , Ácido Sórbico/metabolismo , Timol/metabolismo , Ração Animal/análise , Animais , Benzaldeídos/administração & dosagem , Ácido Cítrico/administração & dosagem , Dieta/veterinária , Suplementos Nutricionais/análise , Leucócitos/efeitos dos fármacos , Ácido Sórbico/administração & dosagem , Timol/administração & dosagem
16.
Prep Biochem Biotechnol ; 50(3): 292-301, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31846377

RESUMO

Fungi are ecologically ubiquitous organisms on earth and regarded as one of the prolific sources of natural products. Fungal endophytes may provide essential prerequisite molecules to plant biochemical pathways which allow the efficient synthesis of primary and secondary metabolites. This study characterized the influences of various combinations of process parameters namely, carbohydrate, nitrogen, and phosphorus sources on citric acid (CA) production by the isolated fungal endophyte Aspergillus fumigatus P3I6 from Citrus microcarpa. Aspergillus fumigatus P3I6 had higher CA concentration of 9.2 (± 0.9) g L-1 and 9.0 (± 5.0 × 10-15) g L-1 when supplemented with sucrose and white refined sugar, respectively, than A. niger NRRL 599. Response Surface Methodology (RSM) had shown that A. fumigatus P3I6 produced the highest CA (23.8 g L-1) in Combination 4 (18.0% sucrose, 0.3 g L-1 ammonium sulfate, and 5.0 g L-1 dipotassium phosphate (K2HPO4)). Analysis of variance showed that when K2HPO4 concentrations were increased, CA content in fermentation media was significantly elevated. Hence, K2HPO4 was the most critical variable in the quadratic model (p < 0.05); however, sucrose concentration still has its role in production. Aside from using A. niger in most fermentation processes, this discovered fungal strain can be potentially used in biotechnological applications.


Assuntos
Aspergillus fumigatus/crescimento & desenvolvimento , Carboidratos/farmacologia , Ácido Cítrico/metabolismo , Citrus/microbiologia , Nitrogênio/farmacologia , Fósforo/farmacologia
17.
Environ Sci Pollut Res Int ; 26(36): 36820-36831, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31745774

RESUMO

The adverse effects of heavy metals, such as cadmium, zinc, and copper, occur due to the generation of reactive oxygen species (ROS). The use of Caenorhabditis elegans for the purposes of conservation and biomonitoring is of great interest. In the present study, ROS, malondialdehyde (MDA), and citric acid levels and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities in a model organism were tested to study toxicity. C. elegans was exposed to three different concentrations of cadmium (CdCl2, 5, 10, 50 µM), zinc (ZnSO4, 10, 100, 500 µM), and copper (CuSO4, 10, 100, 500 µM) for 3 days. ROS levels increased by 1.3- to 2.1-fold with increasing metal concentrations. The MDA content increased by approximately 7-, 5-, 2-fold after exposure to high concentrations of cadmium, zinc, and copper, respectively. Furthermore, the citric acid content increased by approximately 3-fold in the cadmium (Cd, 5 µM), zinc (Zn, 10 µM), and copper (Cu, 100 µM) treatment groups compared to that in untreated C. elegans. Therefore, citric acid may play an important role in heavy metal detoxification. Excess citric acid also slightly increased the LC50 by 1.3- to 2.0-fold, basic movements by 1.0- to 1.5-fold, decreased the ROS content by 2.4- to 2.1-fold, the MDA content by 4- to 2-fold, the SOD activity by 9- to 3-fold, the GPx activity by 4.0- to 3.0-fold, and the mRNA expression levels of GPxs by 3.2- to 1.8-fold after metals treatment. And it is most significantly in the alleviation of citric acid to cadmium. This study not only provides information to further understand the effects of heavy metal exposure on ROS, MDA, GPx, SOD, and citric acid in worms but also indicates that supplemental citric acid can protect animals from heavy metal stress and has broad application prospects in decreasing oxidative damage caused by heavy metals.


Assuntos
Antioxidantes/metabolismo , Caenorhabditis elegans/fisiologia , Ácido Cítrico/metabolismo , Metais Pesados/toxicidade , Animais , Cádmio/toxicidade , Caenorhabditis elegans/efeitos dos fármacos , Cobre/toxicidade , Malondialdeído/metabolismo , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Zinco/toxicidade
18.
Nutrients ; 11(11)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731473

RESUMO

Citrate is an intermediate in the "Tricarboxylic Acid Cycle" and is used by all aerobic organisms to produce usable chemical energy. It is a derivative of citric acid, a weak organic acid which can be introduced with diet since it naturally exists in a variety of fruits and vegetables, and can be consumed as a dietary supplement. The close association between this compound and bone was pointed out for the first time by Dickens in 1941, who showed that approximately 90% of the citrate bulk of the human body resides in mineralised tissues. Since then, the number of published articles has increased exponentially, and considerable progress in understanding how citrate is involved in bone metabolism has been made. This review summarises current knowledge regarding the role of citrate in the pathophysiology and medical management of bone disorders.


Assuntos
Doenças Ósseas/fisiopatologia , Osso e Ossos/fisiopatologia , Ácido Cítrico/metabolismo , Humanos
19.
PLoS One ; 14(10): e0223516, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31613915

RESUMO

Citrus grandis seedlings were irrigated with nutrient solutions with four Al-P combinations [two Al levels (0 mM and 1.2 mM AlCl3·6H2O) × two P levels (0 µM and 200 µM KH2PO4)] for 18 weeks. Al dramatically inhibited the growth of C. grandis seedlings, as revealed by a decreased dry weight of roots and shoots. Elevating P level could ameliorate the Al-induced growth inhibition and organic acid (malate and citrate) secretion in C. grandis. Using a comparative proteomic approach revealed by the isobaric tags for relative and absolute quantification (iTRAQ) technique, 318 differentially abundant proteins (DAPs) were successfully identified and quantified in this study. The possible mechanisms underlying P-induced alleviation of Al toxicity in C. grandis were proposed. Furthermore, some DAPs, such as GLN phosphoribosyl pyrophosphate amidotransferase 2, ATP-dependent caseinolytic (Clp) protease/crotonase family protein, methionine-S-oxide reductase B2, ABC transporter I family member 17 and pyridoxal phosphate phosphatase, were reported for the first time to respond to Al stress in Citrus plants. Our study provides some proteomic details about the alleviative effects of P on Al toxicity in C. grandis, however, the exact function of the DAPs identified herein in response to Al tolerance in plants must be further investigated.


Assuntos
Alumínio/toxicidade , Citrus/metabolismo , Marcação por Isótopo/métodos , Fósforo/farmacologia , Raízes de Plantas/metabolismo , Biomassa , Ácido Cítrico/metabolismo , Citrus/efeitos dos fármacos , Citrus/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucose/metabolismo , Glutationa Peroxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Lignina/metabolismo , Malatos/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Raízes de Plantas/efeitos dos fármacos , Análise de Componente Principal , Amido/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
20.
Sci Rep ; 9(1): 13587, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537874

RESUMO

Antimicrobial resistance is a global public threat and raises the need for development of new antibiotics with a novel mode of action. The dipeptidyl peptidase 11 from Porphyromonas gingivalis (PgDPP11) belongs to a new class of serine peptidases, family S46. Because S46 peptidases are not found in mammals, these enzymes are attractive targets for novel antibiotics. However, potent and selective inhibitors of these peptidases have not been developed to date. In this study, a high-resolution crystal structure analysis of PgDPP11 using a space-grown crystal enabled us to identify the binding of citrate ion, which could be regarded as a lead fragment mimicking the binding of a substrate peptide with acidic amino acids, in the S1 subsite. The citrate-based pharmacophore was utilized for in silico inhibitor screening. The screening resulted in an active compound SH-5, the first nonpeptidyl inhibitor of S46 peptidases. SH-5 and a lipophilic analog of SH-5 showed a dose-dependent inhibitory effect against the growth of P. gingivalis. The binding mode of SH-5 was confirmed by crystal structure analysis. Thus, these compounds could be lead structures for the development of selective inhibitors of PgDPP11.


Assuntos
Benzoatos/farmacologia , Ácido Cítrico/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Porphyromonas gingivalis/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Benzoatos/química , Sítios de Ligação , Domínio Catalítico , Simulação por Computador , Cristalografia por Raios X , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Fosfatos de Inositol , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA