Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 16(5): 4832-4840, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461437

RESUMO

Osteoporosis is a usual bone disease in aging populations, principally in postmenopausal women. Anti-resorptive and anabolic drugs have been applied to prevent and cure osteoporosis and are associated to a different of adverse effects. Du-Zhong is usually applied in Traditional Chinese Medicine to strengthen bone, regulate bone metabolism, and treat osteoporosis. Chlorogenic acid is a major polyphenol in Du-Zhong. In the current study, chlorogenic acid was found to enhance osteoblast proliferation and differentiation. Chlorogenic acid also inhibits the RANKL-induced osteoclastogenesis. Notably, ovariectomy significantly decreased bone volume and mechanical properties in the ovariectomized (OVX) rats. Administration of chlorogenic acid antagonized OVX-induced bone loss. Taken together, chlorogenic acid seems to be a hopeful molecule for the development of novel anti-osteoporosis treatment.


Assuntos
Osteoclastos , Osteoporose , Humanos , Ratos , Feminino , Animais , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Ácido Clorogênico/metabolismo , Osteogênese , Osteoporose/metabolismo , Osteoblastos/metabolismo , Diferenciação Celular
2.
Food Chem ; 446: 138866, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430769

RESUMO

Fresh-cut potatoes are prone to surface browning and physiological degradation. Chlorogenic acid (CGA), a natural phenolic antioxidant, has demonstrated preservative properties in various postharvest products. However, the underlying mechanisms of its application on maintaining quality remain unclear. Therefore, the effect of exogenous CGA treatment on quality deterioration of potato slices and the mechanisms involved were investigated. Results revealed CGA treatment retarded the browning coloration, suppressed microbial growth and inhibited the declines in starch, and ascorbic acid contents in potato slices. Meanwhile, the treatment activated the phenylpropanoid pathway but decreased the activities of phenolic decomposition-related enzymes such as polyphenol oxidase (PPO) and tyrosinase and downregulated StPPO expression. Moreover, the treated slices exhibited reduced accumulation of reactive oxygen species and increased activity of antioxidant enzymes. Additionally, they displayed enhanced 2,2-diphenyl-1-picrylhydrazyl radicals scavenging capacity and higher ATP levels. Therefore, these findings indicated that CGA treatment was effective for quality maintenance and antioxidant capacity enhancement in fresh-cut potatoes, thereby providing potential strategies for the preservation and processing of fresh-cut produce.


Assuntos
Antioxidantes , Solanum tuberosum , Antioxidantes/metabolismo , Ácido Clorogênico/farmacologia , Ácido Clorogênico/metabolismo , Solanum tuberosum/metabolismo , Fenóis/metabolismo , Ácido Ascórbico/metabolismo , Catecol Oxidase/metabolismo
3.
J Agric Food Chem ; 72(9): 5062-5072, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377574

RESUMO

Modern poultry production is stressful for the birds, and this stress is recognized as a major cause of inferior meat quality. Chlorogenic acid (CGA), a plant phenolic acid, has excellent antioxidant and anti-inflammatory properties. The antioxidant capacity and phosphoproteomics of immunologically stressed broiler breast muscle were assessed to elucidate the mechanism of the beneficial effects of CGA on meat quality. Dietary CGA decreased drip and cooking loss, postmortem pH and antioxidant capacity of breast muscle from stressed broilers, and increased MyHC-I mRNA levels. Quantitative phosphoproteomics revealed that CGA supplementation downregulated the phosphorylation of myofibrillar proteins, glycolytic enzymes, and endoplasmic reticulum proteins involved in homeostasis, which contributed to improving the meat quality of broilers. Moreover, 14 phosphorylation sites (e.g., P13538-Ser1236 and F1NN63-Ser117) in 13 phosphoproteins were identified as key regulators of processes related to broiler meat quality. Together, these findings provide novel regulatory targets and nutritional strategies for improving the stressed broiler meat quality.


Assuntos
Antioxidantes , Suplementos Nutricionais , Animais , Antioxidantes/metabolismo , Suplementos Nutricionais/análise , Ácido Clorogênico/metabolismo , Galinhas/metabolismo , Músculo Esquelético/metabolismo , Ração Animal/análise , Dieta/veterinária , Carne/análise
4.
Diabetes Metab J ; 47(6): 771-783, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37690781

RESUMO

BACKGRUOUND: Since prediabetes is a risk factor for metabolic syndromes, it is important to promote a healthy lifestyle to prevent prediabetes. This study aimed to determine the effects of green coffee (GC), chlorogenic acid (CGA) intake, and exercise training (EX) on hepatic lipid metabolism in prediabetes male C57BL/6 mice. METHODS: Forty-nine mice were randomly divided into two groups feeding with a normal diet (n=7) or a high-fat diet (HFD, n=42) for 12 weeks. Then, HFD mice were further divided into six groups (n=7/group): control (pre-D), GC, CGA, EX, GC+EX, and CGA+EX. After additional 10 weeks under the same diet, plasma, and liver samples were obtained. RESULTS: HFD-induced prediabetes conditions with increases in body weight, glucose, insulin, insulin resistance, and lipid profiles were alleviated in all treatment groups. Acsl3, a candidate gene identified through an in silico approach, was lowered in the pre-D group, while treatments partly restored it. HFD induced adverse alterations of de novo lipogenesis- and ß oxidation-associated molecules in the liver. However, GC and CGA supplementation and EX reversed or ameliorated these changes. In most cases, GC or CGA supplementation combined with EX has no synergistic effect and the GC group had similar results to the CGA group. CONCLUSION: These findings suggest that regular exercise is an effective non-therapeutic approach for prediabetes, and CGA supplementation could be an alternative to partially mimic the beneficial effects of exercise on prediabetes.


Assuntos
Ácido Clorogênico , Estado Pré-Diabético , Masculino , Camundongos , Animais , Ácido Clorogênico/farmacologia , Ácido Clorogênico/metabolismo , Ácido Clorogênico/uso terapêutico , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais
5.
Gene ; 888: 147739, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37633535

RESUMO

The active ingredients of many medicinal plants are the secondary metabolites associated with the growth period. Lonicera japonica Thunb. is an important traditional Chinese medicine, and the flower development stage is an important factor that influences the quality of medicinal ingredients. In this study, transcriptomics and metabolomics were performed to reveal the regulatory mechanism of secondary metabolites during flowering of L. japonica. The results showed that the content of chlorogenic acid (CGA) and luteolin gradually decreased from green bud stage (Sa) to white flower stage (Sc), especially from white flower bud stage (Sb) to Sc. Most of the genes encoding the crucial rate-limiting enzymes, including PAL, C4H, HCT, C3'H, F3'H and FNSII, were down-regulated in three comparisons. Correlation analysis identified some members of the MYB, AP2/ERF, bHLH and NAC transcription factor families that are closely related to CGA and luteolin biosynthesis. Furthermore, differentially expressed genes (DEGs) involved in hormone biosynthesis, signalling pathways and flowering process were analysed in three flower developmental stage.


Assuntos
Ácido Clorogênico , Lonicera , Ácido Clorogênico/metabolismo , Luteolina , Perfilação da Expressão Gênica , Lonicera/genética , Flores/genética , Flores/metabolismo , Hormônios/metabolismo , Transcriptoma/genética
6.
Plant Physiol ; 192(4): 2902-2922, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37226859

RESUMO

Amur honeysuckle (Lonicera maackii) is a widely used medicinal plant of the Caprifoliaceae family that produces chlorogenic acid. Research on this plant mainly focuses on its ornamental value and medicinal compounds, but a reference genome sequence and molecular resources for accelerated breeding are currently lacking. Herein, nanopore sequencing and high-throughput chromosome conformation capture (Hi-C) allowed a chromosome-level genome assembly of L. maackii (2n = 18). A global view of the gene regulatory network involved in the biosynthesis of chlorogenic acid and the dynamics of fruit coloration in L. maackii was established through metabolite profiling and transcriptome analyses. Moreover, we identified the genes encoding hydroxycinnamoyl-CoA quinate transferase (LmHQT) and hydroxycinnamoyl-CoA shikimic/quinate transferase (LmHCT), which localized to the cytosol and nucleus. Heterologous overexpression of these genes in Nicotiana benthamiana leaves resulted in elevated chlorogenic acid contents. Importantly, HPLC analyses revealed that LmHCT and LmHQTs recombinant proteins modulate the accumulation of chlorogenic acid (CGA) using quinic acid and caffeoyl CoA as substrates, highlighting the importance of LmHQT and LmHCT in CGA biosynthesis. These results confirmed that LmHQTs and LmHCT catalyze the biosynthesis of CGA in vitro. The genomic data presented in this study will offer a valuable resource for the elucidation of CGA biosynthesis and facilitating selective molecular breeding.


Assuntos
Ácido Clorogênico , Lonicera , Ácido Clorogênico/metabolismo , Lonicera/genética , Lonicera/metabolismo , Ácido Quínico/metabolismo , Melhoramento Vegetal , Mapeamento Cromossômico
7.
Molecules ; 28(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37110524

RESUMO

Solanum betaceum Cav., commonly known as tamarillo or Brazilian tomato, belongs to the Solanaceae family. Its fruit is used in traditional medicine and food crops due to its health benefits. Despite the numerous studies involving the fruit, there is no scientific knowledge about the tamarillo tree leaves. In this work, the phenolic profile of aqueous extract obtained from S. betaceum leaves was unveiled for the first time. Five hydroxycinnamic phenolic acids were identified and quantified, including 3-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, chlorogenic acid, caffeic acid and rosmarinic acid. While the extract displayed no effect on α-amylase, the extract inhibited the activity of α-glucosidase (IC50 = 1617 mg/mL), and it was particularly effective for human aldose reductase (IC50 = 0.236 mg/mL): a key enzyme in glucose metabolism. Moreover, the extract exhibited interesting antioxidant properties, such as a potent capacity to intercept the in vitro-generated reactive species O2•- (IC50 = 0.119 mg/mL) and •NO (IC50 = 0.299 mg/mL), as well as to inhibit the first stages of lipid peroxidation (IC50 = 0.080 mg/mL). This study highlights the biological potential of S. betaceum leaves. The scarcity of research on this natural resource underscores the need for additional studies in order to fully explore its antidiabetic properties and to promote the value of a species currently at risk of extinction.


Assuntos
Solanum , Humanos , Solanum/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Frutas , Fenóis/metabolismo , Ácido Clorogênico/farmacologia , Ácido Clorogênico/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo
8.
Plant Physiol Biochem ; 196: 793-806, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36848865

RESUMO

Light has important effects on plant metabolism. However, the relationship between the chlorogenic acid (CGA) content and light in plants remains unclear. Here, we investigated the effects of shading treatment on gene expression and CGA content in Lonicera macranthoides Hand.-Mazz. (LM), a widely used medicinal plant. A total of 1891 differentially expressed genes (DEGs) were obtained in flower buds and 819 in leaves in response to light in shading treatment compared to the control sample by RNA-Seq. After shading treatment, the content of CGA in LM leaves decreased significantly by 1.78-fold, the carotenoid content increased, and the soluble sugar and starch contents significantly decreased. WGCNA and the expression of related genes verified by qRT‒PCR revealed that CGA synthesis pathway enzyme genes form a co-expression network with genes for carbohydrate synthesis, photosynthesis, light signalling elements, and transcription factor genes (TFs) that affect the accumulation of CGA. Through a virus-induced gene silencing (VIGS) system and CGA assay in Nicotiana benthamiana (NB), we determined that downregulation of NbHY5 expression decreased the CGA content in NB leaves. In this study, we found that light provides energy and material for the accumulation of CGA in LM, and light affects the expression of CGA accumulation-related genes. Our results show that different light intensities have multiple effects on leaves and flower buds in LM and are able to coregulate LmHY5 expression and CGA synthesis.


Assuntos
Lonicera , Plantas Medicinais , Lonicera/genética , Lonicera/metabolismo , Ácido Clorogênico/metabolismo , Folhas de Planta/metabolismo , Plantas Medicinais/metabolismo , Vias Biossintéticas
9.
J Sci Food Agric ; 103(7): 3287-3294, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36698257

RESUMO

BACKGROUND: Chlorogenic acid (CGA), as one of the most abundant naturally occurring phenolic acids, has been documented to be beneficial for intestinal health. However, the underlying mechanism is still not fully understood. The adult intestinal stem cell is the critical driver of epithelial homeostasis and regeneration. RESULTS: This study hypothesized that CGA exerted intestinal health effects by modulating intestinal stem-cell functions. Lgr5-EGFP mice were treated for 14 days, and intestinal organoids derived from these mice were treated for 3 days, using CGA solution. In comparison with the control group, CGA treatment increased intestinal villous height and crypt depth in mice and augmented the area expansion and the number of budding intestinal organoids. Quantitative polymerase chain reaction (qPCR) analysis revealed that CGA treatment significantly increased the expression of genes coding intestinal stem-cell markers in intestinal tissue and organoids, and upregulated the expression of genes coding secretory cell lineages and enterocytes, although not statistically significantly. Fluorescence-activated cell-sorting analysis further confirmed that CGA augmented the number of stem cells. 5-Ethynyl-2'-deoxyuridine (EdU) incorporation and Ki67 immunostaining results also demonstrated that CGA treatment enhanced intestinal stem-cell proliferation. CONCLUSION: Altogether, our findings indicate that CGA could activate intestinal stem-cell and epithelial regeneration, which could contribute to the improvement of intestinal morphology or organoid growth of mice. This highlights a promising mechanism for CGA as an excellent candidate for the formulation of dietary supplements and functional foods for intestinal protection. © 2023 Society of Chemical Industry.


Assuntos
Ácido Clorogênico , Intestinos , Animais , Camundongos , Enterócitos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Suplementos Nutricionais , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiologia , Ácido Clorogênico/metabolismo , Ácido Clorogênico/farmacologia
10.
Nutr Neurosci ; 26(1): 11-24, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34927571

RESUMO

OBJECTIVES: Parkinson's disease (PD) is the second most common neurodegenerative disease. Chlorogenic acid (CGA) is a polyphenolic substance derived from various medicinal plants. Although CGA is reported to have potential anti-PD effect, the beneficial effect and the underlying mechanism remain unclear. In this study, we aimed to further investigate the protective effect and clarify the mechanism of action of CGA in Caenorhabditis elegans (C. elegans) models of PD. METHODS: Measurements of a-synuclein aggregation, movement disorders, and lipid, ROS and malondialdehyde (MDA) contents were observed in NL5901 nematodes. Determinations of dopamine (DA) neuron degeneration, food perception, and ROS content were performed in 6-OHDA-exposed BZ555 nematodes. The autophagy activation of CGA was monitored using DA2123 and BC12921 nematodes. Meanwhile, RNAi technology was employed to knockdown the autophagy-related genes and investigate whether the anti-PD effect of CGA was associated with autophagy induction in C. elegans. RESULTS: CGA significantly reduced α-synuclein aggregation, improved motor disorders, restored lipid content, and decreased ROS and MDA contents in NL5901 nematodes. Meanwhile, CGA inhibited DA neuron-degeneration and improved food-sensing behavior in 6-OHDA-exposed BZ555 nematodes. In addition, CGA increased the number of GFP::LGG-1 foci in DA2123 nematodes and degraded p62 protein in BC12921 nematodes. Meanwhile, CGA up-regulated the expression of autophagy-related genes in NL5901 nematodes. Moreover, the anti-PD effect of CGA was closely related to autophagy induction via increasing the expression of autophagy-related genes, including unc-51, bec-1, vps-34, and lgg-1. CONCLUSIONS: The present study indicates that CGA exerts neuroprotective effect in C. elegans via autophagy induction.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Doença de Parkinson/metabolismo , Caenorhabditis elegans , Ácido Clorogênico/farmacologia , Ácido Clorogênico/metabolismo , Animais Geneticamente Modificados , Doenças Neurodegenerativas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxidopamina , Degeneração Neural , Autofagia , Lipídeos , Neurônios Dopaminérgicos , Modelos Animais de Doenças
11.
Nutrients ; 14(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36432495

RESUMO

Mulberry leaf (Morus alba L.) is used as a traditional medicine and potential health food to treat various metabolic diseases, such as hypertension, diabetes, and hyperlipidemia. However, we sought the mechanisms by which functional components of mulberry leaves mediate diabetic steatohepatitis. We applied an in vitro model of HepG2 cells induced by glucolipotoxicity and evaluated the effects of MLE and its major components nCGA, Crp, and CGA. The results showed that MLE and nCGA reduced liver fat accumulation by inhibiting SREBP-1/FASN, SREBP-2/HMG-CoAR, and activating PPARα/CPT-1. Additionally, MLE and nCGA decreased inflammatory responses associated with NF-κB, TNF-α, and IL-6 to alleviate steatohepatitis. Furthermore, we showed that MLE and nCGA exerted anti-glucolipotoxicity effects by downregulating miR-34a, thus activating SIRT1/AMPK signaling, and subsequently suppressing hepatic lipid accumulation.


Assuntos
Fígado Gorduroso , MicroRNAs , Morus , Ácido Clorogênico/farmacologia , Ácido Clorogênico/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Folhas de Planta/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fígado Gorduroso/metabolismo , Lipídeos
12.
Acta Med Okayama ; 76(4): 373-383, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36123151

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease of both the central and peripheral / enteric nervous systems. Oxidative stress and neuroinflammation are associated with the pathogenesis of PD, suggesting that anti-oxidative and anti-inflammatory compounds could be neuroprotective agents for PD. Eucommia ulmoides (EU) is a traditional herbal medicine which exerts neuroprotective effects by anti-inflammatory and anti-oxidative properties. Our previous study showed that treatment with chlorogenic acid, a component of EU, protected against neurodegeneration in the central and enteric nervous systems in a PD model. In this study, we examined the effects of EU extract (EUE) administration on dopaminergic neurodegeneration, glial response and α-synuclein expression in the substantia nigra pars compacta (SNpc), and intestinal enteric neurodegeneration in low-dose rotenone-induced PD model mice. Daily oral administration of EUE ameliorated dopaminergic neurodegeneration and α-synuclein accumulation in the SNpc. EUE treatment inhibited rotenone-induced decreases in the number of total astrocytes and in those expressing the antioxidant molecule metallothionein. EUE also prevented rotenone-induced microglial activation. Furthermore, EUE treatment exerted protective effects against intestinal neuronal loss in the PD model. These results suggest that EU exerts neuroprotective effects in the central and enteric nervous systems of rotenone-induced parkinsonism mice, in part by glial modification.


Assuntos
Eucommiaceae , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Antioxidantes/metabolismo , Ácido Clorogênico/metabolismo , Ácido Clorogênico/farmacologia , Dopamina/metabolismo , Dopamina/farmacologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Eucommiaceae/metabolismo , Metalotioneína/metabolismo , Metalotioneína/farmacologia , Camundongos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Rotenona/metabolismo , Rotenona/farmacologia , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacologia
13.
Nutrients ; 14(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36145086

RESUMO

Ulcerative colitis (UC) patients often avoid foods containing fermentable fibers as some can promote symptoms during active disease. Pectin has been identified as a more protective fermentable fiber, but little has been done to determine the interaction between pectin and bioactive compounds present in foods containing that fiber type. Quercetin and chlorogenic acid, two bioactives in stone fruits, may have anti-cancer, anti-oxidant, and anti-inflammatory properties. We hypothesized that quercetin and chlorogenic acid, in the presence of the fermentable fiber pectin, may suppress the expression of pro-inflammatory molecules, alter the luminal environment, and alter colonocyte proliferation, thereby protecting against recurring bouts of UC. Rats (n = 63) received one of three purified diets (control, 0.45% quercetin, 0.05% chlorogenic acid) containing 6% pectin for 3 weeks before exposure to dextran sodium sulfate (DSS, 3% for 48 h, 3x, 2 wk separation, n = 11/diet) in drinking water to initiate UC, or control (no DSS, n = 10/diet) treatments prior to termination at 9 weeks. DSS increased the fecal moisture content (p < 0.05) and SCFA concentrations (acetate, p < 0.05; butyrate, p < 0.05). Quercetin and chlorogenic acid diets maintained SLC5A8 (SCFA transporter) mRNA levels in DSS-treated rats at levels similar to those not exposed to DSS. DSS increased injury (p < 0.0001) and inflammation (p < 0.01) scores, with no differences noted due to diet. Compared to the control diet, chlorogenic acid decreased NF-κB activity in DSS-treated rats (p < 0.05). Quercetin and chlorogenic acid may contribute to the healthy regulation of NF-κB activation (via mRNA expression of IκΒα, Tollip, and IL-1). Quercetin enhanced injury-repair molecule FGF-2 expression (p < 0.01), but neither diet nor DSS treatment altered proliferation. Although quercetin and chlorogenic acid did not protect against overt indicators of injury and inflammation, or fecal SCFA concentrations, compared to the control diet, their influence on the expression of injury repair molecules, pro-inflammatory cytokines, SCFA transport proteins, and NF-κB inhibitory molecules suggests beneficial influences on major pathways involved in DSS-induced UC. Therefore, in healthy individuals or during periods of remission, quercetin and chlorogenic acid may promote a healthier colon, and may suppress some of the signaling involved in inflammation promotion during active disease.


Assuntos
Colite Ulcerativa , Colite , Água Potável , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/metabolismo , Butiratos/metabolismo , Proteínas de Transporte/metabolismo , Ácido Clorogênico/metabolismo , Colite/induzido quimicamente , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/prevenção & controle , Colo/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana , Dieta , Fibras na Dieta/metabolismo , Modelos Animais de Doenças , Água Potável/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Inflamação/metabolismo , Interleucina-1/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , NF-kappa B/genética , NF-kappa B/metabolismo , Pectinas/metabolismo , Pectinas/farmacologia , Quercetina/metabolismo , Quercetina/farmacologia , RNA Mensageiro/metabolismo , Ratos
14.
mBio ; 13(4): e0149822, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35770947

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen responsible for acute and chronic infections in immunocompromised hosts. This organism is known to compete efficiently against coinfecting microorganisms, due in part to the secretion of antimicrobial molecules and the synthesis of siderophore molecules with high affinity for iron. P. aeruginosa possess a large repertoire of TonB-dependent transporters for the uptake of its own, as well as xenosiderophores released from other bacteria or fungi. Here, we show that P. aeruginosa is also capable of utilizing plant-derived polyphenols as an iron source. We found that exclusively plant-derived phenols containing a catechol group (i.e., chlorogenic acid, caffeic acid, quercetin, luteolin) induce the expression of the TonB-dependent transporters PiuA or PirA. This induction requires the two-component system PirR-PirS. Chlorogenic acid in its Fe(III)-loaded form was actively transported by PiuA and PirA and supported growth under iron-limiting conditions. Coincidentally, PiuA and PirA are also the main TonB transporters for the recently approved siderophore-drug conjugate cefiderocol. Surprisingly, quercetin supplementation increased the susceptibility of P. aeruginosa to siderophore-drug conjugates, due to induction of piuA and pirA expression mediated by the PirR-PirS two-component system. These findings suggest a potential novel therapeutic application for these biologically active dietary polyphenols. IMPORTANCE Iron is an essential element for living organisms. Most bacteria synthesize species-specific iron chelators, called siderophores, able to capture iron from their host or the environment. Pseudomonas aeruginosa, an opportunistic pathogen, produces two endogenous siderophores but is able to acquire iron also via xenosiderophores, produced by other bacteria or fungi, using a set of conserved TonB transporters. Here, we show that P. aeruginosa is also able to use plant metabolites, like quercetin and chlorogenic acid, as siderophores. These metabolites possess an iron-chelating catechol group and are recognized and transported by the TonB transporters PirA and PiuA. Since these transporters also promote the specific uptake of siderophore-drug conjugates, P. aeruginosa exposed to these plant catechols becomes hypersusceptible to this novel class of antibiotics. This unexpected finding suggests a potential therapeutic application for quercetin and chlorogenic acid, which were mainly investigated for their antioxidant and anti-inflammatory properties.


Assuntos
Pseudomonas aeruginosa , Sideróforos , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Catecóis/metabolismo , Catecóis/farmacologia , Ácido Clorogênico/metabolismo , Ácido Clorogênico/farmacologia , Compostos Férricos/metabolismo , Ferro/metabolismo , Quelantes de Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Pseudomonas aeruginosa/metabolismo , Quercetina/metabolismo , Sideróforos/metabolismo
15.
J Food Biochem ; 46(10): e14265, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35661366

RESUMO

There are no medical drugs that provide an acceptable weight loss with minimal adverse effects. This study evaluated the Moringa peregrina (MP) seed extract's anti-obesity effect. Twenty-four (6/each group) male Sprague Dawley rats were divided into group Ι (control), group ΙΙ (high-fat diet [HFD]), group ΙΙΙ (HFD+ MP [250 mg/kg b.wt]), and group ΙV (HFD+ MP [500 mg/kg b.wt]). MP administration significantly ameliorated body weight gains and HFD induced elevation in cholesterol, triglycerides, LDL, and reduced HDL. Moreover, MP seed oil showed high free radical-scavenging activity, delayed ß-carotene bleaching and inhibited lipoprotein and pancreatic lipase enzymes. High-performance liquid chromatography (HPLC) revealed three major active components: crypto-chlorogenic acid, isoquercetin, and astragalin. Both quantitative Real-time PCR (RT-PCR) and western blotting revealed that MP seeds oil significantly decreased the expression of lipogenesis-associated genes such as peroxisome proliferator-activated receptors gamma (PPARγ) and fatty acid synthase (FAS) and significantly elevated the expression of lipolysis-associated genes (acetyl-CoA carboxylase1, ACCl). The oil also enhanced phosphorylation of AMP-activated protein kinase alpha (AMPK-α) and suppressed CCAAT/enhancer-binding protein ß (C/EBPß). In conclusion, administration of M. peregrina seeds oil has anti-obesity potential in HFD-induced obesity in rats. PRACTICAL APPLICATIONS: M. peregrina seeds oil had a potential anti-obesity activity that may be attributed to different mechanisms. These included decreasing body weight, and body mass index and improving lipid levels by decreasing total cholesterol, triglycerides and LDL-C, and increasing HDL-C. Also, M. peregrina seeds oil regulated adipogenesis-associated genes, such as downregulating the expression of (PPARγ, C/EBPα, and FAS) and improving and upregulating the expression and phosphorylation of AMPKα and ACCl. Despite that M. peregrina extract has reported clear anti-obesity potential through animal and laboratory studies, the available evidence-based on human clinical trials are very limited. Therefore, further studies are needed that could focus on clinical trials investigating anti-obesity potential different mechanisms of M. peregrina extract in humans.


Assuntos
Dieta Hiperlipídica , Moringa , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/farmacologia , Acetilcoenzima A/metabolismo , Acetilcoenzima A/farmacologia , Acetilcoenzima A/uso terapêutico , Adipócitos , Animais , Antioxidantes/metabolismo , Peso Corporal , Ácido Clorogênico/metabolismo , Colesterol/metabolismo , LDL-Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintases/farmacologia , Ácido Graxo Sintases/uso terapêutico , Radicais Livres/metabolismo , Radicais Livres/farmacologia , Radicais Livres/uso terapêutico , Humanos , Lipase/metabolismo , Masculino , Moringa/metabolismo , Obesidade/tratamento farmacológico , Obesidade/etiologia , PPAR gama/genética , PPAR gama/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Óleos de Plantas/metabolismo , Ratos , Ratos Sprague-Dawley , Sementes/metabolismo , Triglicerídeos/metabolismo , beta Caroteno
16.
Nat Commun ; 12(1): 5993, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645808

RESUMO

Metabolic biomonitoring in humans is typically based on the sampling of blood, plasma or urine. Although established in the clinical routine, these sampling procedures are often associated with a variety of compliance issues, which are impeding time-course studies. Here, we show that the metabolic profiling of the minute amounts of sweat sampled from fingertips addresses this challenge. Sweat sampling from fingertips is non-invasive, robust and can be accomplished repeatedly by untrained personnel. The sweat matrix represents a rich source for metabolic phenotyping. We confirm the feasibility of short interval sampling of sweat from the fingertips in time-course studies involving the consumption of coffee or the ingestion of a caffeine capsule after a fasting interval, in which we successfully monitor all known caffeine metabolites as well as endogenous metabolic responses. Fluctuations in the rate of sweat production are accounted for by mathematical modelling to reveal individual rates of caffeine uptake, metabolism and clearance. To conclude, metabotyping using sweat from fingertips combined with mathematical network modelling shows promise for broad applications in precision medicine by enabling the assessment of dynamic metabolic patterns, which may overcome the limitations of purely compositional biomarkers.


Assuntos
Monitoramento Biológico/métodos , Café/metabolismo , Metabolômica/métodos , Suor/química , Adulto , Monitoramento Biológico/normas , Biotransformação , Cafeína/análise , Cafeína/metabolismo , Ácido Clorogênico/análise , Ácido Clorogênico/metabolismo , Cromatografia Líquida , Feminino , Dedos , Humanos , Masculino , Metabolômica/normas , Pessoa de Meia-Idade , Análise de Componente Principal , Espectrometria de Massas em Tandem , Teobromina/análise , Teobromina/metabolismo , Teofilina/análise , Teofilina/metabolismo
17.
Plant Sci ; 308: 110924, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34034872

RESUMO

Lonicera macranthoides Hand-Mazz is an important medicinal plant widely distributed in southern China that has long been used in Chinese traditional medicines. Chlorogenic acid (CGA, 3-caffeoylquinic acid) is the major biologically active ingredient in L. macranthoides. Although key CGA biosynthetic genes have been well documented, their transcriptional regulation remains largely unknown. In this study, we observed that a R2R3 MYB transcription factor LmMYB15 showed a significant correlation with CGA content, indicating its potential role in CGA biosynthesis. A yeast two-hybrid assay suggested that LmMYB15 functions as a transcriptional activator. Overexpression of LmMYB15 in tobacco led to increased accumulation of CGA compared to those in wild-type leaves. To elucidate its functional mechanism, genome-wide DAP-seq was employed and identified the conserved binding motifs of LmMYB15, that is [(C/T) (C/T) (C/T) ACCTA(C/A) (C/T) (A/T)], as well as its direct downstream target genes, including 4CL, MYB3, MYB4, KNAT6/7, IAA26, and ETR2. Subsequently, yeast one-hybrid and dual-luciferase reporter assays verified that LmMYB15 could bind and activate the promoters of 4CL, MYB3 and MYB4, thereby facilitating CGA biosynthesis and phenylpropanoid metabolism. Our findings provide a new track for breeding strategies aiming to enhance CGA content in L. macranthoides that can significantly contribute to better mechanical properties.


Assuntos
Ácido Clorogênico/metabolismo , Lonicera/genética , Proteínas de Plantas/genética , Metabolismo Secundário , Fatores de Transcrição/genética , Sequência de Aminoácidos , Sequência de Bases , Lonicera/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
18.
PLoS One ; 16(5): e0251390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34038434

RESUMO

Lonicera macranthoides Hand.-Mazz (L. macranthoides) is a medicinal herb that is widely distributed in South China. The developmental stage and corolla dehiscence of the flower are the important factors affecting the quality of medicinal ingredients. However, neither the regulatory mechanism controlling chlorogenic acids biosynthesis in L. macranthoides nor the molecular basis of effect of corolla dehiscence on the quality of medicinal materials is fully understood. In this study, metabolomics and transcriptomics were used to analyze the metabolic and transcriptional differences of two different cultivars closed bud type (Bt), and flowering type (Ft), as well as the effect of jasmonic acid methyl ester (MeJA) on chlorogenic acids (CGAs) biosynthesis. In total, large number of differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were filtered among three lines of samples. Gene metabolite correlation analyses revealed a 'core set' of 30 genes and 54 genes that were strongly correlated with CGAs biosynthesis and regulating the flowering, respectively. Quantitative real-time polymerase chain reaction results proved the alterations in the expression levels of genes encoding the pathways involved in CGAs biosynthesis. The ion abundances of CGAs were most significantly increased, while some of the CGAs derived and Caffeoyl-CoA-derived substances showed the most largely reduced abundances in the closed bud type (Bt) compared to the flowering type (Ft). MeJA may leads to the activation of downstream genes in CGAs biosynthesis pathway. Overall, there were significant differences in the transcriptional and metabolic levels of CGAs biosynthesis pathway in flower buds of different flowering cultivars. The redirection of metabolic flux may contribute to increased accumulation of CGAs. However, whether MeJA and flowering have direct effects on the accumulation of CGAs needs further studied. These researches effectively expanded the functional genomic library and provide new insights into CGAs biosynthesis in L. macranthoides.


Assuntos
Vias Biossintéticas/genética , Ácido Clorogênico/metabolismo , Lonicera/genética , Metaboloma/genética , Plantas Medicinais/genética , Transcriptoma/genética , Flores/genética , Perfilação da Expressão Gênica/métodos , Metabolômica/métodos
19.
J Ethnopharmacol ; 274: 114082, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33813012

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The off-label nebulization of Shuang-Huang-Lian (SHL) injection is often utilized to treat respiratory tract infections in China. However, the pulmonary biopharmaceutics of SHL was generally unknown, limiting the rational selection of therapeutic dose and dose frequency. AIM OF THE STUDY: To characterize the size distribution of nebulized aerosols and to compare the pharmacokinetics and the lung distribution of three chemical makers of SHL, chlorogenic acid (CHA), forsythiaside A (FTA) and baicalin (BC), after intratracheal and intravenous administration of SHL to rats. MATERIALS AND METHODS: The droplet size distribution profiles over nebulization process were dynamically monitored using a laser diffraction method whereas the levels of CHA, FTA and BC in plasma, lung tissues and bronchoalveolar lavage fluids (BALF) were determined by a validated LC-MS/MS assay. The pulmonary anti-inflammatory efficacy was evaluated using a lipopolysaccharide (LPS) induced lung inflammation model as indicated by the level of tumor necrosis factor-α (TNF-α) in BALF. RESULTS: The nebulization of SHL showed good inhalability and allowed the aerosols to reach the upper or lower respiratory tract dependent on the performance of selected nebulizers. Following intratracheal administration of SHL at different doses, CHA, FTA and BC were absorbed into the bloodstream with the mean absorption time being 67.5, 63.5 and 114 min, respectively, rendering mean absolute bioavailabilities between 42.4% and 61.4% roughly independent of delivered dose. Relative to the intravenous injection, the intrapulmonary delivery increased the lung-to-plasma concentration ratios of CHA, FTA and BC by more than 100 folds and markedly improved the lung availability by 563-676 folds, leading to enhanced and prolonged lung retention. The production of TNF-α in BALF was decreased by ~50% at an intratracheal dose of 125 µL/kg SHL to LPS-treated mice. CONCLUSION: The nebulization delivery of SHL is a promising alternative to the intravenous injection for the treatment of respiratory tract infections.


Assuntos
Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/uso terapêutico , Ácido Clorogênico/metabolismo , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/uso terapêutico , Flavonoides/metabolismo , Glicosídeos/metabolismo , Pneumonia/tratamento farmacológico , Administração por Inalação , Administração Intravenosa , Animais , Disponibilidade Biológica , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Ácido Clorogênico/sangue , Flavonoides/sangue , Glicosídeos/sangue , Lipopolissacarídeos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Nebulizadores e Vaporizadores , Pneumonia/induzido quimicamente , Pneumonia/imunologia , Ratos Wistar , Fator de Necrose Tumoral alfa/imunologia
20.
J Sci Food Agric ; 101(4): 1579-1588, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32869886

RESUMO

BACKGROUND: The effect of multiple co-pigments on the color intensification of mulberry anthocyanins (ACs) using spectroscopic techniques in combination with a molecular docking study was studied. The hyperchromicity of ACs co-pigmented with chlorogenic acid (CH) and quercetin (Q) blends was measured and their color stability in liquid and encapsulated particle models was evaluated. RESULTS: Multiple co-pigments exhibited higher hyperchromicity, pKH -values, and heat-stability than their individual counterparts. Surflex-docking findings confirmed that stronger binding occurred between multiple ligands and AC than single ones due to their extra -OH, -COOH groups, and delocalization systems. The binding was allowed by increased H-bonding, van der Waals forces, and π-π sites by the extra groups of the multiple co-pigments with AC in aqueous juice and whey particle-based models. CONCLUSION: This is the first report of the ternary mixture of phenolic acid-flavonol-anthocyanin which could be used as promising food red-colorants. © 2020 Society of Chemical Industry.


Assuntos
Antocianinas/química , Ácido Clorogênico/química , Morus/metabolismo , Extratos Vegetais/química , Quercetina/química , Antocianinas/metabolismo , Ácido Clorogênico/metabolismo , Cor , Frutas/química , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Cinética , Simulação de Acoplamento Molecular , Morus/química , Morus/crescimento & desenvolvimento , Extratos Vegetais/metabolismo , Quercetina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA