Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 972
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 222: 116118, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467376

RESUMO

Diabetes-related hyperglycemia inhibits bone marrow mesenchymal stem cell (BMSC) function, thereby disrupting osteoblast capacity and bone regeneration. Dietary supplementation with phytic acid (PA), a natural inositol phosphate, has shown promise in preventing osteoporosis and diabetes-related complications. Emerging evidence has suggested that circular (circ)RNAs implicate in the regulation of bone diseases, but their specific regulatory roles in BMSC osteogenesis in hyperglycemic environments remain elucidated. In this study, in virto experiments demonstrated that PA treatment effectively improved the osteogenic capability of high glucose-mediated BMSCs. Differentially expressed circRNAs in PA-induced BMSCs were identified using circRNA microarray analysis. Here, our findings highlight an upregulation of circEIF4B expression in BMSCs stimulated with PA under a high-glucose microenvironment. Further investigations demonstrated that circEIF4B overexpression promoted high glucose-mediated BMSC osteogenesis. In contrast, circEIF4B knockdown exerted the opposite effect. Mechanistically, circEIF4B sequestered microRNA miR-186-5p and triggered osteogenesis enhancement in BMSCs by targeting FOXO1 directly. Furthermore, circEIF4B inhibited the ubiquitin-mediated degradation of IGF2BP3, thereby stabilizing ITGA5 mRNA and promoting BMSC osteogenic differentiation. In vivo experiments, circEIF4B inhibition attenuated the effectiveness of PA treatment in diabetic rats with cranial defects. Collectively, our study identifies PA as a novel positive regulator of BMSC osteogenic differentiation through the circEIF4B/miR-186-5p/FOXO1 and circEIF4B/IGF2BP3/ITGA5 axes, which offers a new strategy for treating high glucose-mediatedBMSCosteogenic dysfunction and delayed bone regeneration in diabetes.


Assuntos
Diabetes Mellitus Experimental , Células-Tronco Mesenquimais , MicroRNAs , Ratos , Animais , Osteogênese , MicroRNAs/metabolismo , Ácido Fítico/farmacologia , Ácido Fítico/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Células da Medula Óssea/metabolismo , Células Cultivadas
2.
Int J Biol Macromol ; 263(Pt 2): 130517, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423444

RESUMO

Orally targeted delivery systems have attracted ample interest in colorectal cancer management. In this investigation, we developed Inositol hexaphosphate (IHP) loaded Tripolyphosphate (Tr) crosslinked Pectin (Pe) Chitosan (Ch) nanoparticles (IHP@Tr*Pe-Ch-NPs) and modified them with l-Carnitine (CE) (CE-IHP@Tr*Pe-Ch-NPs) to improve uptake in colon cells. The formulated CE-IHP@Tr*Pe-Ch-NPs displayed a monodisperse distribution with 219.3 ± 5.5 nm diameter and 30.17 mV surface charge. Cell-line studies revealed that CE-IHP@Tr*Pe-Ch-NPs exhibited excellent biocompatibility in J774.2 and decreased cell viability in DLD-1, HT-29, and MCF7 cell lines. More cell internalization was seen in HT-29 and MCF7 due to overexpression of the OCTN2 and ATB0,+ transporter (CE transporters) compared to DLD-1. The cell cycle profile, reactive oxygen species, apoptosis, and mitochondrial membrane potential assays were performed to explore the chemo-preventive mechanism of CE-IHP@Tr*Pe-Ch-NPs. Moreover, the in-silico docking studies revealed enhanced interactive behavior of CE-IHP@Tr*Pe-Ch-NPs, thereby proving their targeting ability. All the findings suggested that CE-IHP@Tr*Pe-Ch-NPs could be a promising drug delivery approach for colon cancer targeting.


Assuntos
Quitosana , Nanopartículas , Humanos , Ácido Fítico , Pectinas/farmacologia , Carnitina , Células MCF-7 , Colo , Portadores de Fármacos
3.
Poult Sci ; 103(4): 103520, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364607

RESUMO

Apparent ileal digestibility (AID) of P, apparent total tract retention (ATTR) of P, and phytic acid disappearance in canola meal were evaluated in the presence of increasing levels of exogenous phytase. In Experiment 1, a precision-fed rooster assay was used to determine phytic acid (myo-inositol 1,2,3,4,5,6-hexakis; InsP6) and inositol phosphate (InsP6-3; InsP-P) disappearance in conventional and cecectomized Leghorn roosters. Roosters were crop intubated with 25 g of canola meal mixed with 0, 500, 1,000, or 2,000 FTU/kg of exogenous phytase. In Experiment 2, InsP6 and InsP-P disappearance and AID and ATTR of P were determined using ad libitum-fed broiler chickens. Treatments consisted of semi-purified diets containing 45% canola meal as the sole source of P. Phytase was added to increase phytase activity by 0, 500, 1,000, or 2,000 FTU/kg. Experiments contained 6 replicates per treatment. Canola meal contained a high phytase activity (1,630 FTU/kg as-fed) due to contamination with a commercially available phytase at the feed mill from which the canola meal was sourced. In Experiment 1 with precision-fed roosters, there was no effect (P > 0.05) of phytase or bird type on InsP6 and InsP-P disappearance; however, phytase linearly reduced (P < 0.05) InsP3 concentrations in excreta. In Experiment 2 with ad libitum-fed chickens, phytase linearly increased (P < 0.05) ileal InsP6 and InsP-P disappearance, and phytase had a quadratic effect (P < 0.05) on excreta InsP6 and InsP-P disappearance. Increasing dietary phytase activity resulted in a linear increase (P < 0.05) in AID of P and phytase had a quadratic effect (P < 0.05) on ATTR of P. In conclusion, titration of high levels of phytase (1,600 to 3,600 FTU/kg as-fed) reduced InsP3 concentrations in precision-fed roosters but did not affect overall phytic acid hydrolysis, which was 78% or greater for all treatments; however, increasing the total phytase activity from 700 to 2,700 FTU in ad libitum-fed broiler chickens increased phytic acid disappearance and P digestibility.


Assuntos
6-Fitase , Brassica napus , Animais , Masculino , Galinhas , Ácido Fítico , Digestão , Ração Animal/análise , Suplementos Nutricionais , Dieta/veterinária , Fenômenos Fisiológicos da Nutrição Animal
4.
Sci Rep ; 14(1): 612, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182617

RESUMO

The occurrence of organically bound phosphorus (P) as phytate in plant-based feeding material is a challenge for livestock farming due to limited utilization during the digestion by the animal. Its excretion into the environment through the manure pathway, poses a challenge, due to increased eutrophication and restrictions for P. Hence, while the routine supplementation of phytase enzymes in monogastric diets is common practice, metabolically triggering endogenous plant enzymes by wet-treatment prior to feeding can also lead to a better utilization of phytate bound P and increased digestibility by the animal. Nonetheless, traditional quantification of residual phytate content in plant material is both labor- and chemical-intense. The aim of this study is, therefore, to predict the remaining phytate content during wet-treatment through a straightforward and flexible methodological approach based on real-time analysis. For this, rye bran is used as a model substrate. A partial least squares regression algorithm relates the infrared spectra to the concentrations and predict the amount of P species that are transferred from the bran matrix to the liquid phase. By applying a mass balance for P and considering the effect of water compression, the amount of residual phytate content in rye bran at different time points of wet-treatment is determined. Results are compared to wet chemical methods, resulting in a RMSEP of 0.28 gphytate∙100 gbran-1. In addition, the study demonstrates the feasibility of this approach and provides insights into phytate degradation in plant residuals. The method holds the potential for further applications for the screening and investigation of feed material conditioning and also offers the possibility to employ various real-time analytical techniques for assessing phytate remnants in biological samples during wet-treatment.


Assuntos
6-Fitase , Ácido Fítico , Animais , Alimentos , Agricultura , Algoritmos
5.
Sci Total Environ ; 917: 170419, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38296091

RESUMO

The rare earth metal element lanthanum (La) possesses carcinogenic, genotoxic, and accumulative properties, necessitating urgent development of an efficient and cost-effective method to remove La. However, current sorbents still encounter challenges such as poor selectivity, low sorption capacity, and high production costs. This study therefore proposes a promising solution: the creation of phytic acid-assisted sludge hydrochars (P-SHCs) to eliminate La from water and soil environments. This method harnesses phytic acid's exceptional binding ability and the economical hydrothermal carbonization process. P-SHCs exhibit robust sorption affinity, fast sorption kinetics, and excellent sorption selectivity for La when compared with pristine hydrochars (SHCs). This advantage arises from the remarkable binding ability of phosphate functional groups (polyphosphates) on P-SHCs, forming P-O-La complexes. Moreover, P-SHCs demonstrate sustained sorption efficiency across at least five cycles, with a slight decrease attributed to the loss of phosphorus species and mass during recycling. Furthermore, P-SHCs demonstrated superior economic feasibility, with a higher estimated cost-benefit ratio than that of other sorbents. Our study further validates the exceptional passivation capability of P-SHCs, showcasing relative stabilization efficiency ranging from 37.6 % to 79.6 % for La contamination. Additionally, acting as soil passivation agents, P-SHCs foster the enrichment of specific soil microorganisms such as Actinobacteria and Proteobacteria, capable of solubilizing phosphorus and resisting heavy metals. These findings present novel ideas and technical support for employing P-SHCs in combatting environmental pollution stemming from rare earth metals.


Assuntos
Lantânio , Ácido Fítico , Lantânio/química , Fósforo , Solo , Polifosfatos , Adsorção
6.
Sci Rep ; 14(1): 460, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172143

RESUMO

Improved crop genotypes are constantly introduced. However, information on their nutritional quality is generally limited. The present study reports the proximate composition and the concentration and relative bioavailability of minerals of improved finger millets of different genotypes. Grains of finger millet genotypes (n = 15) grown in research station during 2019 and 2020 in Ethiopia, and replicated three times in a randomized complete block design, were analysed for proximate composition, mineral concentration (iron, zinc, calcium, selenium), and antinutritional factors (phytate, tannin and oxalate). Moreover, the antinutritional factors to mineral molar ratio method was used to estimate mineral bioavailability. The result shows a significant genotypic variation in protein, fat and fibre level, ranging from 10% to 14.6%, 1.0 to 3.8%, and 1.4 to 4.6%, respectively. Similarly, different finger millets genotypes had significantly different mineral concentrations ranging from 3762 ± 332 to 5893 ± 353 mg kg-1 for Ca, 19.9 ± 1.6 to 26.2 ± 2.7 mg kg-1 for Zn, 36.3 ± 4.6 to 52.9 ± 9.1 mg kg-1 for Fe and 36.6 ± 11 to 60.9 ± 22 µg kg-1 for Se. Phytate (308-360 µg g-1), tannin (0.15-0.51 mg g-1) and oxalate (1.26-4.41 mg g-1) concentrations were also influenced by genotype. Antinutritional factors to minerals molar ratio were also significantly different by genotypes but were below the threshold for low mineral bioavailability. Genotype significantly influenced mineral and antinutritional concentrations of finger millet grains. In addition, all finger millet genotypes possess good mineral bioavailability. Especially, the high Ca concentration in finger millet, compared to in other cereals, could play a vital role to combating Ca deficiency. The result suggests the different finger millet genotypes possess good nutrient content and may contribute to the nutrition security of the local people.


Assuntos
Eleusine , Selênio , Humanos , Eleusine/genética , Etiópia , Valor Nutritivo , Oxalatos , Ácido Fítico/análise , Selênio/análise , Taninos/análise
7.
Int J Biol Macromol ; 260(Pt 1): 129393, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218301

RESUMO

Lightweight, porous cellulose foam is an attractive alternative to traditional petroleum-based products, but the intrinsic flammability impedes its use in construction. Herein, an environmentally friendly strategy for scalable fabrication of flame-retardant bamboo pulp foam (BPF) using a foam-forming technique followed by low-cost ambient drying is reported. In the process, a hierarchical structure of halloysite nanotubes (HNT) was decorated onto bamboo pulp fibers through layer-by-layer assembling of chitosan (CS) and phytic acid (PA). This modification retained the highly porous microcellular structure of the resultant BPF (92 %-98 %). It improved its compressive strength by 228.01 % at 50 % strain, endowing this foam with desired thermal insulation properties and sound absorption coefficient comparable to commercial products. More importantly, this foam possessed exceptional flame retardancy (47.05 % reduction in the total heat release and 95.24 % reduction in the total smoke production) in cone calorimetry, and it showed excellent extinguishing performance, indicating considerably enhanced fire safety. These encouraging results suggest that the flame retardant BPF has the potential to serve as a renewable and cost-effective alternative to traditional foam for applications in acoustic and thermal insulation.


Assuntos
Quitosana , Retardadores de Chama , Nanotubos , Petróleo , Argila , Ácido Fítico , Som
8.
Int J Biol Macromol ; 254(Pt 3): 128008, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951068

RESUMO

In order to improve the removal rate of uranium and reduce the harm of radioactive pollution, a physically crosslinked polyvinyl alcohol/phosphorylated chitosan (PPP) hydrogel electrode was designed by freezing thawing method. The results show that PPP hydrogel has a good adsorption effect on uranium, and 200 mL of uranium tailings leachate is absorbed, and the treatment efficiency reaches 100 % within 15 min. PPP hydrogel can adapt to a wide range of pH conditions and exhibit excellent adsorption efficiency in the range of 3-9. At the same time, PPP hydrogel maintains an adsorption efficiency of over 85 % for 950 mg/L uranium solution. This lays the foundation for the practical application of PPP hydrogel. In addition, PPP hydrogel also exhibits good repeatability, after 7 cycles, the material still retains 95 % of its initial performance. The synergistic effect of various functional groups such as phosphate, hydroxyl, and ammonium in the material is the main mechanism of PPP's adsorption capacity for uranium. Furthermore, electrochemical adsorption method significantly enhances the adsorption performance of PPP hydrogel.


Assuntos
Quitosana , Urânio , Ácido Fítico , Álcool de Polivinil , Concentração de Íons de Hidrogênio , Hidrogéis , Adsorção
9.
Adv Healthc Mater ; 13(4): e2302058, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37972607

RESUMO

Medical device-associated infections (MDAI) caused by planktonic pathogens are of serious concern worldwide due to the emergence of drug resistance resulting from continuous overuse or misuse of antibiotics. Therefore, the design of non-antibiotics-based treatment for MDAI is of crucial importance. Black phosphorus (BP), a novel 2D material, has recently received much attention owing to its remarkable physical, chemical, mechanical, and functional features. However, the intricacy of the fabrication process has severely hampered the development of BP in prospective applications. In this study, a simple and eco-friendly liquid-phase exfoliation method of phytic acid (PA)-promoted exfoliation of BP nanosheets (PA@BP NSs) is developed for their potential application in antibacterial photothermal therapy. To impart the antimicrobial effects, the polydimethylsiloxane surfaces are functionalized with quaternized polymer (polyquaternium-2 or PQ) and PA@BP NSs, leading to the formation of PA-BP-PQ composite coatings. In addition to the contact-killing antibacterial effect of the cationic PQ, the PA-BP-PQ coating exhibits remarkable near-infrared irradiation-triggered bactericidal effects with low cytotoxicity both in vitro and in vivo. This study proposes a simple liquid-phase exfoliation technique for the fabrication of BP NSs and a one-step approach for the construction of PA-BP-PQ composite coatings for bi-modal (contact-killing and photothermal) antimicrobial therapy.


Assuntos
Indanos , Fósforo , Ácido Fítico , Ácido Fítico/farmacologia , Fósforo/farmacologia , Fototerapia/métodos , Antibacterianos/farmacologia
10.
Plant Cell Environ ; 47(2): 600-610, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37885374

RESUMO

Ectomycorrhizal fungi (ECMFs) that are involved in phosphorus mobilisation and turnover have limited ability to mineralise phytate alone. The endofungal bacteria in the ectomycorrhizal fruiting body may contribute to achieving this ecological function of ECMFs. We investigated the synergistic effect and mechanisms of endofungal bacteria and ECMF Suillus grevillea on phytate mineralisation. The results showed that soluble phosphorus content in the combined system of endofungal bacterium Cedecea lapagei and S. grevillea was 1.8 times higher than the sum of C. lapagei and S. grevillea alone treatment under the phytate mineralisation experiment. The S. grevillea could first chemotactically assist C. lapagei in adhering to the surface of S. grevillea. Then, the mineralisation of phytate was synergistically promoted by increasing the biomass of C. lapagei and the phosphatase and phytase activities of S. grevillea. The expression of genes related to chemotaxis, colonisation, and proliferation of C. lapagei and genes related to phosphatase and phytase activity of S. grevillea was also significantly upregulated. Furthermore, in the pot experiment, we verified that there might exist a ternary symbiotic system in the natural forest in which endofungal bacteria and ECMFs could synergistically promote phytate uptake in the plant Pinus massoniana via the ectomycorrhizal system.


Assuntos
6-Fitase , Micorrizas , Pinus , Micorrizas/metabolismo , Pinus/metabolismo , Fósforo/metabolismo , 6-Fitase/metabolismo , Ácido Fítico/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Bactérias/metabolismo
11.
Int J Biol Macromol ; 256(Pt 2): 128545, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043668

RESUMO

Phytic acid-modified carboxymethyl cellulose (CMC-PA) has been investigated as a promising adsorbent for the removal of uranium from aqueous solutions. The synthesis of CMC-PA involves the hydrogen bonding interaction between CMC and PA, resulting in the incorporation of PA groups onto the cellulose backbone. The hydrophilicity, reusability and adsorption capacity of the prepared CMC-PA hydrogel have improved with the increase of PA content. Moreover, the adsorption experiments were conducted by varying parameters such as pH, initial uranium concentration, and contact time. The results showed that CMC-PA exhibited excellent uranium adsorption performance, with a theoretical maximum adsorption capacity of 436 mg/g. In addition, the material exhibits excellent reusability, and the reusability improves with the increase of crosslinking density, indicating that the crosslinking structure of the polymer gel can effectively enhance the structural stability of the material. Furthermore, CMC-PA also exhibits high selective adsorption performance towards uranium ions in the presence of various competing ions. Its high adsorption capacity, reusability, and selectivity make it a promising candidate for high-performance uranium ion adsorbents.


Assuntos
Urânio , Poluentes Químicos da Água , Hidrogéis , Carboximetilcelulose Sódica/química , Ácido Fítico , Adsorção , Íons , Água/química , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/química
12.
Plant Cell Environ ; 47(1): 259-277, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37691629

RESUMO

Phosphorus (P) is an essential nutrient, but easily fixed in soils. Therefore, most of soil P exists in the form of inaccessible organic phosphorus (Po), particularly phytate-P. Root-associated purple acid phosphatases (PAPs) are considered to play a crucial role in phosphate (Pi) scavenging in soils. However, evidence for regulating root-associated PAPs in utilization of extracellular phytate-P remain largely unknown in plants at both transcriptional and posttranslational levels. In this study, a Pi-starvation responsive GmPAP15a was identified in soybean (Glycine max). Overexpressing GmPAP15a led to significant increases in root-associated phytase activities, as well as total P content when phytate-P was supplied as the sole P resource in soybean hairy roots. Meanwhile, mass spectrometry (MS) analysis showed GmPAP15a was glycosylated at Asn144 and Asn502 , and its glycan structures of N-linked oligosaccharide chains exhibited microheterogeneity. Moreover, two homologues of AtPHR1, GmPHR9 and GmPHR32 were found to activate GmPAP15a transcription through luciferase activity analysis. Taken together, it is strongly suggested that GmPAP15a plays a vital role in phytate-P utilization in soybean, which might be regulated at both transcriptional and glycosylation modification levels. Our results highlight the GmPHR9/GmPHR32-GmPAP15a signalling pathway might present, and control phytate-P utilization in soybean.


Assuntos
Glycine max , Ácido Fítico , Glycine max/metabolismo , Glicosilação , Ácido Fítico/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Fósforo/metabolismo , Solo
13.
Biochemistry ; 63(1): 42-52, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38146842

RESUMO

Inositol phosphates and their pyrophosphorylated derivatives are responsive to the phosphate supply and are agents of phosphate homeostasis and other aspects of physiology. It seems likely that the enzymes that interconvert these signals work against the prevailing milieu of mixed populations of competing substrates and products. The synthesis of inositol pyrophosphates is mediated in plants by two classes of ATP-grasp fold kinase: PPIP5 kinases, known as VIH, and members of the inositol tris/tetrakisphosphate kinase (ITPK) family, specifically ITPK1/2. A molecular explanation of the contribution of ITPK1/2 to inositol pyrophosphate synthesis and turnover in plants is incomplete: the absence of nucleotide in published crystal structures limits the explanation of phosphotransfer reactions, and little is known of the affinity of potential substrates and competitors for ITPK1. Herein, we describe a complex of ADP and StITPK1 at 2.26 Å resolution and use a simple fluorescence polarization approach to compare the affinity of binding of diverse inositol phosphates, inositol pyrophosphates, and analogues. By simple HPLC, we reveal the novel catalytic capability of ITPK1 for different inositol pyrophosphates and show Ins(3,4,5,6)P4 to be a potent inhibitor of the inositol pyrophosphate-synthesizing activity of ITPK1. We further describe the exquisite specificity of ITPK1 for the myo-isomer among naturally occurring inositol hexakisphosphates.


Assuntos
Difosfatos , Solanum tuberosum , Fosfatos de Inositol , Ácido Fítico
14.
An Acad Bras Cienc ; 95(4): e20191162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38088696

RESUMO

Male broiler chickens (384), Cobb 500, were housed in metabolic cages to assess the efficacy of phytase in diets with low and high phytate-phosphorus on the performance, bone physical characteristics, tissue and serum mineral deposits. Birds were distributed in four treatments with a 2 x 2 factorial arrangement in a completely randomized block design. Experimental diets based on maize-soybean meal were T1 - diet low phytate-phosphorus; T2 - diet low phytate-phosphorus and phytase (500 FTU/kg); T3 - diet high phytate-phosphorus; T4 - diet high phytate-phosphorus and phytase (500 FTU/kg). Feed intake, body weight, weight gain and feed conversion ratio were assessed. Two left tibias per experimental unit were analyzed for physical characteristics and mineral concentration; a section of skinless breast muscle and blood were collected to measure the concentration of calcium, phosphorus and sodium. Results showed interaction between bone stiffness and serum calcium. The inclusion of phytase in diets with low and high phytate-phosphorus did not alter performance, bone resistance and flexibility, mineral deposits in the tibia and breast muscle, but increased bone stiffness after 22 days of age. It also provided a higher serum calcium rate in broilers fed diets with low phytate-phosphorus up to 32 days of age.


Assuntos
6-Fitase , Fósforo , Animais , Masculino , 6-Fitase/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Cálcio/metabolismo , Galinhas/fisiologia , Dieta/veterinária , Suplementos Nutricionais , Minerais , Fósforo/metabolismo , Ácido Fítico
15.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139020

RESUMO

Organic phosphorus (OP) is an essential component of the soil P cycle, which contributes to barley nutrition after its mineralization into inorganic phosphorus (Pi). However, the dynamics of OP utilization in the barley rhizosphere remain unclear. In this study, phytin was screened out from six OP carriers, which could reflect the difference in OP utilization between a P-inefficient genotype Baudin and a P-efficient genotype CN4027. The phosphorus utilization efficiency (PUE), root morphological traits, and expression of genes associated with P utilization were assessed under P deficiency or phytin treatments. P deficiency resulted in a greater root surface area and thicker roots. In barley fed with phytin as a P carrier, the APase activities of CN4027 were 2-3-fold lower than those of Baudin, while the phytase activities of CN4027 were 2-3-fold higher than those of Baudin. The PUE in CN4027 was mainly enhanced by activating phytase to improve the root absorption and utilization of Pi resulting from OP mineralization, while the PUE in Baudin was mainly enhanced by activating APase to improve the shoot reuse capacity. A phosphate transporter gene HvPHT1;8 regulated P transport from the roots to the shoots, while a purple acid phosphatase (PAP) family gene HvPAPhy_b contributed to the reuse of P in barley.


Assuntos
6-Fitase , Hordeum , Fósforo/metabolismo , Hordeum/genética , Hordeum/metabolismo , 6-Fitase/metabolismo , Ácido Fítico/metabolismo , Genótipo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
16.
Animal ; 17(12): 101022, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37976778

RESUMO

Optimal dietary non-phytate phosphorus (NPP) is essential in poultry to maximise productive and reproductive performance, along with indices of egg and bone quality. This study aimed to establish the NPP requirements of egg-type duck breeders aged from 54 to 80 weeks on the following traits: egg production, egg incubation, egg quality, tibial characteristics, reproductive organ, plasma indices, and the expression of genes related to phosphorus absorption. Longyan duck breeders aged 54 weeks (n = 300) were randomly allotted to five treatments, each containing six replicates of 10 individually caged birds. Birds were fed corn-soybean meal-based diets containing 0.18, 0.25, 0.32, 0.38, and 0.45% NPP/kg for 27 weeks. The tested dietary NPP levels did not affect egg production or egg quality indices. The hatchling weight of ducklings increased (quadratic, P < 0.01) as dietary NPP level increased, and the highest value occurred with 0.25% NPP. The number of large yellow follicles (LYF), and the relative weights of LYF and ovary showed linear and quadratic responses to dietary NPP levels; the lowest number and relative weight of LYF occurred with 0.38% NPP, and the lowest ovarian weight was obtained with 0.25% NPP. There were no differences in tibial length, breaking strength, and mineral density in response to dietary NPP levels. In contrast, tibial content of Ca increased (linear, P < 0.01) with dietary NPP levels increasing from 0.18 to 0.45%, and the tibial content of P increased at 0.32% NPP and the higher dietary NPP levels. Plasma concentration of P showed a quadratic (P < 0.05) response to the dietary NPP levels, where the highest value was seen at 0.38% NPP. In conclusion, dietary NPP levels from 0.18 to 0.45% had no effects on egg production, and egg and tibial quality of duck breeders. The duck breeders fed a diet with 0.25% NPP showed the highest hatchling weight of their offspring, while those fed 0.38% NPP had the lowest number and relative weight of LYF. These results indicated that the diet with 0.25% NPP can be used in egg-type duck breeders to improve the hatchling weight of their offspring, without adverse effects on their productivity. The regression model indicated that the maximal hatchling weight of ducklings was obtained from duck breeders fed the diet with 0.30% NPP.


Assuntos
Ração Animal , Dieta , Fósforo na Dieta , Fósforo , Animais , Feminino , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais , Patos/fisiologia , Minerais , Fósforo na Dieta/metabolismo , Ácido Fítico , Ovos
17.
World J Microbiol Biotechnol ; 40(1): 22, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008864

RESUMO

Phytases are important enzymes used for eliminating the anti-nutritional properties of phytic acid in food and feed ingredients. Phytic acid is major form of organic phosphorus stored during seed setting. Monogastric animals cannot utilize this phytate-phosphorus due to lack of necessary enzymes. Therefore, phytic acid excretion is responsible for mineral deficiency and phosphorus pollution. Phytases have been reported from diverse microorganisms, however, fungal phytases are preferred due to their unique properties. Aspergillus species are the predominant producers of phytases and have been explored widely as compared to other fungi. Solid-state fermentation has been studied as an economical process for the production of phytases to utilize various agro-industrial residues. Mixed substrate fermentation has also been reported for the production of phytases. Physical and chemical parameters including pH, temperature, and concentrations of media components have significantly affected the production of phytases in solid state fermentation. Fungi produced high levels of phytases in solid state fermentation utilizing economical substrates. Optimization of culture conditions using different approaches has significantly improved the production of phytases. Fungal phytases are histidine acid phosphatases exhibiting broad substrate specificity, are relatively thermostable and protease-resistant. These phytases have been found effective in dephytinization of food and feed samples with concomitant liberation of minerals, sugars and soluble proteins. Additionally, they have improved the growth of plants by increasing the availability of phosphorus and other minerals. Furthermore, phytases from fungi have played an important roles in bread making, semi-synthesis of peroxidase, biofuel production, production of myo-inositol phosphates and management of environmental pollution. This review article describes the production of fungal phytases in solid state fermentation and their biotechnological applications.


Assuntos
6-Fitase , Animais , 6-Fitase/química , 6-Fitase/metabolismo , Fermentação , Ácido Fítico/metabolismo , Fósforo , Minerais
18.
Food Res Int ; 174(Pt 1): 113524, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986511

RESUMO

Hard-to-cook (HTC) is a textural defect that delays the softening of common bean seeds during cooking. While this defect is commonly associated with conventionally stored beans, soaking/cooking of beans in CaCl2 solutions or sodium acetate buffer can also prolong the cooking time of beans due to formation of Ca2+ crosslinked pectin retarding bean softening during cooking. In this study, the role of the cell wall-bound Mg2+/Ca2+ content and the degree of pectin methyl esterification (DM) was quantified, as important factors for bean texture-related changes stipulated in the pectin-cation-phytate hypothesis, the most plausible hypothesis of HTC development. Evaluation of texture changes during cooking of conventionally aged beans (35 °C and 83% RH for up to 20 weeks), beans soaked/cooked in CaCl2 solutions (0.01 to 0.1 M) or soaked in 0.1 M sodium acetate buffer (pH 4.4) revealed large bean-to-bean variations. Therefore a texture-based classification approach was used to better capture the relation between texture characteristics and cell wall polymer, in particular pectin, related changes. While cell wall-bound Ca2+ and pectin DM did not change/were not related to the texture variation during cooking of fresh beans, increased cell wall-bound Ca2+ and decreased pectin DM were associated with prolonged conventional storage of beans and their texture changes during subsequent cooking (due to pectin cross linking, retarding its solubilization during cooking). Exogenously added Ca2+ from pre-treating beans in CaCl2 solutions promoted to a great extent the cell wall-bound Ca2+ during soaking but even more so during cooking, complementing the harder texture associated with these beans during cooking (compared to conventionally stored and fresh beans). Similarly, free Ca2+ endogenously generated by phytase-catalysed phytate hydrolysis (beans treated by acetate buffer) promoted crosslinking of pectin by Ca2+ (cell wall-bound Ca2+), delaying softening of beans during cooking.


Assuntos
Phaseolus , Phaseolus/química , Cloreto de Cálcio , Ácido Fítico/análise , Acetato de Sódio/análise , Temperatura Alta , Culinária , Pectinas/química , Verduras , Cátions , Parede Celular/química
19.
Braz J Med Biol Res ; 56: e12955, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37937602

RESUMO

Neuropathic pain is a condition with varying origins, including reduced dietary micronutrient intake. Phytate is a polyphosphate found in seeds and grains that can act as an antinutrient due to the ability of sequester essential divalent metals. Here we tested whether moderate dietary phytate intake could alter nociceptive pain. We subjected weaning mice to a chow supplemented with 1% phytate for eight weeks. Body weight gain, glycemic responses, food ingestion, water ingestion, and liver and adipose tissue weights were not altered compared to controls. We observed a decreased mechanical allodynia threshold in the intervention group, although there were no changes in heat- or cold-induced pain. Animals consuming phytate showed reduced spinal cord tumor necrosis factor (TNF), indicating altered inflammatory process. These data provide evidence for a subclinical induction of mechanical allodynia that is independent of phytate consumption in animals with otherwise normal phenotypic pattern.


Assuntos
Hiperalgesia , Neuralgia , Camundongos , Animais , Hiperalgesia/etiologia , Ácido Fítico , Medula Espinal , Fator de Necrose Tumoral alfa
20.
Poult Sci ; 102(12): 103160, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37856908

RESUMO

This study aimed to determine the effect of Zn source and dietary level on intestinal myo-inositol hexakisphosphate (InsP6) disappearance, intestinal accumulation of lower InsP and myo-inositol (MI), prececal mineral digestibility, bone mineralization, and Zn status of broilers without and with exogenous phytase in the feed. Male Ross 308 broilers were allocated in groups of 10 to 8 treatments with 8 pens each. Experimental diets were fed from d 7 to d 28 and contained 33 mg/kg dry matter plant-intrinsic Zn. Experimental factors were phytase supplementation (0 or 750 FTU/kg) and Zn source (none [0 mg/kg Zn], Zn-sulfate [30 mg/kg Zn], Zn-oxide [30 mg/kg Zn]). Additional treatments with 90 mg/kg Zn as Zn-sulfate or Zn-oxide and phytase were included to test the effect of Zn level. No Zn source or Zn level effects were observed for ADG, feed conversion ratio, prececal P digestibility, intestinal InsP6 disappearance, and bone ash concentration. However, those measurements were increased by exogenous phytase (P < 0.001), except the feed conversion ratio, which was decreased (P < 0.001). Ileal MI concentrations were affected by phytase × Zn source interaction (P < 0.030). Birds receiving exogenous phytase and Zn supplementation had the highest MI concentrations regardless of exogenous Zn source, whereas MI concentrations were intermediate for birds receiving exogenous phytase only. Exogenous phytase and exogenous Zn source increased the Zn concentration in bone and blood of broilers (P < 0.001). In conclusion, measures of exogenous phytase efficacy were not affected by phytase × Zn source interaction. Further studies are needed to rule out an effect from Zn sources other than those tested in this study and to investigate the effect of Zn supplementation on endogenous phosphatases. The missing effect of increasing Zn supplementation from 30 to 90 mg/kg in phytase-supplemented diets gives reason to reconsider the Zn supplementation level used by the industry.


Assuntos
6-Fitase , Ácido Fítico , Animais , Ácido Fítico/metabolismo , Galinhas/metabolismo , 6-Fitase/metabolismo , Zinco/metabolismo , Calcificação Fisiológica , Suplementos Nutricionais , Dieta/veterinária , Inositol/metabolismo , Óxidos/farmacologia , Sulfatos/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA