Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 223: 116127, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490519

RESUMO

Sepsis induced myocardial dysfunction (SIMD) is a serious complication of sepsis. There is increasing evidence that the renin-angiotensin system (RAS) is activated in SIMD. Angiotensinogen (AGT) is a precursor of the RAS, and the inhibition of AGT may have significant cardiovascular benefits. But until now, there have been no reports of small molecule drugs targeting AGT. In this study, we designed a promoter-luciferase based system to screen for novel AGT inhibitors to alleviate SIMD. As a result of high-throughput screening, a total of 5 compounds from 351 medicinal herb-derived natural compounds were found inhibiting AGT. 18ß-glycyrrhetinic acid (18ßGA) was further identified as a potent suppressor of AGT. In vitro experiments, 18ßGA could inhibit the secretion of AGT by HepG2 cells and alleviate the elevated level of mitochondrial oxidative stress in cardiomyocytes co-cultured with HepG2 supernatants. In vivo, 18ßGA prolonged the survival rate of SIMD mice, enhanced cardiac function, and inhibited the damage of mitochondrial function and inflammation. In addition, the results showed that 18ßGA may reduce AGT transcription by downregulating hepatocyte nuclear factor 4 (HNF4) and that further alleviated SIMD. In conclusion, we provided a more efficient screening strategy for AGT inhibitors and expanded the novel role of 18ßGA as a promising lead compound in rescuing cardiovascular disease associated with RAS overactivation.


Assuntos
Ácido Glicirretínico/análogos & derivados , Ensaios de Triagem em Larga Escala , Sepse , Camundongos , Animais , Lipopolissacarídeos , Angiotensinogênio/genética
2.
Phytomedicine ; 128: 155524, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552435

RESUMO

BACKGROUND: Psoriasis is an immune-mediated chronic inflammatory skin disease. Current research suggests that the long-term persistence and recurrence of psoriasis are closely related to the feedback loop formed between keratinocytes and immune cells, especially in Th 17 or DC cells expressing CCR6. CCL20 is the ligand of CCR6. Therefore, drugs that block the expression of CCL20 or CCR6 may have a certain therapeutic effect on psoriasis. Glycyrrhetinic acid (GA) is the main active ingredient of the plant drug licorice and is often used to treat autoimmune diseases, including psoriasis. However, its mechanism of action is still unclear. METHODS: Psoriasis like skin lesion model was established by continuously applying imiquimod on the back skin of normal mice and CCR6-/- mice for 7 days. The therapeutic and preventive effects of glycyrrhetinic acid (GA) on the model were observed and compared. The severity of skin injury is estimated through clinical PASI scores and histopathological examination. qRT-PCR and multiple cytoline assay were explored to detect the expression levels of cytokines in animal dorsal skin lesions and keratinocyte line HaCaT cells, respectively. The dermis and epidermis of the mouse back were separated for the detection of CCL20 expression. Transcription factor assay was applied to screen, and luciferase activity assay to validate transcription factors regulated by GA. Technology of surface plasmon laser resonance with LC-MS (SPR-MS), molecular docking, and enzyme activity assay were used to identified the target proteins for GA. Finally, we synthesized different derivatives of 18beta-GA and compared their effects, as well as glycyrrhetinic acid (GL), on the skin lesion of imiquimod-induced mice to evaluate the active groups of 18beta-GA. RESULTS: 18ß-glycyrrhetinic acid (GA) improved IMQ-induced psoriatic lesions, and could specifically reduce the chemokine CCL20 level of the epidermis in lesion area, especially in therapeutic administration manner. The process was mainly regulated by transcription factor ATF2 in the keratinocytes. In addition, GUSB was identified as the primary target of 18ßGA. Our findings indicated that the subject on molecular target research of glycyrrhizin should be glycyrrhetinic acid (GA) instead of glycyrrhizic acid (GL), because GL showed little activity in vitro or in vivo. Apart from that, α, ß, -unsaturated carbonyl in C11/12 positions was crucial or unchangeable to its activity of 18ßGA, while proper modification of C3 or C30 position of 18ßGA may vastly increase its activity. CONCLUSION: Our research indicates that 18ßGA exerted its anti-psoriasis effect mainly by suppressing ATF2 and downstream molecule CCL20 predominately through α, ß, -unsaturated carbonyl at C11/12 position binding to GUSB in the keratinocytes, and then broke the feedback loop between keratinocytes and CCR6-expressing immune cells. GA has more advantages than GL in the external treatment of psoriasis. A highlight of this study is to investigate the influence of special active groups on the pharmacological action of a natural product, inspired by the molecular docking result.


Assuntos
Quimiocina CCL20 , Ácido Glicirretínico , Ácido Glicirretínico/análogos & derivados , Psoríase , Receptores CCR6 , Transdução de Sinais , Animais , Ácido Glicirretínico/farmacologia , Quimiocina CCL20/metabolismo , Psoríase/tratamento farmacológico , Humanos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Receptores CCR6/metabolismo , Fator 2 Ativador da Transcrição/metabolismo , Modelos Animais de Doenças , Queratinócitos/efeitos dos fármacos , Células HaCaT , Imiquimode , Pele/efeitos dos fármacos , Pele/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Glycyrrhiza/química
3.
Phytomedicine ; 102: 154162, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35598524

RESUMO

BACKGROUND: Misusage of pyrrolizidine alkaloid (PA)-containing plants or unaware intake of PA-contaminated foodstuffs causes thousands of PA poisoning cases in humans. PA intoxication is accompanied by oxidative stress and subsequent extensive hepatocellular damage. Our previous study has demonstrated that 18ß-glycyrrhetinic acid (GA), a bioactive constituent of liquorice, prevented PA-induced hepatotoxicity in rats, however the underlying mechanisms remain unclear. OBJECTIVE: This study aims to explore the mechanisms underlying the hepato-protective effect of GA in combating retrorsine (RTS, a representative toxic PA)-induced liver injury. METHODS: Histological and biochemical assessments were employed to evaluate the protective effect of GA on RTS-induced hepatotoxicity in rats. Sulforhodamine B assay, real-time PCR, western blotting, and immunostaining were used to explore the underlying mechanisms in human hepatocytes and rats. RESULTS: Our findings demonstrated that GA alleviated RTS-induced elevation of serum ALT and bilirubin levels, as well as hepatocytes necrosis and sinusoidal endothelial cells (SECs) damage in rats. GA also enhanced the activities and expressions of several antioxidant enzymes through upregulating nuclear factor-erythroid 2-related factor2 (Nrf2). Moreover, inhibition of Nrf2 blocked the hepatoprotective effect of GA against RTS intoxication. Mechanistically, GA increased the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and enhanced glycogen synthase kinase 3 beta (GSK3ß) inhibitory phosphorylation at serine 9, thus promoting the nuclear accumulation of Nrf2 and activating its downstream targets. CONCLUSION: This study for the first time demonstrated that GA exerted protective effects against RTS-induced liver injury by potentiating the Nrf2-mediated antioxidant system through PI3K/Akt/GSK3ß pathway. The findings indicated that GA may serve as a potential candidate drug for the treatment of PA intoxication.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatopatias , Alcaloides de Pirrolizidina , Animais , Ratos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Células Endoteliais/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Ácido Glicirretínico/análogos & derivados , Fígado , Hepatopatias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Alcaloides de Pirrolizidina/farmacologia
4.
Eur J Nutr ; 61(7): 3437-3447, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35578042

RESUMO

PURPOSE: Glycyrrhizin (GL) and its metabolites 18α-glycyrrhetinic acid (18α-GA) and 18ß-glycyrrhetinic acid (18ß-GA) are used as traditional medicine and food sweeteners. As the major rout of their administration is oral way, therefore their impact on intestinal epithelial cells are investigated. METHODS: The effects of GL and its metabolites on cell viability using MTT assay, on cytotoxicity using LDH release, on integrity of intestinal epithelial cells by measuring the transepithelial electrical resistance (TEER) and Luciferase permeability tests, on the expression of tight junction proteins at mRNA and protein level by qPCR and western blot techniques, and ultimately on the rate of test compounds absorption via Caco-2 cells monolayer were investigated. RESULTS: MTT assay showed a concentration- and time-dependent decrease in metabolic activity of Caco-2 cells induced by GL, 18α-GA, and 18ß-GA, while only 18ß-GA increased the LDH leakage. The monolayer integrity of Caco-2 cells in TEER assay only was affected by 18ß-GA. The permeability of paracellular transport marker was increased by 18α-GA and 18ß-GA and not GL. In transport studies, only metabolites were able to cross from Caco-2 cells monolayer. qPCR analyses revealed that 18ß-GA upregulated the expression of claudin-1 and -4, occludin, junctional adhesion molecules and zonula occludens-1, while 18α-GA upregulated only claudin-4. The expression of claudin-4 at protein level was downregulated non-significantly at 50 µM concentration of 18ß-GA. CONCLUSION: Our results suggest that 18ß-GA may cause cellular damages at higher concentrations on gastrointestinal cells and requires a remarkable attention of the nutraceutical and pharmaceutical industries.


Assuntos
Ácido Glicirretínico , Células CACO-2 , Claudina-4/metabolismo , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/metabolismo , Ácido Glicirretínico/farmacologia , Ácido Glicirrízico/metabolismo , Ácido Glicirrízico/farmacologia , Humanos , Mucosa Intestinal/metabolismo , Permeabilidade
5.
Exp Parasitol ; 236-237: 108258, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35421387

RESUMO

Glycyrrhetinic acid (GA) is one of the important Pentacyclic Triterpenoids (PT) found in the roots of licorice. This study aimed to evaluate the in vitro growth inhibitory effect of 18ß-GA (18ß-Glycyrrhetinic acid) and C-30 esters against Theileria annulata, the causative agent of Tropical Bovine Theileriosis. C-30 esters of 18ß-GA were synthesized and their structures were elucidated using spectroscopy. The pharmacodynamic properties of 18ß-GA and its C-30 esters were predicted using DataWarrior and Swiss ADME tools. Cattle isolates of T. annulata schizont-infected bovine lymphoblastoid cells were cultured using standard conditions and the growth inhibitory effect of GA and its esters were evaluated using MTT assay. The isopropyl ester of 18ß-GA (GI50- 1.638 µM; R2- 0.818) showed improved anti-theileriosis efficacy than other 18ß-GA derivatives. The propyl (GI50 - 5.549 µM), ethyl (GI50 - 5.638 µM), and benzyl (GI50 - 7.431 µM) esters also showed considerable inhibitory effect. The GI50 value for 18ß-GA was recorded as 6.829 µM. This study throws light on the usefulness of 18ß-GA and its esters for the treatment of Tropical Bovine Theileriosis.


Assuntos
Ácido Glicirretínico , Theileriose , Animais , Bovinos , Ésteres/farmacologia , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/química , Ácido Glicirretínico/farmacologia , Extratos Vegetais , Theileriose/tratamento farmacológico
6.
Inflammation ; 45(3): 1224-1238, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34989920

RESUMO

Bronchopulmonary dysplasia (BPD) is a common devastating pulmonary complication in preterm infants. Supplemental oxygen is a lifesaving therapeutic measure used for premature infants with pulmonary insufficiency. However, oxygen toxicity is a significant trigger for BPD. Oxidative stress disrupts lung development, accompanied by increased pro-inflammatory cytokines and chemokines expression and immune cells infiltration in lung tissue. Licorice, a typical traditional herbal medicine, is commonly used in the medicine and food industries. 18ß-Glycyrrhetinic acid (18ß-GA), a primary active ingredient of licorice, has powerful anti-oxidative and anti-inflammatory effects. This study aimed to determine whether 18ß-GA has a protective effect on neonatal rats with hyperoxia exposure. Newborn Sprague-Dawley rats were kept in either 21% (normoxia) or 80% O2 (hyperoxia) continuously from postnatal day (PN) 1 to 14. 18ß-GA was injected intragastrically at 50 or 100 mg/kg body weight once a day from PN 1 to 14. We examined the body weight and alveolar development and measured ROS level and the markers of pulmonary inflammation. Mature-IL-1ß and NF-κB pathway proteins, and the NLRP3 inflammasome, were assessed; concurrently, caspase-1 activity was measured. Our results indicated that hyperoxia resulted in alveolar simplification and decreased bodyweight of neonatal rats. Hyperoxia increased ROS level and pulmonary inflammation and activated NF-κB and the NLRP3 inflammasome. 18ß-GA treatment inhibited the activation of NF-κB and the NLRP3 inflammasome, decreased ROS level and pulmonary inflammation, improved alveolar development, and increased the bodyweight of neonatal rats with hyperoxia exposure. Our study demonstrates that 18ß-GA has a protective effect on neonatal rats with hyperoxia exposure.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Pneumonia , Animais , Animais Recém-Nascidos , Peso Corporal , Displasia Broncopulmonar/tratamento farmacológico , Displasia Broncopulmonar/prevenção & controle , Ácido Glicirretínico/análogos & derivados , Humanos , Hiperóxia/complicações , Recém-Nascido , Recém-Nascido Prematuro , Inflamassomos/metabolismo , Pulmão/metabolismo , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Oxigênio/farmacologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/farmacologia
7.
Phytother Res ; 35(12): 6932-6943, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34709693

RESUMO

It has been shown that 18ß-glycyrrhetinic acid (18ß-GA), the main bioactive compound of licorice, can modulate oxidative stress and metabolic processes in liver and skin. Given the critical role of oxidative stress and energy metabolism in exercise-induced fatigue, we hypothesized that 18ß-GA could exert an ergogenic action by inhibiting excess reactive oxygen species (ROS) induction and promoting energy production in muscles. Mice were gavage-fed with 18ß-GA for four consecutive days. Running ability was assessed based on the exhaustive treadmill test with high- and moderate-intensity. Western blot analysis, enzyme-linked immunosorbent assay, and immunofluorescence staining were used to measure the changes of muscle fatigue-related markers, oxidative stress status, and energy metabolism in response to 18ß-GA exposure. Treatment with 18ß-GA significantly increased the exhaustive running distance (~37%) in the high-intensity exercise, but not in the moderate-intensity exercise. Mechanistically, reduction of oxidative stress and induction of antioxidants (SOD, CAT, and GSH) by 18ß-GA were observed. Moreover, 18ß-GA treatment caused an improved preservation of muscle glycogen (12%), which was associated with upregulation of glucose transporter 4 (GLUT4) (91%) and increased insulin level (17%). The findings of the present study clearly suggest that 18ß-GA holds excellent potential as a novel bioactive agent against high-intensity exercise-induced fatigue.


Assuntos
Glucose , Ácido Glicirretínico , Animais , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacologia , Camundongos , Estresse Oxidativo , Espécies Reativas de Oxigênio
8.
Anal Biochem ; 631: 114342, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34419454

RESUMO

18ß-Glycyrrhetinic acid (GA) is the triterpenoid aglycone component of glycyrrhizic acid, a natural product of traditional Chinese medicine, and has been proven to possess a variety of pharmacological effects. The protection function and the mechanism of GA on rats with high-altitude pulmonary hypertension (HAPH) are studied using proton nuclear magnetic resonance (1H NMR) metabonomics technology and biochemical analysis. An HAPH model is established, and 60 male rats are randomly divided into the following groups: Control(normal saline, 0.4 mL/100 g), model (normal saline, 0.4 mL/100 g), Nifedipine (nifedipine, 2.7 mg/kg), and high-, medium-, and low-dose GA groups (100, 50, and 25 mg/kg GA designated as GA.H, GA.M, and GA.L, respectively). Serum biochemical indicators of rats in each group are measured, and pathological changes in the pulmonary artery are observed. 1H NMR metabonomics technology is used for serum analysis. Results show that GA can significantly reduce pulmonary arterial pressure and malondialdehyde levels and increase the glutathione peroxidase and superoxide dismutase activities in HAPH rats. Pathological results show that GA can alleviate pulmonary artery injuries of HAPH rats. Metabolomics analytical findings show that GA can alleviate the metabolic disorder of HAPH rats through anti-oxidation and anti-inflammatory effects, improve their bodies' ability to resist hypoxia, and restore various metabolic pathways (energy metabolism, amino acid metabolism, and lipid metabolism). GA has potential therapeutic effects on HAPH rats, but its target needs to be further studied.


Assuntos
Doença da Altitude/prevenção & controle , Ácido Glicirretínico/análogos & derivados , Hipertensão Pulmonar/prevenção & controle , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Substâncias Protetoras/farmacologia , Doença da Altitude/etiologia , Doença da Altitude/patologia , Animais , Análise Química do Sangue/métodos , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Ácido Glicirretínico/administração & dosagem , Ácido Glicirretínico/farmacologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/sangue , Análise Multivariada , Substâncias Protetoras/administração & dosagem , Prótons , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/ultraestrutura , Ratos Sprague-Dawley , Superóxido Dismutase/sangue
9.
Acta Pharmacol Sin ; 42(1): 18-26, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32144337

RESUMO

The first description of the medical use of licorice appeared in "Shennong Bencao Jing", one of the well-known Chinese herbal medicine classic books dated back to 220-280 AD. As one of the most commonly prescribed Chinese herbal medicine, licorice is known as "Guo Lao", meaning "a national treasure" in China. Modern pharmacological investigations have confirmed that licorice possesses a number of biological activities, such as antioxidation, anti-inflammatory, antiviral, immune regulation, and liver protection. 18ß-glycyrrhetinic acid is one of the most extensively studied active integrants of licorice. Here, we provide an overview of the protective effects of 18ß-glycyrrhetinic acid against various acute and chronic liver diseases observed in experimental models, and summarize its pharmacological effects and potential toxic/side effects at higher doses. We also make additional comments on the important areas that may warrant further research to support appropriate clinical applications of 18ß-glycyrrhetinic acid and avoid potential risks.


Assuntos
Ácido Glicirretínico/análogos & derivados , Hepatopatias/prevenção & controle , Substâncias Protetoras/uso terapêutico , Animais , Ácido Glicirretínico/farmacologia , Ácido Glicirretínico/uso terapêutico , Ácido Glicirretínico/toxicidade , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hepatopatias/metabolismo , Substâncias Protetoras/farmacologia , Substâncias Protetoras/toxicidade
10.
Curr Comput Aided Drug Des ; 17(6): 831-837, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32860363

RESUMO

BACKGROUND: Licorice is widely used as a hepatoprotective herb for thousands of years in Traditional Chinese Medicine, and its main chemical constituent glycyrrhizin (GL) is used as a treatment for chronic hepatitis in Japan for over 20 years. 18ß-Glycyrrhetinic acid (GA) is the main active metabolite of GL. OBJECTIVE: Series of GA derivatives were designed and synthesized, and their anti-HCV activities were screened to investigate the structure-activity relationship (SAR). Besides, their in-silico ADMET properties were analyzed to search for a promising lead compound for further identification of anti-HCV terpenoid candidates. METHODS: GA derivatives were synthesized via reactions of oxidation, oxime, rearrangement, esterification and acylation. In vitro anti-HCV activity of derivatives was tested on the HCV cell culture (HCVcc) system. In-silico ADMET properties analysis was performed via "pkCSM" and "SwissADME" platforms. RESULTS: Eighteen GA derivatives were synthesized, and their structures were confirmed by MS and NMR spectrums. All compounds exhibited superior HCV inhibitory activity to that of GA. Compound 2 possessed the most potent anti-HCV activity with an IC50 value of 0.79 µM, which is nearly 58 times potent than SA (a previously reported potent anti-HCV terpenoids) and >200 times than GA. SAR revealed that the introduction of 3-oxo, short-chain (C1-C3) aliphatic alcohols or cyclic aliphatic amines is conducive to improving anti-HCV activity. In-silico ADMET prediction demonstrated most of the potent compounds possessed favorable ADMET properties. CONCLUSION: Structural modification of GA at 3-position and 30-position is an effective approach to searching for potent anti-HCV agents. Compound 2, with the most potent anti-HCV activity and favorable in-silico ADMET properties, is a promising lead compound for further identification of anti-HCV terpenoid candidates.


Assuntos
Ácido Glicirretínico , Triterpenos , Antivirais/farmacologia , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacologia , Relação Estrutura-Atividade
11.
World J Gastroenterol ; 26(21): 2810-2820, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32550756

RESUMO

BACKGROUND: Liver fibrosis is a common health problem worldwide and there is still a lack of effective medicines. The Chinese herbal medicine, Gan Shen Fu Fang (GSFF) is composed of salvianolic acid B and diammonium glycyrrhizinate. In this study, we observed the effects of GSFF on liver fibrosis in vivo and in vitro in an attempt to provide some hope for the treatment. AIM: To observe the effects of GSFF on liver fibrosis in vivo and in vitro and investigate the mechanism from the perspective of the inflammatory response and extracellular signal-regulated kinase (ERK) phosphorylation. METHODS: Common bile duct-ligated rats were used for in vivo experiments. Hepatic stellate cells-T6 (HSC-T6) cells were used for in vitro experiments. Hematoxylin and eosin staining and Masson staining, biochemical assays, hydroxyproline (Hyp) assays, enzyme-linked immunoasorbent assay and western blotting were performed to evaluate the degree of liver fibrosis, liver function, the inflammatory response and ERK phosphorylation. The CCK8 assay, immunofluorescence and western blotting were applied to test the effect of GSFF on HSC-T6 cell activation and determine whether GSFF had an effect on ERK phosphorylation in HSC-T6 cells. RESULTS: GSFF improved liver function and inhibited liver fibrosis in common bile duct-ligated rats after 3 wk of treatment, as demonstrated by histological changes, hydroxyproline assays and collagen I concentrations. GSFF alleviated inflammatory cell infiltration and reduced the synthesis of pro-inflammatory cytokines [tumor necrosis factor-α (TNF-α) and interlukin-1ß] and NF-κB. In addition, GSFF decreased ERK phosphorylation. In vitro, GSFF inhibited the viability of HSC-T6 cells with and without transforming growth factor ß1 (TGF-ß1) stimulation and decreased the synthesis of collagen I. GSFF had the greatest effect at a concentration of 0.5 µmol/L. GSFF inhibited the expression of α-smooth muscle actin (α-SMA), a marker of HSC activation, in HSC-T6 cells. Consistent with the in vivo results, GSFF also inhibited the phosphorylation of ERK and downregulated the expression of NF-κB. CONCLUSION: GSFF inhibited liver fibrosis progression in vivo and HSC-T6 cell activation in vitro. These effects may be related to an alleviated inflammatory response and downregulated ERK phosphorylation.


Assuntos
Benzofuranos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Ácido Glicirretínico/análogos & derivados , Cirrose Hepática Experimental/tratamento farmacológico , Animais , Benzofuranos/uso terapêutico , Linhagem Celular , Progressão da Doença , Medicamentos de Ervas Chinesas/uso terapêutico , Ácido Glicirretínico/farmacologia , Ácido Glicirretínico/uso terapêutico , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/imunologia , Células Estreladas do Fígado/patologia , Humanos , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Cirrose Hepática Experimental/imunologia , Cirrose Hepática Experimental/patologia , Masculino , Fosforilação/efeitos dos fármacos , Fosforilação/imunologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
12.
Pharmacol Res ; 157: 104840, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32353589

RESUMO

Hepatocyte nuclear factor 4 alpha (HNF4α) regulates the expression of essential genes involved in very-low-density lipoprotein (VLDL) homeostasis and gluconeogenesis. 18ß-glycyrrhetinic acid (GA) is an active ingredient of Glycyrrhiza uralensis an herbal medicine used for treating liver aliments. In this study, we established that GA functions as a partial antagonist of HNF4α through HNF4α-driven reporter luciferase assay and co-immunoprecipitation experiments with co-activator PGC1α. By virtual docking and site-directed mutagenesis analysis, we confirmed that serine 190 and arginine 235 of HNF4α are both essential for GA to exert its antagonistic action on HNF4α. Importantly, GA suppressed the expression of HNF4α target genes such as apolipoprotein B (ApoB), microsomal triglyceride transfer protein (MTP) and phospholipase A2 G12B (PLA2G12B) modulating hepatic VLDL secretion in mice fed on a high fat diet. In addition, GA also suppressed gluconeogenesis and ameliorated glucose intolerance via down-regulating the expression of HNF4α target genes glucose-6-phosphatase (G6pc) and phosphoenolpyruvate carboxykinase (Pepck). Furthermore, GA significantly lowered blood glucose and improved insulin resistance in db/db mice. In all, we established that GA acts as a partial HNF4α antagonist modulating lipid and carbohydrate metabolism.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus/tratamento farmacológico , Ácido Glicirretínico/análogos & derivados , Fator 4 Nuclear de Hepatócito/antagonistas & inibidores , Hepatócitos/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Hipolipemiantes/farmacologia , Lipídeos/sangue , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Glicemia/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Gluconeogênese/efeitos dos fármacos , Ácido Glicirretínico/farmacologia , Células HEK293 , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Resistência à Insulina , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais
13.
J Nat Med ; 74(2): 415-420, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31916003

RESUMO

To evaluate the medicinal properties of a glycyrrhizin (GL)-deficient strain of Glycyrrhiza uralensis, we investigated the anti-allergic effect of the hot water extract obtained from its roots on contact hypersensitivity in mice, and compared it with that of the hot water extract of a commercial crude drug, Glycyrrhiza Radix. The hot water root extract of the GL-deficient strain contained glucoglycyrrhizin (GGL) and rhaoglucoglycyrrhizin (RGL) instead of GL, and it showed anti-allergic activity against contact hypersensitivity in a fashion similar to that of the crude drug extract. We further confirmed the presence of glycyrrhetinic acid (GA), a major metabolite of GL, in mice serum after oral administration of the hot water root extract of a GL-deficient strain. We demonstrated that GGL underwent hydrolysis by intestinal microflora of mice to form GA. These results suggest that a GL-deficient strain of G. uralensis is a useful medicinal resource since the glycosides of GA work in a fashion similar to that of GL when orally administered.


Assuntos
Dermatite de Contato/metabolismo , Ácido Glicirretínico/análogos & derivados , Glycyrrhiza uralensis/química , Extratos Vegetais/química , Água/química , Animais , Temperatura Alta , Camundongos
14.
Biomed Chromatogr ; 34(4): e4774, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31813157

RESUMO

The aim of this study was to confirm pharmacokinetic screening of multiple components in healthy Korean subjects after oral administration of Samso-eum and perform quantitation of active components in the human plasma. Thirteen potential bioactive components [puerarin (PRR), daidzin, nodakenin, ginsenoside Rb1, 18ß-glycyrrhetinic acid (18ß-GTA), 6-shogaol, naringin, glycyrrhizin, hesperidin, platycodin D, naringenin, hesperetin, and 6-gingerol] were screened based on literature. The results showed that three analytes (daidzin, naringenin, and hesperetin) were detected in trace amounts. In addition, PRR and 18ß-GTA were detected in human plasma after the oral administration of Samso-eum. In this study, a liquid chromatography-electrospray ionization-tandem mass spectrometry method was validated for the simultaneous determination of PRR and 18ß-GTA in human plasma. This was the first study to evaluate pharmacokinetics of PRR and 18ß-GTA after the usual oral dose of Samso-eum (30 g containing 102.48 mg PRR, 48.18 mg glycyrrhizin) in human subjects.


Assuntos
Cromatografia Líquida/métodos , Medicamentos de Ervas Chinesas , Ácido Glicirretínico/análogos & derivados , Isoflavonas/sangue , Espectrometria de Massas em Tandem/métodos , Administração Oral , Adulto , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacocinética , Ácido Glicirretínico/sangue , Ácido Glicirretínico/química , Ácido Glicirretínico/farmacocinética , Humanos , Isoflavonas/química , Isoflavonas/farmacocinética , Limite de Detecção , Modelos Lineares , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
15.
Ann Pharmacother ; 54(1): 29-35, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31416331

RESUMO

Background: High-dose methotrexate (HD-MTX) therapy is widely implemented for leukemia, osteosarcoma, and lymphoma. Although various measures have been taken to avoid toxicity from high serum MTX concentrations, there are many cases of delayed elimination of MTX. Objective: We suspected that delayed elimination of serum MTX was caused by unknown interactions between MTX and concomitant drugs. Methods: Concerning concomitant drugs in the case of delayed elimination of MTX, we performed screening tests in 35 patients who had undergone HD-MTX therapy. We then investigated the risk factors for delayed MTX elimination in 94 patients with leukemia, lymphoma, or osteosarcoma retrospectively. Results: The percentages of concomitant use of Stronger Neo-Minophagen C (SNMC), a glycyrrhizin preparation, and vincristine were higher in the delayed group. The percentage of delayed MTX elimination in patients receiving HD-MTX therapy was 41%. Multiple logistic regression analysis revealed that the concomitant use of SNMC solely was a significant risk factor for delayed MTX (odds ratio = 12.20; 95% CI = 1.06-139.84). Conclusion and Relevance: Concomitant use of SNMC was shown to be related to delayed elimination of serum MTX, and our results suggested a previously unknown drug-drug interaction between MTX and SNMC.


Assuntos
Monitoramento de Medicamentos/métodos , Metotrexato/administração & dosagem , Metotrexato/sangue , Cisteína/administração & dosagem , Cisteína/sangue , Cisteína/uso terapêutico , Combinação de Medicamentos , Interações Medicamentosas , Feminino , Glicina/administração & dosagem , Glicina/sangue , Glicina/uso terapêutico , Ácido Glicirretínico/administração & dosagem , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/sangue , Ácido Glicirretínico/uso terapêutico , Humanos , Leucemia/sangue , Leucemia/tratamento farmacológico , Modelos Logísticos , Linfoma/sangue , Linfoma/tratamento farmacológico , Masculino , Taxa de Depuração Metabólica , Metotrexato/uso terapêutico , Osteossarcoma/sangue , Osteossarcoma/tratamento farmacológico , Estudos Retrospectivos , Fatores de Risco , Vincristina/administração & dosagem , Vincristina/sangue , Vincristina/uso terapêutico
16.
J Agric Food Chem ; 67(34): 9643-9651, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31390199

RESUMO

Licorice is a traditional Chinese medicine, which is often used as sweetener and cosmetic ingredients in food and pharmaceutical industries. Among them, glycyrrhetic acid is one of the most important agents. Studies have shown that glycyrrhetic acid exhibited antitumor activities as PPARγ agonist. However, the limited number of PPARγ glycyrrhetinic agonists and their high toxicity greatly limit the design based on the structure. Therefore, clarifying the binding mode between PPARγ and small molecules, we focused on the introduction of a natural active piperazine skeleton in the position of glycyrrhetinic acid C-3. According to the Combination Principle and the Structure-Based Drug Design, 19 glycyrrhetic acid derivatives were designed and synthesized as potential PPARγ agonists. Compounds 4c and 4q were screened as high-efficiency and low-toxicity lead compounds.


Assuntos
Antineoplásicos Fitogênicos/química , Medicamentos de Ervas Chinesas/química , Ácido Glicirretínico/análogos & derivados , Glycyrrhiza/química , PPAR gama/antagonistas & inibidores , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Medicamentos de Ervas Chinesas/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ácido Glicirretínico/química , Ácido Glicirretínico/farmacologia , Humanos , PPAR gama/metabolismo , Relação Estrutura-Atividade
17.
Chem Biol Interact ; 311: 108749, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31325423

RESUMO

PURPOSE: Excessive proliferation, migration and anti-apoptosis of pulmonary artery smooth muscle cells (PASMCs) are the basis for the development of pulmonary vascular remodeling, and it is the driving force for pulmonary arterial hypertension (PAH). 18ß-glycyrrhetinic acid (18ß-GA) is the main active substance extracted from Chinese herbal medicine licorice, with outstanding anti-inflammatory, anti-oxidation and anti-proliferative effects. Our team found in previous studies that 18ß-GA has protective effects on monocrotaline-induced PAH in rats. However, the anti-angiogenic effect of 18ß-GA on PAH remains unclear. Therefore, in order to further investigate whether the beneficial effects of 18ß-GA on PAH are related to its antiproliferative effect, we conducted experiments in vivo and in vitro. METHODS AND RESULTS: In vivo, 18ß-GA relieved mean pulmonary arterial pressure, right ventricular systolic pressure, and right ventricular hypertrophy index, improving pulmonary remodeling. In vitro, 18ß-GA significantly inhibited PDGF-BB-induced proliferation and DNA synthesis of HPASMCs, blocking the progression of G0/G1 to S phase of the cell cycle. Furthermore, after treatment with 18ß-GA, the expression of Rho A, ROCK1, ROCK2 was decreased and ROCK activity was inhibited in HPASMC. In addition, 18ß-GA also attenuated PDGF-induced changes in p27kip1, Bax and Bcl-2. CONCLUSIONS: In summary, these results indicate that 18ß-GA regulates the activity of RhoA-ROCK signaling pathway, inhibits the proliferation of HPASMCs, and has potential value in the treatment of PAH.


Assuntos
Ácido Glicirretínico/análogos & derivados , Hipertensão Pulmonar/patologia , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glicirretínico/farmacologia , Ácido Glicirretínico/uso terapêutico , Hemodinâmica/efeitos dos fármacos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Masculino , Monocrotalina/toxicidade , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Substâncias Protetoras/uso terapêutico , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Remodelação Vascular/efeitos dos fármacos , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
18.
Biofactors ; 45(4): 607-615, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31120605

RESUMO

Enhancing soluble receptor for advanced glycation endproducts (sRAGE) is considered as a potent strategy for diabetes therapy. sRAGE secretion is regulated by calcium and transient receptor potential canonical (TRPC) channels. However, the role of TRPC channels in diabetes remains unknown. 18ß-Glycyrrhetinic acid (18ß-GA), produced from liquorice, has shown antidiabetic properties. This study was aimed to investigate the effect of 18ß-GA on sRAGE secretion via TRPC channels in high glucose (HG)-induced THP-1 cells. HG treatment enhanced TRPC3 and TRPC6 expression and consequently caused reactive oxygen species (ROS) accumulation mediated through p47 nicotinamide-adenine dinucleotide phosphate oxidase and inducible nitric oxide synthase (iNOS) associated with uncoupling protein 2 (UCP2) decline and lower sRAGE secretion. Interestingly, 18ß-GA showed the dramatic effects similar to Pyr3 or 2-aminoethyl diphenyl borinate inhibitors and effectively reversed HG-elicited mechanisms including that blocking TRPC3 and TRPC6 protein expressions, suppressing intracellular [Ca2+] concentration, decreasing expressions of ROS, p47s, and iNOS, but increasing UCP2 level and promoting sRAGE secretion. Therefore, 18ß-GA provides a potential implication to diabetes mellitus and its complications.


Assuntos
Glucose/antagonistas & inibidores , Ácido Glicirretínico/análogos & derivados , Glycyrrhiza/química , Hipoglicemiantes/farmacologia , Receptor para Produtos Finais de Glicação Avançada/genética , Canais de Cátion TRPC/genética , Canal de Cátion TRPC6/genética , Compostos de Boro/farmacologia , Cálcio/metabolismo , Regulação da Expressão Gênica , Glucose/toxicidade , Ácido Glicirretínico/isolamento & purificação , Ácido Glicirretínico/farmacologia , Humanos , Hipoglicemiantes/isolamento & purificação , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Extratos Vegetais/química , Pirazóis/farmacologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais , Células THP-1 , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6/antagonistas & inibidores , Canal de Cátion TRPC6/metabolismo , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo
19.
Planta Med ; 85(1): 56-61, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30086557

RESUMO

In this study, the biocatalysis of 18ß-glycyrrhetinic acid by two strains of filamentous fungi, namely Rhizopus arrhizus AS 3.2893 and Circinella muscae AS 3.2695, was investigated. Scaled-up biotransformation reactions yielded 14 metabolites. Their structures were established based on extensive nuclear magnetic resonance and high-resolution electrospray ionization mass spectrometry data analyses, and seven of them are new compounds. The two fungal strains exhibited distinct biocatalytic features. R. arrhizus could catalyze hydroxylation and carbonylation reactions, whereas C. muscae preferred to catalyze hydroxylation and glycosidation reactions. These highly specific reactions are difficult to achieve by chemical synthesis, particularly under mild conditions. Furthermore, we found that most of the metabolites exhibited pronounced inhibitory activities on lipopolysaccharides-induced nitric oxide production in RAW264.7 cells. These biotransformed derivatives of 18ß-glycyrrhetinic acid could be potential anti-inflammatory agents.


Assuntos
Anti-Inflamatórios/farmacologia , Ácido Glicirretínico/análogos & derivados , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Biotransformação , Catálise , Ácido Glicirretínico/química , Ácido Glicirretínico/metabolismo , Ácido Glicirretínico/farmacologia , Hidroxilação , Camundongos , Mucorales/metabolismo , Células RAW 264.7 , Rhizopus/metabolismo
20.
Pharmazie ; 74(12): 751-754, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31907117

RESUMO

18ß-Glycyrrhetinic acid (18ß-GA) is an effective component extracted from the traditional Chinese medicine Radix glycyrrhizae (Leguminosae) and has various biological activities. This study was performed to investigate the vasodilatory effects of 18ß-GA on isolated rat thoracic aortic rings and explore the underlying mechanisms. The rings were obtained from normal Sprague-Dawley rats and then precontracted with norepinephrine (NE) (1 µM) or KCl (60 mM). 18ß-GA (1.883-11.297mg/L) was added successively by cumulative dosing to observe and record the changes in the tension of the vascular ring. The effects of NG-nitro-l-arginine methylester (L-NAME), indomethacin (INDO), barium chloride (BaCl2), 4-aminopyridine(4-AP), tetraethylammonium (TEA), and glibenclamide on the vascular diastolic function of 18ß-GA were determined. 18ß-GA substantially exhibited a dose-dependent vasorelaxant effect on the NE-induced and KCl-induced contractions of the rings. The integrity of the vascular endothelium had no influence on the 18ß-GA-induced vasorelaxation effect in the rings. L-NAME and IDON showed no significant differences in their effects on this vasorelaxation process in the rings precontracted with NE. This result suggests that the vasorelaxation mechanism of 18ß-GA may be independent of the vascular endothelium . BaCl2 and 4-AP antagonized the vasorelaxation effect of 18ß-GA, but TEA and glibenclamide showed no remarkable effect on the vasodilation of 18ß-GA. Findings suggest that 18ß-GA induces vasorelaxation in thoracic aortic rings via the receptor-operated Ca2+ channels and voltage-operated Ca2+ channels and the opening of inward rectifier potassium channels and voltage-operated potassium.


Assuntos
Aorta Torácica/efeitos dos fármacos , Ácido Glicirretínico/análogos & derivados , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Endotélio Vascular , Ácido Glicirretínico/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA