Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 429
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Open Vet J ; 14(2): 683-691, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38549576

RESUMO

Background: Canine atopic dermatitis (CAD) is caused by skin barrier dysfunction due to allergen exposure. Excessive glutamate release in the skin is associated with delayed skin barrier function recovery and epidermal thickening and lichenification. Treatment with Yokukansan (YKS), a traditional Japanese medicine, reduces dermatitis severity and scratching behavior in NC/Nga mice by decreasing epidermal glutamate levels. However, the association between canine keratinocytes and glutamate and the mechanism by which YKS inhibits glutamate release from keratinocytes remains unknown. Aim: We aimed to investigate glutamate release from canine progenitor epidermal keratinocytes (CPEKs) and the inhibitory effect of YKS on this release. We also explored the underlying mechanism of YKS to enable its application in CAD treatment. Methods: Glutamate produced from CPEKs in the medium at 24 hours was measured. The measurement conditions varied in terms of cell density and YKS concentration. CPEKs were treated with a glutamate receptor antagonist (MK-801), a glutamate transporter antagonist (THA), and a glutamate dehydrogenase inhibitor (epigallocatechin gallate; EGCG), and the inhibitory effect of YKS, YKS + THA, MK-801, and EGCG on this release was determined. MK-801 and glutamate dehydrogenase inhibitor were tested alone, and THA was tested in combination with YKS. Finally, glutamine incorporated into CPEKs at 24 hours was measured using radioisotope labeling. Results: CPEKs released glutamate in a cell density-dependent manner, inhibited by YKS in a concentration-dependent manner. Moreover, YKS reduced the intracellular uptake of radioisotope-labeled glutamine in a concentration-dependent manner. No involvement of glutamate receptor antagonism or activation of glutamate transporters was found, as suggested by previous studies. In addition, EGCG could inhibit glutamate release from CPEKs. Conclusion: Our findings indicated that glutamate release from CPEKs could be effectively inhibited by YKS, suggesting the utility of YKS in maintaining skin barrier function during CAD. In addition, CPEKs are appropriate for analyzing the mechanism of YKS. However, we found that the mechanism of action of YKS differs from that reported in previous studies, suggesting that it may have had a similar effect to EGCG in this study. Further research is warranted to understand the exact mechanism and clinical efficacy in treating CAD.


Assuntos
Medicamentos de Ervas Chinesas , Ácido Glutâmico , Glutamina , Camundongos , Animais , Cães , Ácido Glutâmico/farmacologia , Glutamina/farmacologia , Maleato de Dizocilpina/farmacologia , Glutamato Desidrogenase/farmacologia , Queratinócitos , Radioisótopos/farmacologia
2.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37446155

RESUMO

Increasing evidence indicates that photobiomodulation, based on tissue irradiation with photons in the red to near-infrared spectrum, may be an effective therapeutic approach to central nervous system disorders. Although nervous system functionality has been shown to be affected by photons in animal models, as well as in preliminary evidence in healthy subjects or in patients with neuropsychiatric disorders, the mechanisms involved in the photobiomodulation effects have not yet been clarified. We previously observed that photobiomodulation could stimulate glutamate release. Here, we investigate mechanisms potentially involved in the glutamate-releasing effect of photons from adult mouse cerebrocortical nerve terminals. We report evidence of photon ability to induce an exocytotic vesicular release of glutamate from the terminals of glutamatergic neurons in a power-dependent way. It can be hypothesized that photobiomodulation, depending on the potency, can release glutamate in a potentially neurotoxic or physiological range.


Assuntos
Ácido Glutâmico , Fótons , Animais , Camundongos , Córtex Cerebral , Ácido Glutâmico/farmacologia , Terminações Nervosas , Neurônios , Sinaptossomos
3.
Front Neuroendocrinol ; 70: 101069, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149229

RESUMO

Hypothalamic melanin-concentrating hormone (MCH) neurons participate in many fundamental neuroendocrine processes. While some of their effects can be attributed to MCH itself, others appear to depend on co-released neurotransmitters. Historically, the subject of fast neurotransmitter co-release from MCH neurons has been contentious, with data to support MCH neurons releasing GABA, glutamate, both, and neither. Rather than assuming a position in that debate, this review considers the evidence for all sides and presents an alternative explanation: neurochemical identity, including classical neurotransmitter content, is subject to change. With an emphasis on the variability of experimental details, we posit that MCH neurons may release GABA and/or glutamate at different points according to environmental and contextual factors. Through the lens of the MCH system, we offer evidence that the field of neuroendocrinology would benefit from a more nuanced and dynamic interpretation of neurotransmitter identity.


Assuntos
Hormônios Hipotalâmicos , Hormônios Hipotalâmicos/metabolismo , Hormônios Hipotalâmicos/farmacologia , Hormônios Hipofisários/farmacologia , Hormônios Hipofisários/fisiologia , Neurônios/metabolismo , Melaninas/farmacologia , Melaninas/fisiologia , Hipotálamo/metabolismo , Ácido Glutâmico/farmacologia , Ácido Glutâmico/fisiologia , Neurotransmissores , Ácido gama-Aminobutírico
4.
Biogerontology ; 23(5): 571-585, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35969289

RESUMO

Glutamate and -aminobutyric acid (GABA) are the most abundant amino acids in the retina. An imbalance of the glutamate/GABA system is involved in the pathogenesis of various neurodegenerative disorders. Here we for the first time analyzed alterations of expression of glutamate- and GABA-synthesizing enzymes, transporters, and relevant receptors in the retina with age in Wistar rats and in senescence-accelerated OXYS rats who develop AMD-like retinopathy. We noted consistent age-dependent expression changes of GABAergic-system proteins (GAD67, GABA-T, and GAT1) in OXYS and Wistar rats: upregulation by age 3 months and downregulation at age 18 months. At a late stage of AMD-like retinopathy in OXYS rats (18 months), there was significant upregulation of glutaminase and downregulation of glutamine synthetase, possibly indicating an increasing level of glutamate in the retina. AMD-like-retinopathy development in the OXYS strain was accompanied by underexpression of glutamate transporter GLAST. Prolonged supplementation with both melatonin and SkQ1 (separately) suppressed the progression of the AMD-like pathology in OXYS rats without affecting the glutamate/GABA system but worsened the condition of the Wistar rat's retina during normal aging. We observed decreasing protein levels of glutamine synthetase, GLAST, and GABAAR1 and an increasing level of glutaminase in Wistar rats. In summary, both melatonin and mitochondrial antioxidant SkQ1 had different effect on the retinal glutamate / GABA in healthy Wistar and senescence-accelerated OXYS rats.


Assuntos
Degeneração Macular , Melatonina , Envelhecimento/fisiologia , Aminobutiratos/metabolismo , Aminobutiratos/farmacologia , Animais , Antioxidantes/farmacologia , Suplementos Nutricionais , Modelos Animais de Doenças , Glutamato-Amônia Ligase/metabolismo , Glutamato-Amônia Ligase/farmacologia , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Glutaminase/metabolismo , Glutaminase/farmacologia , Degeneração Macular/metabolismo , Masculino , Melatonina/farmacologia , Ratos , Ratos Wistar , Retina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
5.
Phytomedicine ; 100: 154075, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35413646

RESUMO

BACKGROUND: Osmundacetone (OSC) is a bioactive phenolic compound isolated from Phellinus igniarius and that was shown to exert cytotoxic effects on cancer cells in our previous work. The antiproliferative impact of OSC on non-small cell lung cancer (NSCLC) and the underlying mechanisms, however, have not been studied. PURPOSE: This study aimed to explore the antiproliferative effect of OSC on NSCLC cells and the mechanisms involved. METHODS: Cell viability, colony formation and cell cycle distribution were measured following exposure to OSC in vitro. The anticancer activity of OSC was also examined using a xenograft growth assay in vivo. Furthermore, serum metabolomics analysis by GC-MS was done to detect alterations in the metabolic profile. Next, expression of GLS1 and GLUD1, the key enzymes in glutamine metabolism, was evaluated using RT-PCR and western blot. α-KG and NADH metabolites were assessed by ELISA. Mitochondrial functions and morphology were evaluated using the JC-1 probe and transmission electron microscopy, respectively. The ATP production rate in mitochondria of cells with OSC treatment was determined using a Seahorse XFe24 Analyzer. RESULTS: OSC selectively reduced the proliferation of A549 and H460 cells. OSC triggered G2/M cell cycle arrest and decreased the cell clone formation. A mouse xenograft model revealed that OSC inhibited tumor growth in vivo. Findings of serum metabolomics analyses indicated that the anticancer function of OSC was related to disorders of glutamine metabolism. Such a speculation was further verified by the expression level of GLUD1, which was downregulated by OSC treatment. Concentrations of the related metabolites α-KG and NADH were reduced in response to OSC treatment. Moreover, OSC led to disorganization of the mitochondrial ultrastructure and a decrease in mitochondrial membrane potential. OSC also decreased ATP production via oxidative phosphorylation (OXPHOS) but did not affect glycolysis in NSCLC cells. CONCLUSION: The key role of OSC in mitochondrial energy metabolism in NSCLC cells is to suppress tumor development and cell proliferation downregulating GLUD1 to inhibit the glutamine/glutamate/α-KG metabolic axis and OXPHOS. It indicats that OSC might be a potential natural agent for personalized medicine and an anticancer metabolic modulator in NSCLC chemotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Trifosfato de Adenosina/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Pontos de Checagem da Fase G2 do Ciclo Celular , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Ácido Glutâmico/uso terapêutico , Glutamina/metabolismo , Humanos , Cetonas , Neoplasias Pulmonares/patologia , Camundongos , Mitocôndrias/metabolismo , NAD/metabolismo , NAD/farmacologia , NAD/uso terapêutico
6.
Environ Pollut ; 301: 119008, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35189299

RESUMO

L-Glutamic acid (Glu) is used as an effective bio-stimulant to reduce arsenic (As) stress in plants. The role of Glu was studied in the protection of photosynthesis and growth of rice (Oryza sativa L. Japonica Type Taipie-309) plants grown with 50 µM As stress by studying the oxidative stress, photosynthetic and growth characteristics. Among the Glu concentrations (0, 2.5, 5 and 10 µM), 10 µM Glu maximally enhanced photosynthesis and growth parameters with the least cellular oxidative stress level. The supplementation of 10 µM Glu resulted in the reduced effects of As stress on gas exchange parameters, PSII activity and growth attributes through enhancement of antioxidant and proline metabolism. The enzymes of nitrogen (N) assimilation, such as nitrate reductase, nitrite reductase, glutamine synthetase and glutamate synthase were increased with Glu treatment under As stress. The Glu-induced metabolite synthesis showed the role of various metabolites in As stress responses. The role of Glu as a signalling molecule in reducing the adverse effects of As through accelerating the antioxidant enzymes, PSII activity, proline metabolism and nitrogen assimilation has been discussed.


Assuntos
Arsênio , Oryza , Antioxidantes/metabolismo , Arsênio/metabolismo , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Nitrogênio/metabolismo , Oryza/metabolismo , Fotossíntese
7.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163452

RESUMO

The pro-nociceptive role of glutamate in the CNS in migraine pathophysiology is well established. Glutamate, released from trigeminal afferents, activates second order nociceptive neurons in the brainstem. However, the function of peripheral glutamate receptors in the trigeminovascular system suggested as the origin site for migraine pain, is less known. In the current project, we used calcium imaging and patch clamp recordings from trigeminal ganglion (TG) neurons, immunolabelling, CGRP assay and direct electrophysiological recordings from rat meningeal afferents to investigate the role of glutamate in trigeminal nociception. Glutamate, aspartate, and, to a lesser extent, NMDA under free-magnesium conditions, evoked calcium transients in a fraction of isolated TG neurons, indicating functional expression of NMDA receptors. The fraction of NMDA sensitive neurons was increased by the migraine mediator CGRP. NMDA also activated slowly desensitizing currents in 37% of TG neurons. However, neither glutamate nor NMDA changed the level of extracellular CGRP. TG neurons expressed both GluN2A and GluN2B subunits of NMDA receptors. In addition, after removal of magnesium, NMDA activated persistent spiking activity in a fraction of trigeminal nerve fibers in meninges. Thus, glutamate activates NMDA receptors in somas of TG neurons and their meningeal nerve terminals in magnesium-dependent manner. These findings suggest that peripherally released glutamate can promote excitation of meningeal afferents implicated in generation of migraine pain in conditions of inherited or acquired reduced magnesium blockage of NMDA channels and support the usage of magnesium supplements in migraine.


Assuntos
Cálcio/metabolismo , Ácido Glutâmico/farmacologia , Nociceptividade/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Gânglio Trigeminal/citologia , Animais , Ácido Aspártico/farmacologia , Células Cultivadas , Masculino , Transtornos de Enxaqueca/metabolismo , N-Metilaspartato/farmacologia , Técnicas de Patch-Clamp , Ratos , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/metabolismo
8.
Br J Pharmacol ; 179(8): 1607-1619, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34355803

RESUMO

BACKGROUND AND PURPOSE: As the thalamus underpins almost all aspects of behaviour, it is important to understand how the thalamus operates. Group II metabotropic glutamate (mGlu2 /mGlu3 ) receptor activation reduces inhibition in thalamic nuclei originating from the surrounding thalamic reticular nucleus (TRN). Whilst an mGlu2 component to this effect has been reported, in this study, we demonstrate that it is likely, largely mediated via mGlu3 . EXPERIMENTAL APPROACH: The somatosensory ventrobasal thalamus (VB) is an established model for probing fundamental principles of thalamic function. In vitro slices conserving VB-TRN circuitry from wild-type and mGlu3 knockout mouse brains were used to record IPSPs and mIPSCs. In vivo extracellular recordings were made from VB neurons in anaesthetised rats. A range of selective pharmacological agents were used to probe Group II mGlu receptor function (agonist, LY354740; antagonist, LY341495; mGlu2 positive allosteric modulator, LY487379 and mixed mGlu2 agonist/mGlu3 antagonist LY395756). KEY RESULTS: The in vitro and in vivo data are complementary and suggest that mGlu3 receptor activation is largely responsible for potentiating responses to somatosensory stimulation by reducing inhibition from the TRN. CONCLUSIONS AND IMPLICATIONS: mGlu3 receptor activation in the VB likely enables important somatosensory information to be discerned from background activity. These mGlu3 receptors are likely to be endogenously activated via 'glutamate spillover'. In cognitive thalamic nuclei, this mechanism may be of importance in governing attentional processes. Positive allosteric modulation of endogenous mGlu3 receptor activation may therefore enhance cognitive function in pathophysiological disease states, such as schizophrenia, thus representing a highly specific therapeutic target. LINKED ARTICLES: This article is part of a themed issue on Building Bridges in Neuropharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.8/issuetoc.


Assuntos
Receptores de Glutamato Metabotrópico , Animais , Ácido Glutâmico/farmacologia , Camundongos , Camundongos Knockout , Neurônios , Ratos , Receptores de Glutamato Metabotrópico/metabolismo , Tálamo/metabolismo
9.
J Anim Physiol Anim Nutr (Berl) ; 106(4): 825-831, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34423869

RESUMO

A total of 150 growing pigs ([Landrace × Yorkshire] × Duroc) with an initial average body weight (BW) of 24.45 kg were used in a 6-week trial to estimate the optimum lysine to glutamic acid ratio in pigs fed low-protein diets supplemented with increasing level of synthetic glutamic acid (Glu). Pigs were randomly allotted to 5 dietary treatments consisting of either control diet (CON) formulated to have 157 g crude protein (CP) or negative control diets (NC, NC1, NC2 and NC3) with 20 g CP reduction and addition of Glu (1.1, 3.9, 6.8 and 9.6 g/kg feed respectively). Supplementing the increasing level of Glu to low CP diets did not exert any linear or quadratic responses in the growth performance parameters as well as nutrient digestibility. The serum creatinine concentration in pigs receiving CON diet showed trends (p = 0.063) in increment compared with pigs receiving NC diet. However, with the increase in the supplementation of Glu, there were no linear or quadratic responses on serum blood urea nitrogen (BUN) and creatinine concentrations. There was a tendency in the reduction (p = 0.088, p = 0.064) of backfat thickness and lean percentage, respectively, at week 3 and a trend in the reduction (p = 0.092) in lean percentage at week 6 in pigs fed NC diet compared with those fed CON diet. The increase in the supplemental level of Glu tended to show quadratic responses in the backfat thickness and lean percentage at week 3 and 6. In conclusion, the growth performance parameters as well as carcass traits with Lys: Glu ratio 1: 2.71 were very close with the mean values of CON diet indicating that 6.8 g Glu when supplemented to 2% CP reduced diet could achieve the comparable growth performance and carcass trait as that of standard basal diet.


Assuntos
Ração Animal , Ácido Glutâmico , Ração Animal/análise , Animais , Composição Corporal , Peso Corporal , Dieta/veterinária , Dieta com Restrição de Proteínas/veterinária , Suplementos Nutricionais , Ácido Glutâmico/farmacologia , Lisina/farmacologia , Suínos
10.
Oxid Med Cell Longev ; 2021: 6970578, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900088

RESUMO

Since ancient times, Banhasasim-tang (BHS) has been used to treat functional dyspepsia in East Asia. Here, we aimed to determine the protective action of BHS on hippocampal neurons against oxidative stress. We investigated the functional effect of BHS on a scopolamine-induced mouse model, and molecular analysis was performed in glutamate-induced HT22 cells. We observed that BHS administration ameliorated memory dysfunction in scopolamine-treated mice. BHS administration also increased neuronal survival and acetylcholine activity and phosphorylation of extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) in the hippocampus of mice. In hippocampal cells, BHS treatment rescued glutamate-induced cytotoxicity, apoptosis, and oxidative stress. We observed an increase of HO-1 and a decrease of Nrf2 protein expression in glutamate-induced oxidative stress; however, the expression level of these proteins was significantly rescued by BHS treatment. BHS treatment also regulated phosphorylation of p38, p53, ERK, and CREB. Therefore, our data indicated that BHS may reduce oxidative stress through regulation of ERK-CREB and p38-p53 signaling in the hippocampus, resulting in decreased neuronal damage and improved memory in rodent models of neurodegenerative disease.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Ácido Glutâmico/farmacologia , Hipocampo/citologia , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Escopolamina/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Nutrients ; 13(9)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34579093

RESUMO

To prevent ocular pathologies, new generation of dietary supplements have been commercially available. They consist of nutritional supplement mixing components known to provide antioxidative properties, such as unsaturated fatty acid, resveratrol or flavonoids. However, to date, only one preclinical study has evaluated the impact of a mixture mainly composed of those components (Nutrof Total®) on the retina and demonstrated that in vivo supplementation prevents the retina from structural and functional injuries induced by light. Considering the crucial role played by the glial Müller cells in the retina, particularly to regulate the glutamate cycle to prevent damage in oxidative stress conditions, we questioned the impact of this ocular supplement on the glutamate metabolic cycle. To this end, various molecular aspects associated with the glutamate/glutamine metabolism cycle in Müller cells were investigated on primary Müller cells cultures incubated, or not, with the commercially mix supplement before being subjected, or not, to oxidative conditions. Our results demonstrated that in vitro supplementation provides guidance of the glutamate/glutamine cycle in favor of glutamine synthesis. These results suggest that glutamine synthesis is a crucial cellular process of retinal protection against oxidative damages and could be a key step in the previous in vivo beneficial results provided by the dietary supplementation.


Assuntos
Antioxidantes/farmacologia , Células Ependimogliais/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Glutamina/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Retina/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultura/farmacologia , Células Ependimogliais/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Camundongos
12.
J Mater Sci Mater Med ; 32(9): 116, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34460000

RESUMO

L-glutamate is an important component of protein. It can prevent gastrointestinal damage caused by NSAIDs. We constructed two-phase enteric-coated granules of aspirin and L-glutamate compound by extrusion spheronization method and fluidized bed coating. The subliminal effective dose of L-glutamate is 100 mg/kg tested by model of gastric ulcer of rats induced by aspirin and drug administration. HPLC-UV and UV-Vis methods were adopted to determine content and cumulative release of aspirin and L-glutamate as quality analysis method indexes. The prescription and process optimization were carried out with yield, sphericity and dissolution. The two-phase compound granules have good sphericity of 0.93 ± 0.05 (aspirin pellets) and 0.94 ± 0.02 (L-glutamate pellets), content of salicylic acid (0.24 ± 0.03)%, dissolution of aspirin (2.36 ± 0.11)%. Quality evaluation and preliminary stability meet the commercial requirements. The stored environment of compound preparation should be sealed in a cool and dark place.


Assuntos
Aspirina , Composição de Medicamentos , Ácido Glutâmico , Animais , Aspirina/administração & dosagem , Aspirina/síntese química , Aspirina/farmacologia , Química Farmacêutica/métodos , Química Farmacêutica/normas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Composição de Medicamentos/métodos , Composição de Medicamentos/normas , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/normas , Mucosa Gástrica/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Ácido Glutâmico/administração & dosagem , Ácido Glutâmico/síntese química , Ácido Glutâmico/farmacologia , Controle de Qualidade , Ratos , Ratos Sprague-Dawley , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Comprimidos com Revestimento Entérico
13.
Oxid Med Cell Longev ; 2021: 5590745, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34306310

RESUMO

Multi-infarct dementia (MID), a prominent subtype of vascular dementia (VD), is responsible for at least 15 to 20 percent of dementia in the elderly. Mitochondrial dysfunctions and glutamate neurotoxicity due to chronic hypoperfusion and oxidative stress were regarded as the major risk factors in the pathogenesis. Kaixin San (KXS), a classic prescription of Beiji Qianjin Yaofang, was applied to treatment for "amnesia" and has been demonstrated to alleviate the cognitive deficit in a variety of dementias, including MID. However, little is known whether mitochondria and glutamate are associated with the protection of KXS in MID treatment. The aim of this study was to investigate the role of KXS in improving the cognitive function of MID rats through strengthening mitochondrial functions and antagonizing glutamate neurotoxicity via the Shh/Ptch1 signaling pathway. Our data showed that KXS significantly ameliorated memory impairment and hippocampal neuron damage in MID rats. Moreover, KXS improved hippocampal mitochondrial functions by reducing the degree of mitochondrial swelling, increasing the mitochondrial membrane potential (MMP), and elevating the energy charge (EC) and ATP content in MID rats. As expected, the concentration of glutamate and the expression of p-NMDAR1 were significantly reduced by KXS in the brain tissue of MID rats. Furthermore, our results showed that KXS noticeably activated the Shh/Ptch1 signaling pathway which was demonstrated by remarkable elevations of Ptch1, Smo, and Gli1 protein levels in the brain tissue of MID rats. Intriguingly, the inhibition of the Shh signaling pathway with cyclopamine significantly inhibited the protective effects of KXS on glutamate-induced neurotoxicity in PC12 cells. To sum up, these findings suggested that KXS protected MID rats from memory loss by rescuing mitochondrial functions as well as against glutamate neurotoxicity through activating Shh/Ptch1 signaling pathway.


Assuntos
Disfunção Cognitiva/metabolismo , Demência por Múltiplos Infartos/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Ácido Glutâmico/farmacologia , Mitocôndrias/efeitos dos fármacos , Receptor Patched-1/efeitos dos fármacos , Animais , Disfunção Cognitiva/induzido quimicamente , Demência por Múltiplos Infartos/induzido quimicamente , Modelos Animais de Doenças , Ácido Glutâmico/metabolismo , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptor Patched-1/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
14.
Cell Rep ; 35(3): 109007, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33882305

RESUMO

Parkinson's disease is characterized by both hypokinetic and hyperkinetic symptoms. While increased subthalamic burst discharges have a direct causal relationship with the hypokinetic manifestations (e.g., rigidity and bradykinesia), the origin of the hyperkinetic symptoms (e.g., resting tremor and propulsive gait) has remained obscure. Neuronal burst discharges are presumed to be autonomous or less responsive to synaptic input, thereby interrupting the information flow. We, however, demonstrate that subthalamic burst discharges are dependent on cortical glutamatergic synaptic input, which is enhanced by A-type K+ channel inhibition. Excessive top-down-triggered subthalamic burst discharges then drive highly correlative activities bottom-up in the motor cortices and skeletal muscles. This leads to hyperkinetic behaviors such as tremors, which are effectively ameliorated by inhibition of cortico-subthalamic AMPAergic synaptic transmission. We conclude that subthalamic burst discharges play an imperative role in cortico-subcortical information relay, and they critically contribute to the pathogenesis of both hypokinetic and hyperkinetic parkinsonian symptoms.


Assuntos
Globo Pálido/fisiopatologia , Hipercinese/fisiopatologia , Córtex Motor/fisiopatologia , Doença de Parkinson Secundária/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Tremor/fisiopatologia , 4-Aminopiridina/farmacologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Globo Pálido/efeitos dos fármacos , Globo Pálido/metabolismo , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Humanos , Hipercinese/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Córtex Motor/efeitos dos fármacos , Córtex Motor/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Optogenética/métodos , Doença de Parkinson Secundária/metabolismo , Ratos , Ratos Wistar , Núcleo Subtalâmico/efeitos dos fármacos , Núcleo Subtalâmico/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Transmissão Sináptica , Tremor/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
15.
Phytother Res ; 35(6): 3377-3389, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33891785

RESUMO

Excessive glutamate (Glu) can lead to significant effects on neural cells through the generation of neurotoxic or excitotoxic cascades. Icariin (ICA) is a main active ingredient of Chinese Medicine Berberidaceae epimedium L., and has many biological activities, such as antiinflammation, antioxidative stress, and anti-depression. This study aims to evaluate the effect of ICA on Glu-induced excitatory neurotoxicity of SH-SY5Y cells. The cell viability assay was evaluated by the CCK-8 assay. The apoptosis, reactive oxygen species (ROS), and mitochondrial membrane potential were assessed by flow cytometry. Intracellular Ca2+ concentration was determined by using the fluorescent probe Fluo-3. Protein expression was detected by western blotting analysis. ICA can significantly enhance the SH-SY5Y cell viability reduced by Glu. At the same time, ICA can significantly reduce apoptosis, ROS, nitric oxide (NO) levels, and intracellular Ca2+ concentration, and significantly inhibit the increase of mitochondrial membrane potential. In addition, ICA significantly increased the expression of P47phox and iNOS, decreased p-JNK/JNK, p-P38/P38, Bax/Bcl-2, active caspase-3, and active caspase-9. These results indicate that ICA may reduce the excitatory neurotoxicity of Glu-induced SH-SY5Y cells through suppression of oxidative stress and apoptotic pathways, suggesting that ICA could be a potential therapeutic candidate for neurological disorders propagated by Glu toxicity.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Flavonoides/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
16.
Oxid Med Cell Longev ; 2021: 8844455, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33564364

RESUMO

Osthole (OST) is a natural coumarin compound that exerts multiple pharmacologic effects. However, the poor water solubility and the low oral absorption of OST limit its clinical application for the treatment of neurologic diseases. A suitable preparation needs to be tailored to evade these unfavourable properties of OST. In this study, an OST nanoemulsion (OST-NE) was fabricated according to the pseudoternary phase diagram method, which was generally used to optimize the prescription in light of the solubility of OST in surfactants and cosurfactants. The final composition of OST-NE was 3.6% of ethyl oleate as oil phase, 11.4% of the surfactant (polyethylene glycol ester of 15-hydroxystearic acid: polyoxyethylene 35 castor oil = 1 : 1), 3% of polyethylene glycol 400 as cosurfactant, and 82% of the aqueous phase. The pharmacokinetic study of OST-NE showed that the brain-targeting coefficient of OST was larger by the nasal route than that by the intravenous route. Moreover, OST-NE inhibited cell death, decreased the apoptosis-related proteins (Bax and caspase-3), and enhanced the activity of antioxidant enzymes (superoxide dismutase and glutathione) in L-glutamate-induced SH-SY5Y cells. OST-NE improved the spatial memory ability, increased the acetylcholine content in the cerebral cortex, and decreased the activity of acetylcholinesterase in the hippocampus of Alzheimer's disease model mice. In conclusion, this study indicates that the bioavailability of OST was improved by using the OST-NE via the nasal route. A low dose of OST-NE maintained the neuroprotective effects of OST, such as inhibiting apoptosis and oxidative stress and regulating the cholinergic system. Therefore, OST-NE can be used as a possible alternative to improve its bioavailability in the prevention and treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Encéfalo/patologia , Cumarínicos/administração & dosagem , Cumarínicos/uso terapêutico , Emulsões/química , Administração Intranasal , Doença de Alzheimer/sangue , Doença de Alzheimer/induzido quimicamente , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colina/metabolismo , Cumarínicos/química , Cumarínicos/farmacologia , Citoproteção/efeitos dos fármacos , Liberação Controlada de Fármacos , Ácido Glutâmico/farmacologia , Lipídeos/química , Memória/efeitos dos fármacos , Camundongos , Nanopartículas , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Transição de Fase , Escopolamina , Solubilidade , Eletricidade Estática , Tensoativos/química , Água/química , Proteína X Associada a bcl-2/metabolismo
17.
Spine (Phila Pa 1976) ; 46(4): E243-E249, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33475276

RESUMO

STUDY DESIGN: An in vitro experimental study testing a Gelatin-poly (γ-glutamic acid) hydrogel for disc repair. OBJECTIVE: To evaluate the cytocompatibility and degradability of the above mentioned hydrogel for intervertebral disc annular fibrosis (AF) repair. SUMMARY OF BACKGROUND DATA: No repair strategies for correcting annular defects in lumbar discectomy have been clinically well recognized. Exogenous supplementation of regenerative materials to fill defects is a minimally invasive way to restore compromised mechanical properties. The injected materials, most commonly gelatin-based materials with cross-linking agents, serve as sealants and as a scaffold for incorporating biomaterials for augmentation. However, cytotoxicity of hydrogel crosslinking agents is of concern in developing viable materials. METHODS: This in vitro experimental study evaluated a newly developed gelatin-based hydrogel for intervertebral disc AF repair. Mechanical strength was augmented by γ-PGA, and 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride (EDC) was used for material crosslinking. Isolated bovine tail intervertebral discs (IVDs) were used to test the hydrogel, and hydrogel surface monolayer AF cell culture was used to investigate efficacy in hydrogel constructs of different EDC concentrations. Cell metabolic activity was evaluated with Alamar blue assay, cell viability assay with live/dead stain, and sulfated glycosaminoglycan (GAG) and double strain DNA were quantified to evaluate proliferation of implanted cells and synthesis of extracellular matrix (ECM) proteins. RESULTS: EDC concentrations from 10 to 40 mM resulted in significant decreases in AF cell proliferation without obvious influence on cell viability. Higher EDC concentrations resulted in decreased percentage of Alamar blue reduction and GAG and DNA concentration, but did not affect GAG/DNA and live-dead ratios. Degradation tests revealed that higher EDC concentrations decreased the hydrogel degradation rate. CONCLUSION: The developed gelatin-poly (γ-PGA) hydrogel with 20 mM EDC concentration provides an effective gap-filling biomaterial with good cytocompatibility, suggesting substantial promise for use as a sealant for small AF defects.Level of Evidence: N/A.


Assuntos
Adesivos/uso terapêutico , Gelatina/farmacologia , Ácido Glutâmico/farmacologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Disco Intervertebral/efeitos dos fármacos , Animais , Anel Fibroso/cirurgia , Materiais Biocompatíveis , Bovinos , Células Cultivadas , Discotomia , Ácido Glutâmico/metabolismo , Glicosaminoglicanos , Hidrogéis , Disco Intervertebral/cirurgia , Degeneração do Disco Intervertebral/cirurgia , Ácido Poliglutâmico/análogos & derivados
18.
Nutr Neurosci ; 24(12): 940-950, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31793392

RESUMO

Objectives: Although mulberry fruit possesses some biological activities, it is not known how it protects neuronal cells in neurodegenerative diseases. Here, we examined whether mulberry fruit extract (MFE) protected neuronal cells against oxidative stress-induced neurodegeneration.Methods: In this experiments, glutamate challenged hippocampal neuronal HT-22 cell lines as an in vitro model and scopolamine-induced memoty-impairment mice model were used.Results: MFE improved cell viability and glutathione level as well as reducing reactive oxygen species level in glutamate-treated HT-22 cells. Additionally, MFE suppressed apoptotic bodies and mitochondrial depolarization through regulating expression of apoptosis-related proteins. Furthermore, MFE elevated expression of p-TrkB, p-Akt, p-CREB, BDNF, and antioxidant enzymes as well as nuclear translocation of Nrf2. In contrast, the inclusion of K252a, a TrkB inhibitor, or MK-2206, an Akt selective inhibitor, neutralized the neuroprotective actions of MFE. Separately, MFE attenuated scopolamine-induced amnesia via regulating the activities of enzymes related with cholinergic function and the antioxidant system in mice. Additionally, MFE protected neuronal cells in the hippocampal CA1 and CA3 regions in brain of mice.Conclusions: MFE protects neuronal cells against oxidative stress-induced apoptosis through upregulating the expression of BDNF and antioxidant enzymes by stabilizing the activation of the TrkB/Akt pathway. Such an effect of MFE, which includes rich polyphenols, may provide information for its application as a food supplement for the prevention and treatment of neurodegenerative diseases.


Assuntos
Antioxidantes , Colinérgicos , Transtornos da Memória/tratamento farmacológico , Morus , Extratos Vegetais/administração & dosagem , Receptor trkB/fisiologia , Animais , Apoptose/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/genética , Linhagem Celular , Frutas/química , Ácido Glutâmico/farmacologia , Hipocampo/citologia , Masculino , Transtornos da Memória/induzido quimicamente , Camundongos , Camundongos Endogâmicos ICR , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fármacos Neuroprotetores , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/fisiologia , Receptor trkB/antagonistas & inibidores , Escopolamina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Regulação para Cima
19.
Int J Mol Sci ; 22(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375653

RESUMO

Angiotensin converting enzyme 2 (ACE2) is a critical component of the compensatory axis of the renin angiotensin system. Alterations in ACE2 gene and protein expression, and activity mediated by A Disintegrin And Metalloprotease 17 (ADAM17), a member of the "A Disintegrin And Metalloprotease" (ADAM) family are implicated in several cardiovascular and neurodegenerative diseases. We previously reported that activation of kinin B1 receptor (B1R) in the brain increases neuroinflammation, oxidative stress and sympathoexcitation, leading to the development of neurogenic hypertension. We also showed evidence for ADAM17-mediated ACE2 shedding in neurons. However, whether kinin B1 receptor (B1R) activation has any role in altering ADAM17 activity and its effect on ACE2 shedding in neurons is not known. In this study, we tested the hypothesis that activation of B1R upregulates ADAM17 and results in ACE2 shedding in neurons. To test this hypothesis, we stimulated wild-type and B1R gene-deleted mouse neonatal primary hypothalamic neuronal cultures with a B1R-specific agonist and measured the activities of ADAM17 and ACE2 in neurons. B1R stimulation significantly increased ADAM17 activity and decreased ACE2 activity in wild-type neurons, while pretreatment with a B1R-specific antagonist, R715, reversed these changes. Stimulation with specific B1R agonist Lys-Des-Arg9-Bradykinin (LDABK) did not show any effect on ADAM17 or ACE2 activities in neurons with B1R gene deletion. These data suggest that B1R activation results in ADAM17-mediated ACE2 shedding in primary hypothalamic neurons. In addition, stimulation with high concentration of glutamate significantly increased B1R gene and protein expression, along with increased ADAM17 and decreased ACE2 activities in wild-type neurons. Pretreatment with B1R-specific antagonist R715 reversed these glutamate-induced effects suggesting that indeed B1R is involved in glutamate-mediated upregulation of ADAM17 activity and ACE2 shedding.


Assuntos
Proteína ADAM17/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Neurônios/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Hipotálamo/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Células Piramidais/metabolismo
20.
Nutrients ; 12(9)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825593

RESUMO

Aberrant fetal growth remains a leading cause of perinatal morbidity and mortality and is associated with a risk of developing non-communicable diseases later in life. We performed a systematic review and meta-analysis combining human and animal studies to assess whether prenatal amino acid (AA) supplementation could be a promising approach to promote healthy fetal growth. PubMed, Embase and Cochrane libraries were searched to identify studies orally supplementing the following AA groups during gestation: (1) arginine family; (2) branched chain (BCAA); (3) methyl donors. Primary outcome was fetal/birth weight. 22 human and 89 animal studies were included in the systematic review. The arginine family, and especially arginine itself, was studied most. Our meta-analysis showed beneficial effects of arginine and (N-Carbamyl) glutamate (NCG), but not aspartic acid and citrulline on fetal/birth weight. However, no effects were reported when isonitrogenous control diet was included. BCAA and methyl donor supplementation did not affect fetal/birth weight. Arginine family supplementation, in particular arginine and NCG, improves fetal growth in complicated pregnancies. BCAA and methyl donor supplementation do not seem to be as promising to target fetal growth. Well controlled research in complicated pregnancies is needed before ruling out AA supplements or preferring arginine above other AAs.


Assuntos
Aminoácidos/administração & dosagem , Aminoácidos/farmacologia , Suplementos Nutricionais , Desenvolvimento Fetal/efeitos dos fármacos , Retardo do Crescimento Fetal/prevenção & controle , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Troca Materno-Fetal/fisiologia , Fenômenos Fisiológicos da Nutrição Pré-Natal/fisiologia , Animais , Arginina/administração & dosagem , Arginina/farmacologia , Peso ao Nascer/efeitos dos fármacos , Feminino , Ácido Glutâmico/administração & dosagem , Ácido Glutâmico/farmacologia , Humanos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA