Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.702
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 208: 108455, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38428157

RESUMO

'Zaosu' pear fruit is prone to yellowing of the surface and softening of the flesh after harvest. This work was performed to assess the influences of L-glutamate treatment on the quality of 'Zaosu' pears and elucidate the underlying mechanisms involved. Results demonstrated that L-glutamate immersion reduced ethylene release, respiratory intensity, weight loss, brightness (L*), redness (a*), yellowness (b*), and total coloration difference (ΔE); enhanced ascorbic acid, soluble solids, and soluble sugar contents; maintained chlorophyll content and flesh firmness of pears. L-glutamate also restrained the activities of neutral invertase and acid invertase, while enhancing sucrose phosphate synthetase and sucrose synthase activities to facilitate sucrose accumulation. The transcriptions of PbSGR1, PbSGR2, PbCHL, PbPPH, PbRCCR, and PbNYC were suppressed by L-glutamate, resulting in a deceleration of chlorophyll degradation. L-glutamate concurrently suppressed the transcription levels and enzymatic activities of polygalacturonases, pectin methylesterases, cellulase, and ß-glucosidase. It restrained polygalacturonic acid trans-eliminase and pectin methyl-trans-eliminase activities as well as inhibited the transcription levels of PbPL and Pbß-gal. Moreover, the gene transcriptions and enzymatic activities of arginine decarboxylase, ornithine decarboxylase, S-adenosine methionine decarboxylase, glutamate decarboxylase, γ-aminobutyric acid transaminase, glutamine synthetase along with the PbSPDS transcription was promoted by L-glutamate. L-glutamate also resulted in the down-regulation of PbPAO, PbDAO, PbSSADH, PbGDH, and PbGOGAT transcription levels, while enhancing γ-aminobutyric acid, glutamate, and pyruvate acid contents in pears. These findings suggest that L-glutamate immersion can effectively maintain the storage quality of 'Zaosu' pears via modulating key enzyme activities and gene transcriptions involved in sucrose, chlorophyll, cell wall, and polyamine metabolism.


Assuntos
Carboxiliases , Pyrus , Pyrus/genética , Pyrus/metabolismo , Sacarose/metabolismo , Ácido Glutâmico/metabolismo , Frutas/metabolismo , Clorofila/metabolismo , Parede Celular , Pectinas/metabolismo , Carboxiliases/metabolismo , Ácido gama-Aminobutírico/farmacologia , Poliaminas/metabolismo
2.
Microb Cell Fact ; 23(1): 94, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539197

RESUMO

BACKGROUND: Surfactin, a green lipopeptide bio-surfactant, exhibits excellent surface, hemolytic, antibacterial, and emulsifying activities. However, a lack of clear understanding of the synthesis regulation mechanism of surfactin homologue components has hindered the customized production of surfactin products with different biological activities. RESULTS: In this study, exogenous valine and 2-methylbutyric acid supplementation significantly facilitated the production of C14-C15 surfactin proportions (up to 75% or more), with a positive correlation between the homologue proportion and fortified concentration. Subsequently, the branched-chain amino acid degradation pathway and the glutamate synthesis pathway are identified as critical pathways in regulating C14-C15 surfactin synthesis by transcriptome analysis. Overexpression of genes bkdAB and glnA resulted in a 1.4-fold and 1.3-fold increase in C14 surfactin, respectively. Finally, the C14-rich surfactin was observed to significantly enhance emulsification activity, achieving an EI24 exceeding 60% against hexadecane, while simultaneously reducing hemolytic activity. Conversely, the C15-rich surfactin demonstrated an increase in both hemolytic and antibacterial activities. CONCLUSION: This study presents the first evidence of a potential connection between surfactin homologue synthesis and the conversion of glutamate and glutamine, providing a theoretical basis for targeting the synthesis regulation and structure-activity relationships of surfactin and other lipopeptide compounds.


Assuntos
Ácidos Graxos , Tensoativos , Ácidos Graxos/metabolismo , Tensoativos/metabolismo , Ácido Glutâmico/metabolismo , Lipopeptídeos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Peptídeos Cíclicos/química , Bacillus subtilis/genética
3.
Nature ; 628(8009): 826-834, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538787

RESUMO

Empirical evidence suggests that heat exposure reduces food intake. However, the neurocircuit architecture and the signalling mechanisms that form an associative interface between sensory and metabolic modalities remain unknown, despite primary thermoceptive neurons in the pontine parabrachial nucleus becoming well characterized1. Tanycytes are a specialized cell type along the wall of the third ventricle2 that bidirectionally transport hormones and signalling molecules between the brain's parenchyma and ventricular system3-8. Here we show that tanycytes are activated upon acute thermal challenge and are necessary to reduce food intake afterwards. Virus-mediated gene manipulation and circuit mapping showed that thermosensing glutamatergic neurons of the parabrachial nucleus innervate tanycytes either directly or through second-order hypothalamic neurons. Heat-dependent Fos expression in tanycytes suggested their ability to produce signalling molecules, including vascular endothelial growth factor A (VEGFA). Instead of discharging VEGFA into the cerebrospinal fluid for a systemic effect, VEGFA was released along the parenchymal processes of tanycytes in the arcuate nucleus. VEGFA then increased the spike threshold of Flt1-expressing dopamine and agouti-related peptide (Agrp)-containing neurons, thus priming net anorexigenic output. Indeed, both acute heat and the chemogenetic activation of glutamatergic parabrachial neurons at thermoneutrality reduced food intake for hours, in a manner that is sensitive to both Vegfa loss-of-function and blockage of vesicle-associated membrane protein 2 (VAMP2)-dependent exocytosis from tanycytes. Overall, we define a multimodal neurocircuit in which tanycytes link parabrachial sensory relay to the long-term enforcement of a metabolic code.


Assuntos
Tronco Encefálico , Células Ependimogliais , Comportamento Alimentar , Temperatura Alta , Hipotálamo , Vias Neurais , Neurônios , Animais , Feminino , Masculino , Camundongos , Proteína Relacionada com Agouti/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/citologia , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Dopamina/metabolismo , Ingestão de Alimentos/fisiologia , Células Ependimogliais/citologia , Células Ependimogliais/fisiologia , Comportamento Alimentar/fisiologia , Ácido Glutâmico/metabolismo , Hipotálamo/citologia , Hipotálamo/fisiologia , Vias Neurais/metabolismo , Neurônios/metabolismo , Núcleos Parabraquiais/citologia , Núcleos Parabraquiais/metabolismo , Núcleos Parabraquiais/fisiologia , Sensação Térmica/fisiologia , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/líquido cefalorraquidiano , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
J Bacteriol ; 206(3): e0033323, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38411059

RESUMO

Although bacterial peptidoglycan (PG) is highly conserved, some natural variations in PG biosynthesis and structure have evolved. Understanding the mechanisms and limits of such variation will inform our understanding of antibiotic resistance, innate immunity, and the evolution of bacteria. We have explored the constraints on PG evolution by blocking essential steps in PG biosynthesis in Vibrio fischeri and then selecting mutants with restored prototrophy. Here, we attempted to select prototrophic suppressors of a D-glutamate auxotrophic murI racD mutant. No suppressors were isolated on unsupplemented lysogeny broth salts (LBS), despite plating >1011 cells, nor were any suppressors generated through mutagenesis with ethyl methanesulfonate. A single suppressor was isolated on LBS supplemented with iso-D-gln, although the iso-D-gln subsequently appeared irrelevant. This suppressor has a genomic amplification formed by the creation of a novel junction that fuses proB to a gene encoding a putative broad-spectrum racemase of V. fischeri, bsrF. An engineered bsrF allele lacking the putative secretion signal (ΔSS-bsrF) also suppressed D-glu auxotrophy, resulting in PG that was indistinguishable from the wild type. The ΔSS-bsrF allele similarly suppressed the D-alanine auxotrophy of an alr mutant and restored prototrophy to a murI alr double mutant auxotrophic for both D-ala and D-glu. The ΔSS-bsrF allele increased resistance to D-cycloserine but had no effect on sensitivity to PG-targeting antibiotics penicillin, ampicillin, or vancomycin. Our work helps define constraints on PG evolution and reveals a periplasmic broad-spectrum racemase in V. fischeri that can be co-opted for PG biosynthesis, with concomitant D-cycloserine resistance. IMPORTANCE: D-Amino acids are used and produced by organisms across all domains of life, but often, their origins and roles are not well understood. In bacteria, D-ala and D-glu are structural components of the canonical peptidoglycan cell wall and are generated by dedicated racemases Alr and MurI, respectively. The more recent discovery of additional bacterial racemases is broadening our view and deepening our understanding of D-amino acid metabolism. Here, while exploring alternative PG biosynthetic pathways in Vibrio fischeri, we unexpectedly shed light on an unusual racemase, BsrF. Our results illustrate a novel mechanism for the evolution of antibiotic resistance and provide a new avenue for exploring the roles of non-canonical racemases and D-amino acids in bacteria.


Assuntos
Alanina Racemase , Ácido Glutâmico , Ácido Glutâmico/metabolismo , Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Racemases e Epimerases/metabolismo , Ciclosserina , Peptidoglicano/metabolismo , Aminoácidos/metabolismo , Alanina Racemase/metabolismo
5.
Microb Cell Fact ; 23(1): 58, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383407

RESUMO

Acetoin, a versatile platform chemical and popular food additive, poses a challenge to the biosafety strain Bacillus subtilis when produced in high concentrations due to its intrinsic toxicity. Incorporating the PHB synthesis pathway into Bacillus subtilis 168 has been shown to significantly enhance the strain's acetoin tolerance. This study aims to elucidate the molecular mechanisms underlying the response of B. subtilis 168-phaCBA to acetoin stress, employing transcriptomic and metabolomic analyses. Acetoin stress induces fatty acid degradation and disrupts amino acid synthesis. In response, B. subtilis 168-phaCBA down-regulates genes associated with flagellum assembly and bacterial chemotaxis, while up-regulating genes related to the ABC transport system encoding amino acid transport proteins. Notably, genes coding for cysteine and D-methionine transport proteins (tcyB, tcyC and metQ) and the biotin transporter protein bioY, are up-regulated, enhancing cellular tolerance. Our findings highlight that the expression of phaCBA significantly increases the ratio of long-chain unsaturated fatty acids and modulates intracellular concentrations of amino acids, including L-tryptophan, L-tyrosine, L-leucine, L-threonine, L-methionine, L-glutamic acid, L-proline, D-phenylalanine, L-arginine, and membrane fatty acids, thereby imparting acetoin tolerance. Furthermore, the supplementation with specific exogenous amino acids (L-alanine, L-proline, L-cysteine, L-arginine, L-glutamic acid, and L-isoleucine) alleviates acetoin's detrimental effects on the bacterium. Simultaneously, the introduction of phaCBA into the acetoin-producing strain BS03 addressed the issue of insufficient intracellular cofactors in the fermentation strain, resulting in the successful production of 70.14 g/L of acetoin through fed-batch fermentation. This study enhances our understanding of Bacillus's cellular response to acetoin-induced stress and provides valuable insights for the development of acetoin-resistant Bacillus strains.


Assuntos
Acetoína , Bacillus subtilis , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Acetoína/metabolismo , Ácido Glutâmico/metabolismo , Fermentação , Perfilação da Expressão Gênica , Arginina , Proteínas de Transporte/genética , Prolina/metabolismo
6.
Food Funct ; 15(4): 2144-2153, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38305768

RESUMO

The hippocampal memory deficit stands out as a primary symptom in neurodegenerative diseases, including Alzheimer's disease. While numerous therapeutic candidates have been proposed, they primarily serve to delay disease progression. Given the irreversible brain atrophy or injury associated with these conditions, current research efforts are concentrated on preventive medicine strategies. Herein, we investigated whether the extracts of Capsicum annuum L. seeds (CSE) and Capsicum annuum L. pulp (CPE) have preventive properties against glutamate-induced neuroexcitotoxicity (one of the main causes of Alzheimer's disease) in HT22 hippocampal neuronal cells. Pretreatment with CSE demonstrated significant anti-neuroexcitotoxic activity, whereas CPE did not exhibit such effects. Specifically, CSE pretreatment dose-dependently inhibited the elevation of excitotoxic elements (intracellular calcium influx and reactive oxygen species; ROS) and apoptotic elements (p53 and cleaved caspase-3). In addition, the glutamate-induced alterations of neuronal activity indicators (brain-derived neurotrophic factor; BDNF and cAMP response element-binding protein phosphorylation; CREB) were significantly attenuated by CSE treatment. We also found that luteolin is the main bioactive compound corresponding to the anti-neuroexcitotoxic effects of CSE. Our results strongly suggest that Capsicum annuum L. seeds (but not its pulp) could be candidates for neuro-protective resources especially under conditions of neuroexcitotoxicity. Its underlying mechanisms may involve the amelioration of ROS-mediated cell death and BDNF-related neuronal inactivity and luteolin would be an active compound.


Assuntos
Doença de Alzheimer , Capsicum , Fármacos Neuroprotetores , Espécies Reativas de Oxigênio/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Capsicum/química , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Luteolina/farmacologia , Cânfora/metabolismo , Cânfora/farmacologia , Mentol/metabolismo , Mentol/farmacologia , Neurônios , Sementes/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo
7.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339206

RESUMO

Methamphetamine (MA) is a highly addictive drug, and MA use disorder is often comorbid with anxiety and cognitive impairment. These comorbid conditions are theorized to reflect glutamate-related neurotoxicity within the frontal cortical regions. However, our prior studies of MA-sensitized mice indicate that subchronic, behaviorally non-contingent MA treatment is sufficient to dysregulate glutamate transmission in mouse brain. Here, we extend this prior work to a mouse model of high-dose oral MA self-administration (0.8, 1.6, or 3.2 g/L; 1 h sessions × 7 days) and show that while female C57BL/6J mice consumed more MA than males, MA-experienced mice of both sexes exhibited some signs of anxiety-like behavior in a behavioral test battery, although not all effects were concentration-dependent. No MA effects were detected for our measures of visually cued spatial navigation, spatial learning, or memory in the Morris water maze; however, females with a history of 3.2 g/L MA exhibited reversal-learning deficits in this task, and mice with a history of 1.6 g/L MA committed more working-memory incorrect errors and relied upon a non-spatial navigation strategy during the radial-arm maze testing. Relative to naïve controls, MA-experienced mice exhibited several changes in the expression of certain glutamate receptor-related proteins and their downstream effectors within the ventral and dorsal areas of the prefrontal cortex, the hippocampus, and the amygdala, many of which were sex-selective. Systemic pretreatment with the mGlu1-negative allosteric modulator JNJ 162596858 reversed the anxiety-like behavior expressed by MA-experienced mice in the marble-burying test, while systemic pretreatment with NMDA or the NMDA antagonist MK-801 bi-directionally affected the MA-induced reversal-learning deficit. Taken together, these data indicate that a relatively brief history of oral MA is sufficient to induce some signs of anxiety-like behavior and cognitive dysfunction during early withdrawal that reflect, at least in part, MA-induced changes in the corticolimbic expression of certain glutamate receptor subtypes of potential relevance to treating symptoms of MA use disorder.


Assuntos
Metanfetamina , Masculino , Camundongos , Animais , Feminino , Metanfetamina/toxicidade , N-Metilaspartato/farmacologia , Camundongos Endogâmicos C57BL , Receptores de Glutamato , Ácido Glutâmico/metabolismo , Cognição , Aprendizagem em Labirinto
8.
Neuroimage Clin ; 41: 103557, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38219534

RESUMO

OBJECTIVES: In vivo magnetic resonance spectroscopy (MRS) was used to investigate neurometabolic homeostasis in children with functional neurological disorder (FND) in three regions of interest: supplementary motor area (SMA), anterior default mode network (aDMN), and posterior default mode network (dDMN). Metabolites assessed included N-acetyl aspartate (NAA), a marker of neuron function; myo-inositol (mI), a glial-cell marker; choline (Cho), a membrane marker; glutamate plus glutamine (Glx), a marker of excitatory neurotransmission; γ-aminobutyric acid (GABA), a marker of inhibitor neurotransmission; and creatine (Cr), an energy marker. The relationship between excitatory (glutamate and glutamine) and inhibitory (GABA) neurotransmitter (E/I) balance was also examined. METHODS: MRS data were acquired for 32 children with mixed FND (25 girls, 7 boys, aged 10.00 to 16.08 years) and 41 healthy controls of similar age using both short echo point-resolved spectroscopy (PRESS) and Mescher-Garwood point-resolved spectroscopy (MEGAPRESS) sequences in the three regions of interest. RESULTS: In the SMA, children with FND had lower NAA/Cr, mI/Cr (trend level), and GABA/Cr ratios. In the aDMN, no group differences in metabolite ratios were found. In the pDMN, children with FND had lower NAA/Cr and mI/Cr (trend level) ratios. While no group differences in E/I balance were found (FND vs. controls), E/I balance in the aDMN was lower in children with functional seizures-a subgroup within the FND group. Pearson correlations found that increased arousal (indexed by higher heart rate) was associated with lower mI/Cr in the SMA and pDMN. CONCLUSIONS: Our findings of multiple differences in neurometabolites in children with FND suggest dysfunction on multiple levels of the biological system: the neuron (lower NAA), the glial cell (lower mI), and inhibitory neurotransmission (lower GABA), as well as dysfunction in energy regulation in the subgroup with functional seizures.


Assuntos
Transtorno Conversivo , Glutamina , Masculino , Criança , Feminino , Humanos , Adolescente , Glutamina/metabolismo , Ácido Glutâmico/metabolismo , Convulsões , Ácido Aspártico , Creatina/metabolismo , Colina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Inositol/metabolismo
9.
EMBO Rep ; 25(3): 991-1021, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38243137

RESUMO

Neuronal maturation is the phase during which neurons acquire their final characteristics in terms of morphology, electrical activity, and metabolism. However, little is known about the metabolic pathways governing neuronal maturation. Here, we investigate the contribution of the main metabolic pathways, namely glucose, glutamine, and fatty acid oxidation, during the maturation of primary rat hippocampal neurons. Blunting glucose oxidation through the genetic and chemical inhibition of the mitochondrial pyruvate transporter reveals that this protein is critical for the production of glutamate, which is required for neuronal arborization, proper dendritic elongation, and spine formation. Glutamate supplementation in the early phase of differentiation restores morphological defects and synaptic function in mitochondrial pyruvate transporter-inhibited cells. Furthermore, the selective activation of metabotropic glutamate receptors restores the impairment of neuronal differentiation due to the reduced generation of glucose-derived glutamate and rescues synaptic local translation. Fatty acid oxidation does not impact neuronal maturation. Whereas glutamine metabolism is important for mitochondria, it is not for endogenous glutamate production. Our results provide insights into the role of glucose-derived glutamate as a key player in neuronal terminal differentiation.


Assuntos
Glutamina , Transportadores de Ácidos Monocarboxílicos , Ratos , Animais , Glutamina/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neurônios/metabolismo , Ácido Glutâmico/metabolismo , Glucose/metabolismo , Ácidos Graxos/metabolismo
10.
Food Funct ; 15(2): 906-916, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38168829

RESUMO

Pregnancy is a dynamic state involving rapid physiological changes in metabolism, affecting the health and development of the offspring. During pregnancy, the placenta constitutes a physical and immunological barrier to provide fetal nutrition through the maternal blood and prevent the exposure of the fetus to dangerous signals. Metabolic changes in the plasma, the fecal microbiota profile, and functional regulation in the placenta were studied in sows supplied with a ferrous-sucrose complex (FeSuc) from late gestation to parturition. The results revealed that maternal FeSuc supplementation enhanced arginine and proline metabolism, glutathione metabolism, with increased glutamic acid, beta-D-glucosamine, L-proline, 1-butylamine, and succinic acid and reduced sphingosine and chenodeoxycholic acid sulfate levels in the plasma. Moreover, significantly increased abundances of Christensenellaceae_R-7_group, Prevotellaceae_NK3B31_group, and Lachnospiraceae_NK4B4_group were detected in the feces of sows from the FeSuc group (P < 0.05). Spearman's correlation analysis indicated that Prevotellaceae_NK3B31_group abundances were positively correlated with glutamic acid, indoxyl sulfate, acetyl-DL-leucine, and beta-D-glucosamine, while Christensenellaceae_R-7_group was positively correlated with beta-D-glucosamine. Furthermore, maternal FeSuc supplementation significantly increased neonatal glucose (P < 0.01) and iron (P < 0.01) in the neonatal serum, significantly increased IL-10 and TGF-ß1 levels in the neonatal liver (P < 0.01) and jejunum (P < 0.05), promoted the transcription of immune molecules in the placenta, and significantly increased the protein expressions of EGF (P < 0.05), PI3K (P < 0.01), p-PI3K (P < 0.001), p-AKT (P < 0.01), and glucose transporter 1 (GLUT1) (P < 0.001) in the placenta. The current study demonstrated that FeSuc supplementation regulated maternal metabolism processes by altering the fecal microbial composition and improved neonatal immunity and placental glucose transportation by activating the EGF/PI3K/AKT signaling pathways in sows.


Assuntos
Microbiota , Placenta , Gravidez , Animais , Feminino , Suínos , Placenta/metabolismo , Glucose/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ácido Glutâmico/metabolismo , Suplementos Nutricionais , Transdução de Sinais , Glucosamina
11.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176904

RESUMO

NMDA receptors (NMDARs) modulate glutamatergic excitatory tone in the brain via two complementary modalities: a phasic excitatory postsynaptic current and a tonic extrasynaptic modality. Here, we demonstrated that the tonic NMDAR-current (I NMDA) mediated by NR2A-containing NMDARs is an efficient biosensor detecting the altered ambient glutamate level in the supraoptic nucleus (SON). I NMDA of magnocellular neurosecretory cells (MNCs) measured by nonselective NMDARs antagonist, AP5, at holding potential (V holding) -70 mV in low concentration of ECF Mg2+ ([Mg2+]o) was transiently but significantly increased 1-week post induction of a DOCA salt hypertensive model rat which was compatible with that induced by a NR2A-selective antagonist, PEAQX (I PEAQX) in both DOCA-H2O and DOCA-salt groups. In agreement, NR2B antagonist, ifenprodil, or NR2C/D antagonist, PPDA, did not affect the holding current (I holding) at V holding -70 mV. Increased ambient glutamate by exogenous glutamate (10 mM) or excitatory amino acid transporters (EAATs) antagonist (TBOA, 50 mM) abolished the I PEAQX difference between two groups, suggesting that attenuated EAATs activity increased ambient glutamate concentration, leading to the larger I PEAQX in DOCA-salt rats. In contrast, only ifenprodil but not PEAQX and PPDA uncovered I NMDA at V holding +40 mV under 1.2 mM [Mg2+]o condition. I ifenprodil was not different in DOCA-H2O and DOCA-salt groups. Finally, NR2A, NR2B, and NR2D protein expression were not different in the SON of the two groups. Taken together, NR2A-containing NMDARs efficiently detected the increased ambient glutamate concentration in the SON of DOCA-salt hypertensive rats due to attenuated EAATs activity.


Assuntos
Acetato de Desoxicorticosterona , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacologia , Ácido Glutâmico/metabolismo , Núcleo Supraóptico/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia
12.
Int J Mol Sci ; 25(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38279303

RESUMO

Glutamine (Gln), a non-essential amino acid, is synthesized de novo by glutamine synthetase (GS) in various organs. In the brain, GS is exclusively expressed in astrocytes under normal physiological conditions, producing Gln that takes part in glutamatergic neurotransmission through the glutamate (Glu)-Gln cycle. Because the Glu-Gln cycle and glutamatergic neurotransmission play a pivotal role in normal brain activity, maintaining Gln homeostasis in the brain is crucial. Recent findings indicated that a neuronal Gln deficiency in the medial prefrontal cortex in rodents led to depressive behaviors and mild cognitive impairment along with lower glutamatergic neurotransmission. In addition, exogenous Gln supplementation has been tested for its ability to overcome neuronal Gln deficiency and reverse abnormal behaviors induced by chronic immobilization stress (CIS). Although evidence is accumulating as to how Gln supplementation contributes to normalizing glutamatergic neurotransmission and the Glu-Gln cycle, there are few reviews on this. In this review, we summarize recent evidence demonstrating that Gln supplementation ameliorates CIS-induced deleterious changes, including an imbalance of the Glu-Gln cycle, suggesting that Gln homeostasis is important for emotional and cognitive functions. This is the first review of detailed mechanistic studies on the effects of Gln supplementation on emotional and cognitive functions.


Assuntos
Ácido Glutâmico , Glutamina , Glutamina/metabolismo , Ácido Glutâmico/metabolismo , Astrócitos/metabolismo , Neurônios/metabolismo , Cognição
13.
Artigo em Inglês | MEDLINE | ID: mdl-37952692

RESUMO

BACKGROUND: The basal ganglia are strongly connected to the primary motor cortex (M1) and play a crucial role in movement control. Interestingly, several disorders showing abnormal neurotransmitter levels in basal ganglia also present concomitant anomalies in intracortical function within M1. OBJECTIVE/HYPOTHESIS: The main aim of this study was to clarify the relationship between neurotransmitter content in the basal ganglia and intracortical function at M1 in healthy individuals. We hypothesized that neurotransmitter content of the basal ganglia would be significant predictors of M1 intracortical function. METHODS: We combined magnetic resonance spectroscopy (MRS) and transcranial magnetic stimulation (TMS) to test this hypothesis in 20 healthy adults. An extensive TMS battery probing common measures of intracortical, and corticospinal excitability was administered, and GABA and glutamate-glutamine levels were assessed from voxels placed over the basal ganglia and the occipital cortex (control region). RESULTS: Regression models using metabolite concentration as predictor and TMS metrics as outcome measures showed that glutamate level in the basal ganglia significantly predicted short interval intracortical inhibition (SICI) and intracortical facilitation (ICF), while GABA content did not. No model using metabolite measures from the occipital control voxel was significant. CONCLUSIONS: Taken together, these results converge with those obtained in clinical populations and suggest that intracortical circuits in human M1 are associated with the neurotransmitter content of connected but distal subcortical structures crucial for motor function.


Assuntos
Córtex Motor , Adulto , Humanos , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Inibição Neural/fisiologia , Potencial Evocado Motor/fisiologia , Ácido Glutâmico/metabolismo , Estimulação Magnética Transcraniana/métodos , Gânglios da Base/diagnóstico por imagem , Ácido gama-Aminobutírico/metabolismo
14.
Neuroradiology ; 66(3): 389-398, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38114794

RESUMO

PURPOSE: MELAS syndrome is a genetic disorder caused by mitochondrial DNA mutations. We previously described that MELAS patients had increased CSF glutamate and decreased CSF glutamine levels and that oral glutamine supplementation restores these values. Proton magnetic resonance spectroscopy (1H-MRS) allows the in vivo evaluation of brain metabolism. We aimed to compare 1H-MRS of MELAS patients with controls, the 1H-MRS after glutamine supplementation in the MELAS group, and investigate the association between 1H-MRS and CSF lactate, glutamate, and glutamine levels. METHODS: We conducted an observational case-control study and an open-label, single-cohort study with single-voxel MRS (TE 144/35 ms). We assessed the brain metabolism changes in the prefrontal (PFC) and parieto-occipital) cortex (POC) after oral glutamine supplementation in MELAS patients. MR spectra were analyzed with jMRUI software. RESULTS: Nine patients with MELAS syndrome (35.8 ± 3.2 years) and nine sex- and age-matched controls were recruited. Lactate/creatine levels were increased in MELAS patients in both PFC and POC (0.40 ± 0.05 vs. 0, p < 0.001; 0.32 ± 0.03 vs. 0, p < 0.001, respectively). No differences were observed between groups in glutamate and glutamine (Glx/creatine), either in PFC (p = 0.930) or POC (p = 0.310). No differences were observed after glutamine supplementation. A positive correlation was found between CSF lactate and lactate/creatine only in POC (0.85, p = 0.003). CONCLUSION: No significant metabolite changes were observed in the brains of MELAS patients after glutamine supplementation. While we found a positive correlation between lactate levels in CSF and 1H-MRS in MELAS patients, we could not monitor treatment response over short periods with this tool. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04948138; initial release 24/06/2021; first patient enrolled on 1/07/2021. https://clinicaltrials.gov/ct2/show/NCT04948138.


Assuntos
Glutamina , Síndrome MELAS , Humanos , Glutamina/metabolismo , Síndrome MELAS/diagnóstico por imagem , Síndrome MELAS/tratamento farmacológico , Síndrome MELAS/metabolismo , Creatina/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Espectroscopia de Ressonância Magnética/métodos , Ácido Glutâmico/metabolismo , Espectroscopia de Prótons por Ressonância Magnética/métodos , Lactatos , Suplementos Nutricionais
15.
Neurosci Lett ; 820: 137595, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38096972

RESUMO

The current study was designed to examine the role of glutamate NMDA receptors of the mediodorsal thalamus (MD) in scopolamine-induced memory impairment. Adult male rats were bilaterally cannulated into the MD. According to the results, intraperitoneal (i.p.) administration of scopolamine (1.5 mg/kg) immediately after the training phase (post-training) impaired memory consolidation. Bilateral microinjection of the glutamate NMDA receptors agonist, N-Methyl-D-aspartic acid (NMDA; 0.05 µg/rat), into the MD significantly improved scopolamine-induced memory consolidation impairment. Co-administration of D-AP5, a glutamate NMDA receptor antagonist (0.001-0.005 µg/rat, intra-MD) potentiated the response of an ineffective dose of scopolamine (0.5 mg/kg, i.p.) to impair memory consolidation, mimicking the response of a higher dose of scopolamine. Noteworthy, post-training intra-MD microinjections of the same doses of NMDA or D-AP5 alone had no effect on memory consolidation. Moreover, the blockade of the glutamate NMDA receptors by 0.003 ng/rat of D-AP5 prevented the improving effect of NMDA on scopolamine-induced amnesia. Thus, it can be concluded that the MD glutamatergic system may be involved in scopolamine-induced memory impairment via the NMDA receptor signaling pathway.


Assuntos
N-Metilaspartato , Escopolamina , Ratos , Masculino , Animais , Escopolamina/farmacologia , N-Metilaspartato/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido Glutâmico/metabolismo , Ratos Wistar , Amnésia/induzido quimicamente , Transtornos da Memória/induzido quimicamente , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Tálamo/metabolismo , Aprendizagem da Esquiva
16.
Zhen Ci Yan Jiu ; 48(12): 1218-1226, 2023 Dec 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38146244

RESUMO

OBJECTIVES: To observe the effects of electroacupuncture(EA) on memory, cognitive impairment, and the brain-derived neurotrophic factor(BDNF)/N-methyl-D-aspartate receptor subtype 1(NMDAR1) pathway in the brains of offspring rat with intrauterine growth restriction(IUGR) induced by perinatal nicotine exposure(PNE), so as to explore the underlying mechanism. METHODS: SD rats were randomly divided into normal, model, and EA groups, with 4 mothers and 10 offspring rats of each mother in each group. The IUGR model was established by subcutaneous injection of nicotine during pregnancy and lactation. From the 6th day of pregnancy in the mothers until the 21st day after birth of the offspring rats, EA (2 Hz/15 Hz, 1 mA) was administered bilaterally at the "Zusanli"(ST36) of mothers, once daily for 20 min. The brain organ coefficient was used to evaluate the brain development of the offspring rats. The Y-maze test and novel object recognition experiments were performed to assess memory and cognitive function. HE staining was used to observe the development and cellular morphology of the hippocampus and prefrontal cortex in the offspring rats. UV spectrophotometry was used to measure the glutamate(Glu) content in the hippocampus. ELISA was used to detect the BDNF content in the hippocampus. Western blot was performed to measure the protein expression of NMDAR1 in the hippocampus. Immunohistochemistry was used to count the number of BDNF-positive cells in the hippocampus and prefrontal cortex. RESULTS: Compared with the normal group, the brain organ coefficient, exploration time of the novel arm, spontaneous alternation rate, and novel object recognition index, contents of BDNF and expression of NMDAR1 proteins in the hippocampus, the number of BDNF-positive cells in the CA1 and CA3 regions of the hippocampus and prefrontal cortex were significantly reduced(P<0.01), while the Glu content in the hippocampus was significantly increased(P<0.01) in the model group of offspring rats;decreased cell number, scattered arrangement, and disrupted cellular structure were observed in the hippocampus and prefrontal cortex of offspring rats in the model group. Compared with the model group, the brain organ coefficient, exploration time of the novel arm, spontaneous alternation rate, and novel object recognition index, the BDNF contents and NMDAR1 protein expression in the hippocampus, the number of BDNF-positive cells in the hippocampal CA1 and CA3 regions and prefrontal cortex significantly increased(P<0.01, P<0.05), while the Glu content in the hippocampus was significantly decreased (P<0.01) in offspring rats of the EA group;increased cell number, neat arrangement, and reduced cellular damage were observed in the hippocampus and prefrontal cortex in the EA group. CONCLUSIONS: EA has an improving effect on memory and cognitive function impairment in offspring rats with IUGR induced by PNE, and this mechanism may be associated with the regulation of BDNF/NMDAR1 pathway, thereby improving the neuronal quantity and structure of the hippocampus and prefrontal cortex in offspring rats.


Assuntos
Disfunção Cognitiva , Eletroacupuntura , Gravidez , Feminino , Ratos , Animais , Ratos Sprague-Dawley , Nicotina/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/terapia , Ácido Glutâmico/metabolismo
17.
Transl Psychiatry ; 13(1): 357, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993441

RESUMO

Post-traumatic stress disorder (PTSD) is a mental disorder that develops after exposure to a traumatic event. Owing to the relatively low rates of response and remission with selective serotonin reuptake inhibitors as the primary treatment for PTSD, there is a recognized need for alternative strategies to effectively address the symptoms of PTSD. Dysregulation of glutamatergic neurotransmission plays a critical role in various disorders, including anxiety, depression, PTSD, and Alzheimer's disease. Therefore, the regulation of glutamate levels holds great promise as a therapeutic target for the treatment of mental disorders. Electroacupuncture (EA) has become increasingly popular as a complementary and alternative medicine approach. It maintains the homeostasis of central nervous system (CNS) function and alleviates symptoms associated with anxiety, depression, and insomnia. This study investigated the effects of EA at the GV29 (Yintang) acupoint three times per week for 2 weeks in an animal model of PTSD. PTSD was induced using single prolonged stress/shock (SPSS) in mice, that is, SPS with additional foot shock stimulation. EA treatment significantly reduced PTSD-like behavior and effectively regulated serum corticosterone and serotonin levels in the PTSD model. Additionally, EA treatment decreased glutamate levels and glutamate neurotransmission-related proteins (pNR1 and NR2B) in the hippocampus of a PTSD model. In addition, neuronal activity and the number of Golgi-impregnated dendritic spines were significantly lower in the EA treatment group than in the SPSS group. Notably, EA treatment effectively reduced glutamate-induced excitotoxicity (caspase-3, Bax, and pJNK). These findings suggest that EA treatment at the GV29 acupoint holds promise as a potential therapeutic approach for PTSD, possibly through the regulation of NR2B receptor-mediated glutamate neurotransmission to reduce PTSD-like behaviors.


Assuntos
Eletroacupuntura , Transtornos de Estresse Pós-Traumáticos , Humanos , Camundongos , Animais , Transtornos de Estresse Pós-Traumáticos/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Modelos Animais de Doenças , Transmissão Sináptica
18.
Mol Cell Neurosci ; 126: 103883, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37527694

RESUMO

There is growing interest in the use of natural products for the treatment of Parkinson's disease (PD). Mucuna pruriens has been used in the treatment of humans with PD. The goal of this study was to determine if daily oral treatment with an extract of Mucuna pruriens, starting after the MPTP-induced loss of nigrostriatal dopamine in male mice, would result in recovery/restoration of motor function, tyrosine hydroxylase (TH) protein expression in the nigrostriatal pathway, or glutamate biomarkers in both the striatum and motor cortex. Following MPTP administration, resulting in an 80 % loss of striatal TH, treatment with Mucuna pruriens failed to rescue either striatal TH or the dopamine transporter back to the control levels, but there was restoration of gait/motor function. There was an MPTP-induced loss of TH-labeled neurons in the substantia nigra pars compacta and in the number of striatal dendritic spines, both of which failed to be recovered following treatment with Mucuna pruriens. This Mucuna pruriens-induced locomotor recovery following MPTP was associated with restoration of two striatal glutamate transporter proteins, GLAST (EAAT1) and EAAC1 (EAAT3), and the vesicular glutamate transporter 2 (Vglut2) within the motor cortex. Post-MPTP treatment with Mucuna pruriens, results in locomotor improvement that is associated with recovery of striatal and motor cortex glutamate transporters but is independent of nigrostriatal TH restoration.


Assuntos
Mucuna , Doença de Parkinson , Extratos Vegetais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Ácido Glutâmico/metabolismo , Biomarcadores/metabolismo , Córtex Motor/efeitos dos fármacos , Córtex Motor/metabolismo , Córtex Motor/patologia , Mucuna/química , Extratos Vegetais/administração & dosagem , Marcha/efeitos dos fármacos , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , Gânglios da Base/metabolismo , Gânglios da Base/patologia , Animais , Camundongos
19.
Brain Res ; 1818: 148515, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543066

RESUMO

High grade gliomas carry a poor prognosis despite aggressive surgical and adjuvant approaches including chemoradiotherapy. Recent studies have demonstrated a mitogenic association between neuronal electrical activity and glioma growth involving the PI3K-mTOR pathway. As the predominant excitatory neurotransmitter of the brain, glutamate signalling in particular has been shown to promote glioma invasion and growth. The concept of the neurogliomal synapse has been established whereby glutamatergic receptors on glioma cells have been shown to promote tumour propagation. Targeting glutamatergic signalling is therefore a potential treatment option in glioma. Antiepileptic medications decrease excess neuronal electrical activity and some may possess anti-glutamate effects. Although antiepileptic medications continue to be investigated for an anti-glioma effect, good quality randomised trial evidence is lacking. Other pharmacological strategies that downregulate glutamatergic signalling include riluzole, memantine and anaesthetic agents. Neuromodulatory interventions possessing potential anti-glutamate activity include deep brain stimulation and vagus nerve stimulation - this contributes to the anti-seizure efficacy of the latter and the possible neuroprotective effect of the former. A possible role of neuromodulation as a novel anti-glioma modality has previously been proposed and that hypothesis is extended to include these modalities. Similarly, the significant survival benefit in glioblastoma attributable to alternating electrical fields (Tumour Treating Fields) may be a result of disruption to neurogliomal signalling. Further studies exploring excitatory neurotransmission and glutamatergic signalling and their role in glioma origin, growth and propagation are therefore warranted.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Neoplasias Encefálicas/metabolismo , Anticonvulsivantes/uso terapêutico , Glioma/metabolismo , Transmissão Sináptica , Ácido Glutâmico/metabolismo
20.
Nature ; 621(7977): 146-153, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648853

RESUMO

Learning and memory are thought to require hippocampal long-term potentiation (LTP), and one of the few central dogmas of molecular neuroscience that has stood undisputed for more than three decades is that LTP induction requires enzymatic activity of the Ca2+/calmodulin-dependent protein kinase II (CaMKII)1-3. However, as we delineate here, the experimental evidence is surprisingly far from conclusive. All previous interventions inhibiting enzymatic CaMKII activity and LTP4-8 also interfere with structural CaMKII roles, in particular binding to the NMDA-type glutamate receptor subunit GluN2B9-14. Thus, we here characterized and utilized complementary sets of new opto-/pharmaco-genetic tools to distinguish between enzymatic and structural CaMKII functions. Several independent lines of evidence demonstrated LTP induction by a structural function of CaMKII rather than by its enzymatic activity. The sole contribution of kinase activity was autoregulation of this structural role via T286 autophosphorylation, which explains why this distinction has been elusive for decades. Directly initiating the structural function in a manner that circumvented this T286 role was sufficient to elicit robust LTP, even when enzymatic CaMKII activity was blocked.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Potenciação de Longa Duração , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/fisiologia , Aprendizagem/fisiologia , Potenciação de Longa Duração/fisiologia , Optogenética , Fosforilação , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA