Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18586, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903904

RESUMO

Alzheimer's disease (AD), a neurodegenerative disorder, causes short-term memory and cognition declines. It is estimated that one in three elderly people die from AD or other dementias. Chinese herbal medicine as a potential drug for treating AD has gained growing interest from many researchers. Moschus, a rare and valuable traditional Chinese animal medicine, was originally documented in Shennong Ben Cao Jing and recognized for its properties of reviving consciousness/resuscitation. Additionally, Moschus has the efficacy of "regulation of menstruation with blood activation, relief of swelling and pain" and is used for treating unconsciousness, stroke, coma, and cerebrovascular diseases. However, it is uncertain whether Moschus has any protective effect on AD patients. We explored whether Moschus could protect glutamate (Glu)-induced PC12 cells from cellular injury and preliminarily explored their related action mechanisms. The chemical compounds of Moschus were analyzed and identified by GC-MS. The Glu-induced differentiated PC12 cell model was thought to be the common AD cellular model. The study aims to preliminarily investigate the intervention effect of Moschus on Glu-induced PC12 cell damage as well as their related action mechanisms. Cell viability, lactate dehydrogenase (LDH), mitochondrial reactive oxygen species, mitochondrial membrane potential (MMP), cell apoptosis, autophagic vacuoles, autolysosomes or autophagosomes, proteins related to apoptosis, and the proteins related to autophagy were examined and analyzed. Seventeen active compounds of the Moschus sample were identified based on GC-MS analysis. In comparison to the control group, Glu stimulation increased cell viability loss, LDH release, mitochondrial damage, loss of MMP, apoptosis rate, and the number of cells containing autophagic vacuoles, and autolysosomes or autophagosomes, while these results were decreased after the pretreatment with Moschus and 3-methyladenine (3-MA). Furthermore, Glu stimulation significantly increased cleaved caspase-3, Beclin1, and LC3II protein expression, and reduced B-cell lymphoma 2/BAX ratio and p62 protein expression, but these results were reversed after pretreatment of Moschus and 3-MA. Moschus has protective activity in Glu-induced PC12 cell injury, and the potential mechanism might involve the regulation of autophagy and apoptosis. Our study may promote research on Moschus in the field of neurodegenerative diseases, and Moschus may be considered as a potential therapeutic agent for AD.


Assuntos
Doença de Alzheimer , Ácido Glutâmico , Animais , Ratos , Feminino , Humanos , Idoso , Ácido Glutâmico/toxicidade , Autofagia , Espécies Reativas de Oxigênio/metabolismo , Autofagossomos/metabolismo , Apoptose , Doença de Alzheimer/tratamento farmacológico , Células PC12 , Sobrevivência Celular
2.
Fitoterapia ; 169: 105616, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37479119

RESUMO

Glutamate-induced oxidative stress is well-known to play a crucial role in the development of neurodegenerative diseases, such as stroke. Genipin, a natural iridoid compound, has demonstrated potential neuroprotective properties but is unstable in physiological conditions. The present study aimed to develop new derivatives of genipin that exhibit improved stability and activity for the treatment of stroke. Nineteen new derivatives were thus designed and synthesized. Their neuroprotective effect against glutamate-induced injury was evaluated in HT22 cells. Among the newly synthesized derivatives, 3e demonstrated significantly greater neuroprotection and improved stability compared to genipin. Specifically, 0.01 µM of 3e was found to effectively attenuate glutamate-induced oxidative damage by inhibiting ROS over-accumulation, reducing MDA content, and restoring the endogenous antioxidative system. Further investigation revealed that 3e inhibited oxidative stress by downregulating the phosphorylation levels of p38 MAPK and activating Nrf2 and HO-1 proteins. These results suggested that 3e has the potential to serve as a promising candidate for the treatment of stroke by protecting against glutamate-induced oxidative stress.


Assuntos
Ácido Glutâmico , Fármacos Neuroprotetores , Ácido Glutâmico/toxicidade , Ácido Glutâmico/metabolismo , Fármacos Neuroprotetores/farmacologia , Linhagem Celular , Estrutura Molecular , Estresse Oxidativo , Iridoides/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
3.
Sci Rep ; 13(1): 7225, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142620

RESUMO

Glutamate-induced neurotoxicity in the HT22 mouse hippocampal neuronal cell line has been recognized as a valuable cell model for the study of neurotoxicity associated with neurodegenerative diseases including Alzheimer's disease (AD). However, the relevance of this cell model for AD pathogenesis and preclinical drug screening remains to be more elucidated. While there is increasing use of this cell model in a number of studies, relatively little is known about its underlying molecular signatures in relation to AD. Here, our RNA sequencing study provides the first transcriptomic and network analyses of HT22 cells following glutamate exposure. Several differentially expressed genes (DEGs) and their relationships specific to AD were identified. Additionally, the usefulness of this cell model as a drug screening system was assessed by determining the expression of those AD-associated DEGs in response to two medicinal plant extracts, Acanthus ebracteatus and Streblus asper, that have been previously shown to be protective in this cell model. In summary, the present study reports newly identified AD-specific molecular signatures in glutamate-injured HT22 cells, suggesting that this cell can be a valuable model system for the screening and evaluation of new anti-AD agents, particularly from natural products.


Assuntos
Doença de Alzheimer , Ácido Glutâmico , Camundongos , Animais , Ácido Glutâmico/toxicidade , Ácido Glutâmico/metabolismo , Estresse Oxidativo/fisiologia , Transcriptoma , Neurônios/metabolismo , Linhagem Celular , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Hipocampo/metabolismo
4.
Fundam Clin Pharmacol ; 37(4): 786-793, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36880372

RESUMO

This experiment was intended to evaluate the effect of sugammadex on the cytotoxicity induced by glutamate, involving the nitric oxide and oxidative stress pathways. C6 glioma cells were used in the study. Glutamate was given to cells in the glutamate group for 24 h. Sugammadex at different concentrations was given to cells in the sugammadex group for 24 h. Cells in the sugammadex + glutamate group were pre-treated with sugammadex at various concentrations for 1 h and then exposed to glutamate for 24 h. XTT assay was used to assess cell viability. Levels of nitric oxide (NO), neuronal nitric oxide synthase (nNOS), total antioxidant (TAS), and total oxidant (TOS) in the cells were calculated using commercial kits. Apoptosis was detected by TUNEL assay. Sugammadex at concentrations of 50 and 100 µg/mL significantly enhanced the cell viability in C6 cells after the cytotoxicity induced by glutamate (p < 0.001). Moreover, sugammadex considerably decreased the levels of nNOS NO and TOS and the number of apoptotic cells and increased the level of TAS (p < 0.001). Sugammadex has protective and antioxidant properties on cytotoxicity and could be an effective supplement for neurodegenerative diseases such as Alzheimer and Parkinson if further research in vivo supports this claim.


Assuntos
Ácido Glutâmico , Óxido Nítrico , Óxido Nítrico/metabolismo , Ácido Glutâmico/toxicidade , Ácido Glutâmico/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Sugammadex/farmacologia , Linhagem Celular , Estresse Oxidativo
5.
Phytomedicine ; 113: 154728, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36898255

RESUMO

BACKGROUND: Glutamate, an excitatory neurotransmitter, was elevated in the brain of neurodegenerative disease (ND) patients. The excessive glutamate induces Ca2+ influx and reactive oxygen species (ROS) production which exacerbates mitochondrial function, leading to mitophagy aberration, and hyperactivates Cdk5/p35/p25 signaling leading to neurotoxicity in ND. Stigmasterol, a phytosterol, has been reported for its neuroprotective effects; however, the underlying mechanism of stigmasterol on restoring glutamate-induced neurotoxicity is not fully investigated. PURPOSE: We investigated the effect of stigmasterol, a compound isolated from Azadirachta indica (AI) flowers, on ameliorating glutamate-induced neuronal apoptosis in the HT-22 cells. STUDY DESIGN: To further understand the underlying molecular mechanisms of stigmasterol, we investigated the effect of stigmasterol on Cdk5 expression, which was aberrantly expressed in glutamate-treated cells. Cell viability, Western blot analysis, and immunofluorescence are employed. RESULTS: Stigmasterol significantly inhibited glutamate-induced neuronal cell death via attenuating ROS production, recovering mitochondrial membrane depolarization, and ameliorating mitophagy aberration by decreasing mitochondria/lysosome fusion and the ratio of LC3-II/LC3-I. In addition, stigmasterol treatment downregulated glutamate-induced Cdk5, p35, and p25 expression via enhancement of Cdk5 degradation and Akt phosphorylation. Although stigmasterol demonstrated neuroprotective effects on inhibiting glutamate-induced neurotoxicity, the efficiency of stigmasterol is limited due to its poor water solubility. We conjugated stigmasterol to soluble soybean polysaccharides with chitosan nanoparticles to overcome the limitations. We found that the encapsulated stigmasterol increased water solubility and enhanced the protective effect on attenuating the Cdk5/p35/p25 signaling pathway compared with free stigmasterol. CONCLUSION: Our findings illustrate the neuroprotective effect and the improved utility of stigmasterol in inhibiting glutamate-induced neurotoxicity.


Assuntos
Azadirachta , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Regulação para Baixo , Estigmasterol/farmacologia , Estigmasterol/metabolismo , Ácido Glutâmico/toxicidade , Ácido Glutâmico/metabolismo , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Neurônios , Transdução de Sinais , Fosforilação , Proteínas tau/metabolismo , Flores/metabolismo , Água
6.
BMC Complement Med Ther ; 22(1): 335, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550546

RESUMO

BACKGROUND: Cuscuta epithymum Murr. (C. epithymum), as an herbal medicine, has played an anti-cancerous role in various studies; however, its possible neuroprotective effects have been neglected. Here, we aimed to investigate the protective effects of C. epithymum seeds crude extract and different fractions on rat glioblastoma cells (C6) in L-glutamate oxidative condition. METHODS: Initially, the total phenolic content of C. epithymum crude extract and the fractions (all produced by maceration method) was determined. Subsequently, C6 cells were pre-treated with the various concentrations of crude extract and fractions 24 h before L-glutamate exposure. Likewise, C6 cells were treated with the same concentrations of crude extract and fractions 24 h after exposure to L-glutamate. The cell viability and morphology were compared in crude extract and fractions groups, then superoxide dismutase (SODs) activity, reactive oxygen species (ROS), and malondialdehyde (MDA) levels were measured. The flow cytometry test was used to study C. epithymum crude extract's effects on the cell cycle and also to quantify the apoptosis, necrosis, and live cells population in different groups. RESULTS: C. epithymum crude extract and fractions (hexanoic, dichloromethanolic, and methanolic) had concentration-dependent cytotoxicity (IC50:126.47, 2101.96, 140.97, and 218.96 µg/ml, respectively). The crude extract and methanolic fraction contained phenolic compounds (55.99 ± 2.795 and 50.80 ± 2.969 mg gallic acid/g extract), while in hexanoic and dichloromethanolic fractions, the phenolic content was undetectable. In the cell viability assay, in comparison to fractions, the crude extract showed a more protective effect against glutamate-induced oxidative condition (P < 0.0001). The crude extract increased the SODs activity (P < 0.001) and decreased MDA and ROS levels (P < 0.0001) in comparison to the glutamate group. The crude extract significantly increased the population of cells in G1 (from 63.04 to 76.29) and decreased the percentage of cells in G2 (from 11.56 to 6.7) and S phase (from 25.4 to 17.01). In addition, it decreased the apoptotic and necrotic cell populations (from 34 to 17.1) and also increased the percentage of live cells (from 66.8 to 83.4 percent) in the flow cytometry test. CONCLUSION: C. epithymum crude extract plays a neuroprotective role by activating the defense mechanisms in cell against the oxidative condition.


Assuntos
Cuscuta , Plantas Medicinais , Ratos , Animais , Extratos Vegetais/farmacologia , Ácido Glutâmico/toxicidade , Cuscuta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plantas Medicinais/metabolismo , Fenóis/farmacologia
7.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232743

RESUMO

Glutamate-induced neural toxicity in autophagic neuron death is partially mediated by increased oxidative stress. Therefore, reducing oxidative stress in the brain is critical for treating or preventing neurodegenerative diseases. Selaginella tamariscina is a traditional medicinal plant for treating gastrointestinal bleeding, hematuria, leucorrhea, inflammation, chronic hepatitis, gout, and hyperuricemia. We investigate the inhibitory effects of Selaginella tamariscina ethanol extract (STE) on neurotoxicity and autophagic cell death in glutamate-exposed HT22 mouse hippocampal cells. STE significantly increased cell viability and mitochondrial membrane potential and decreased the expression of reactive oxygen species, lactate dehydrogenase release, and cell apoptosis in glutamate-exposed HT22 cells. In addition, while glutamate induced the excessive activation of mitophagy, STE attenuated glutamate-induced light chain (LC) 3 II and Beclin-1 expression and increased p62 expression. Furthermore, STE strongly enhanced the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) phosphorylation activation. STE strongly inhibited glutamate-induced autophagy by activating the PI3K/Akt/mTOR signaling pathway. In contrast, the addition of LY294002, a PI3K/Akt inhibitor, remarkably suppressed cell viability and p-Akt and p62 expression, while markedly increasing the expression of LC3 II and Beclin-1. Our findings indicate that autophagy inhibition by activating PI3K/Akt/mTOR phosphorylation levels could be responsible for the neuroprotective effects of STE on glutamate neuronal damage.


Assuntos
Morte Celular Autofágica , Fármacos Neuroprotetores , Selaginellaceae , Animais , Autofagia , Proteína Beclina-1/farmacologia , Etanol/farmacologia , Ácido Glutâmico/toxicidade , Lactato Desidrogenases/metabolismo , Mamíferos/metabolismo , Camundongos , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Selaginellaceae/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
8.
Int J Med Mushrooms ; 24(3): 35-50, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35467805

RESUMO

Neurological diseases are increasingly recognized as a health burden worldwide, mainly affecting the elderly population. Sanguinoderma rugosum (=Amauroderma rugosum) is a wild medicinal mushroom traditionally used to alleviate inflammation and prevent seizures. The present study aimed to investigate the neuroprotective and neurorescue effects as well as the possible mechanisms of S. rugosum extracts on glutamate-induced HT-22 mouse hippocampal neuronal cells. The mycelia of S. rugosum were subjected to submerged liquid fermentation followed by solvent extraction and fractionation. The neurotoxicity, neuroprotective, and neurorescue activities of S. rugosum extracts were assessed via the MTT viability assay at 24 and 48 h. The effects of S. rugosum extracts on glutamate-induced oxidative stress and cell death were investigated through flow cytometry. Gas chromatography/mass spectrometry (GC/MS) analysis was conducted to identify the bioactive compounds in the S. rugosum hexane fraction (SR-HF). All extracts were noncytotoxic toward HT-22 cells. Pretreatment with S. rugosum ethanolic extract (SR-EE; 12.5 µg/mL) or SR-HF (100 µg/mL) markedly (P < 0.05) improved the loss of cell viability and attenuated the accumulation of reactive oxygen species production. Pretreatment with SR-HF was also demonstrated to inhibit glutamate-induced cell death. The MTT assay showed that all extracts generally rescued glutamate-induced HT-22 cells at 24 and 48 h. The GC/MS analysis revealed the existence of 11 bioactive components in SR-HF, with linoleic acid, ergosterol, and ethyl linoleate being the main chemical constituents. The current findings suggest that SR-HF could be used as a potential therapeutic intervention to ameliorate oxidative stress and neuroinflammation.


Assuntos
Agaricales , Fármacos Neuroprotetores , Agaricales/química , Idoso , Animais , Sobrevivência Celular , Ácido Glutâmico/toxicidade , Hipocampo , Humanos , Camundongos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Extratos Vegetais/química , Extratos Vegetais/farmacologia
9.
Metab Brain Dis ; 37(2): 383-396, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34817757

RESUMO

Bacopa monnieri L. (BM; Family: Scrophulariaceae), commonly known as Brahmi, is traditionally used as a nootropic agent. BM also exhibits significant analgesic activity in experimental models of pain. However, the effect of Bacopa monnieri against glutamate-induced nociception in zebrafish is yet to be explored in experimental condition. Therefore, the present study was designed to evaluate the effect of BM against glutamate-induced nociception and brain mitochondrial toxicity in adult zebrafish (Danio rerio). BM at 0.625, 1.25 and 2.5 mg/ml was administered to adult zebrafish and after half an hour glutamate was injected through i.m. route of administration. Indomethacin was used as standard drug. After behavioral analysis, the fish were euthanized and the brain was isolated and stored for further biochemical analysis. BM (1.25 and 2.5 mg/ml) and indomethacin significantly attenuated the glutamate-induced increase in number of line crossing compared to control group animals. Additionally, BM (1.25 and 2.5 mg/ml) and indomethacin significantly reduced the glutamate induced increase in cytosolic calcium level. Further, there was a substantial improvement in mitochondrial function, integrity and bioenergetics in term of respiratory control rate and ADP/O in zebrafish brain. Moreover, BM (1.25 and 2.5 mg/ml) and indomethacin significantly reduced the glutamate-induced mitochondria-dependent apoptosis in zebrafish brain. Therefore, BM could be a potential alternative drug candidate in the management of pain.


Assuntos
Bacopa , Animais , Encéfalo , Ácido Glutâmico/toxicidade , Nociceptividade , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Peixe-Zebra
10.
J Ethnopharmacol ; 285: 114874, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838942

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tongmai granules (TMG) is composed of Salvia miltiorrhiza Bge., Radix puerariae Lobata., and Ligusticum chuanxiong hort. TMG is mainly used for ischemic cardiovascular, cerebrovascular diseases, atherosclerosis, coronary heart disease, cerebral infarction and cerebral ischemia. TMG is a kind of traditional compound granule, which has a protective effect on brain injury. However, the potential protective mechanism of the TMG has not been elucidated. AIM OF THE STUDY: TMG has a good effect on brain injury, but its brain protective mechanism is still unclear. The purpose of this study was to confirm the neuroprotective mechanism of TMG, reveal its target genes and identify the active components of TMG. MATERIALS AND METHODS: High-performance liquid chromatography (HPLC) was used to identify the fingerprint of TMG. UPLC-Q-TOF-MSE was used to analyze the base peak intensity (BPI) chromatograms of TMG. TMG was pre-administered for one week, brain injury and edema were induced by injection of glutamate (Glu) into the lateral ventricles of rats. HE staining was used to investigate the pathological damage caused by Glu in the hippocampus of rats, and the RNA-seq was used to analyze the changes of different genes before and after TMG treatment. Finally, changes of related proteins were analyzed by qRT-PCR, Western blot, and other molecular biological methods. Dosage of TMG were set to 0.6 g/kg, 1.2 g/kg and 2.4 g/kg. RESULTS: We found that TMG contained many active components, including salvianolic acid, puerarin, ferulic acid, etc. TMG could improve cerebral edema and brain injury induced by Glu. After TMG treatment, differential gene analysis showed that differential genes were significantly enriched in toll-like receptor signaling pathway. qRT-PCR validation results were consistent with RNA-Seq analysis results. Combined with Western blot analysis, we found that TMG ultimately regulated the expression of inflammatory cytokines by affecting the TLR4/MyD88/AP-1 pathway. CONCLUSIONS: In this study, we combined TMG with RNA-seq analysis to demonstrate that TMG may play a neuroprotective role by regulating Toll-like receptor signaling pathway and down-regulating the expression of inflammatory cytokine. TMG may become a kind of traditional Chinese medicine with neuroprotective potential.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Medicamentos de Ervas Chinesas , Hipocampo/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição AP-1/metabolismo , Animais , Lesões Encefálicas/induzido quimicamente , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/toxicidade , Masculino , Fator 88 de Diferenciação Mieloide/genética , Fitoterapia , Ratos , Ratos Wistar , Receptor 4 Toll-Like/genética , Fator de Transcrição AP-1/genética
11.
Neurochem Res ; 46(11): 3035-3049, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34327632

RESUMO

Epigallocatechin gallate (EGCG) is one of polyphenol that is abundant in green tea. It has anti-oxidative activity and exerts neuroprotective effects in ischemic brain damage. Ischemic conditions induce oxidative stress and result in cell death. Thioredoxin is a small redox protein that plays an important role in the regulation of oxidation and reduction. This study was designed to investigate the regulation of thioredoxin by EGCG in ischemic brain damage. Middle cerebral artery occlusion (MCAO) was performed to induce focal cerebral ischemia in male Sprague-Dawley rats. The EGCG (50 mg/kg) or was administered before MCAO surgical operation. Neurological behavior test, reactive oxygen species (ROS), and lipid peroxidation (LPO) measurement were performed 24 h after MCAO. The cerebral cortex was isolated for further experiments. EGCG alleviated MCAO-induced neurological deficits and increases in ROS and LPO levels. EGCG also ameliorated the decrease in thioredoxin expression by MCAO. This finding was confirmed using various techniques such as Western blot analysis, reverse transcription PCR, and immunofluorescence staining. Results of immunoprecipitation showed that MCAO decreases the interaction between apoptosis signal-regulating kinase 1 (ASK1) and thioredoxin, while EGCG treatment attenuates this decrease. EGCG also attenuated decrease of cell viability and thioredoxin expression in glutamate-exposed neuron in a dose-dependent manner. It alleviated the increase of caspase-3 by glutamate exposure. However, this effect of EGCG on caspase-3 change was weakened in thioredoxin siRNA-transfected neurons. These findings suggest that EGCG exerts a neuroprotective effect by regulating thioredoxin expression and modulating ASK1 and thioredoxin binding in ischemic brain damage.


Assuntos
Isquemia Encefálica/metabolismo , Catequina/análogos & derivados , Ácido Glutâmico/toxicidade , Neurônios/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Tiorredoxinas/biossíntese , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Catequina/farmacologia , Catequina/uso terapêutico , Linhagem Celular Transformada , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley
12.
Curr Neuropharmacol ; 19(9): 1416-1441, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33845746

RESUMO

Alzheimer's disease (AD) and Parkinson's disease (PD) are notorious neurodegenerative diseases amongst the general population. Being age-associated diseases, the prevalence of AD and PD is forecasted to rapidly escalate with the progressive aging population of the world. These diseases are complex and multifactorial. Among different events, amyloid ß peptide (Aß) induced toxicity is a well-established pathway of neuronal cell death, which plays a vital function in AD. Glutamate, the major excitatory transmitter, acts as a neurotoxin when present in excess at the synapses; this latter mechanism is termed excitotoxicity. It is hypothesised that glutamate-induced excitotoxicity contributes to the pathogenesis of AD and PD. No cure for AD and PD is currently available and the currently approved drugs available to treat these diseases have limited effectiveness and pose adverse effects. Indeed, plants have been a major source for the discovery of novel pharmacologically active compounds for distinct pathological conditions. Diverse plant species employed for brain-related disorders in traditional medicine are being explored to determine the scientific rationale behind their uses. Herein, we present a comprehensive review of plants and their constituents that have shown promise in reversing the (i) amyloid-ß -related toxicity in AD models and (ii) glutamate-induced excitotoxicity in AD and PD models. This review summarizes information regarding the phytochemistry, biological and cellular activities, and clinical trials of several plant species in view to provide adequate scientific baseline information that could be used in the drug development process, thereby providing effective leads for AD and PD.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Plantas Medicinais , Idoso , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/toxicidade , Ácido Glutâmico/toxicidade , Humanos
13.
Biomolecules ; 11(2)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671577

RESUMO

Oxidative stress is one of the main causes of brain cell death in neurological disorders. The use of natural antioxidants to maintain redox homeostasis contributes to alleviating neurodegeneration. Glutamate is an excitatory neurotransmitter that plays a critical role in many brain functions. However, excessive glutamate release induces excitotoxicity and oxidative stress, leading to programmed cell death. Our study aimed to evaluate the effect of osmundacetone (OAC), isolated from Elsholtzia ciliata (Thunb.) Hylander, against glutamate-induced oxidative toxicity in HT22 hippocampal cells. The effect of OAC treatment on excess reactive oxygen species (ROS), intracellular calcium levels, chromatin condensation, apoptosis, and the expression level of oxidative stress-related proteins was evaluated. OAC showed a neuroprotective effect against glutamate toxicity at a concentration of 2 µM. By diminishing the accumulation of ROS, as well as stimulating the expression of heat shock protein 70 (HSP70) and heme oxygenase-1 (HO-1), OAC triggered the self-defense mechanism in neuronal cells. The anti-apoptotic effect of OAC was demonstrated through its inhibition of chromatin condensation, calcium accumulation, and reduction of apoptotic cells. OAC significantly suppressed the phosphorylation of mitogen-activated protein kinases (MAPKs), including c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 kinases. Thus, OAC could be a potential agent for supportive treatment of neurodegenerative diseases.


Assuntos
Morte Celular , Ácido Glutâmico/toxicidade , Cetonas/farmacologia , Neurônios/metabolismo , Oxigênio/metabolismo , Extratos Vegetais/farmacologia , Animais , Antioxidantes/farmacologia , Apoptose , Compostos de Bifenilo/farmacologia , Cálcio/metabolismo , Linhagem Celular , Sobrevivência Celular , Cromatina/metabolismo , Embriófitas/genética , Sequestradores de Radicais Livres , Ácido Glutâmico/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Heme Oxigenase-1/metabolismo , Hipocampo/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/metabolismo , Camundongos , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Fosforilação , Picratos/farmacologia , Plantas Medicinais , Espécies Reativas de Oxigênio
14.
J Ethnopharmacol ; 270: 113807, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33450290

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: There is substantial experimental evidence to support the view that Ginkgo biloba L. (Ginkgoaceae), a traditional Chinese medicine known to treating stroke, has a protective effect on the central nervous system and significantly improves the cognitive dysfunction caused by disease, including alzheimer disease (AD), vascular dementia, and diabetic encephalopathy. Although a number of studies have reported that ginkgolide B (GB), a diterpenoid lactone compound extracted from Ginkgo biloba leaves, has neuroprotective effects, very little research has been performed to explore its potential pharmacological mechanism on astrocytes under abnormal glutamate (Glu) metabolism in the pathological environment of AD. AIM OF THE STUDY: We investigated the protective effect and mechanism of GB on Glu-induced astrocytes injury. METHODS: Astrocytes were randomly divided into the control group, Glu group, GB group, and GB + IWP-4 group.The CCK-8 assay was used to determine relative cell viability in vitro. Furthermore, RNA sequencing (RNA-seq) was performed to assess the preventive effects of GB in the Glu-induced astrocyte model and reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to validate the possible molecular mechanisms. The effects of GB on the Glu transporter and Glu-induced apoptosis of astrocytes were studied by RT-qPCR and western blot. RESULTS: GB attenuated Glu-induced apoptosis in a concentration-dependent manner, while the Wnt inhibitor IWP-4 reversed the protective effect of GB on astrocytes. The RNA-seq results revealed 4,032 differential gene expression profiles; 3,491 genes were up-regulated, and 543 genes were down-regulated in the GB group compared with the Glu group. Differentially expressed genes involved in a variety of signaling pathways, including the Hippo and Wnt pathways have been associated with the development and progression of AD. RT-qPCR was used to validate 14 key genes, and the results were consistent with the RNA-seq data. IWP-4 inhibited the regulation of GB, disturbed the apoptosis protective effect on astrocytes, and promoted Glu transporter gene and protein expression caused by Glu. CONCLUSION: Our findings demonstrate that GB may play a protective role in Glu-induced astrocyte injury by regulating the Hippo and Wnt pathways. GB was closely associated with the Wnt pathway by promoting expression of the Glu transporter and inhibiting Glu-induced injury in astrocytes.


Assuntos
Astrócitos/efeitos dos fármacos , Ginkgolídeos/farmacologia , Lactonas/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Apoptose/efeitos dos fármacos , Astrócitos/citologia , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/toxicidade , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Análise de Sequência de RNA/métodos , Serina-Treonina Quinase 3 , Transdução de Sinais/efeitos dos fármacos , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo
15.
J Nat Prod ; 83(10): 3149-3155, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32991171

RESUMO

A new phenolic glucoside, (7E,9E)-3-hydroxyavenalumic acid-3-O-[6'-O-(E)-caffeoyl]-ß-d-glucopyranoside (1), and three new acetylated flavone glycosides, acacetin-7-O-[ß-d-glucopyranosyl(1″″→2″)-4‴-O-acetyl-α-l-rhamnopyranosyl(1‴→6″)]-ß-d-glucopyranoside (3), acacetin-7-O-[6″″-O-acetyl-ß-d-glucopyranosyl(1″″→2″)-3‴-O-acetyl-α-l-rhamnopyranosyl(1‴→6″)]-ß-d-glucopyranoside (5), and acacetin-7-O-[3″″,6″″-di-O-acetyl-ß-d-glucopyranosyl(1″″→2″)-4‴-O-acetyl-α-l-rhamnopyranosyl(1‴→6″)]-ß-d-glucopyranoside (7), as well as 34 known compounds (2, 4, 6, and 8-38) were isolated from the aerial parts of Elsholtzia ciliata. The chemical structures of the new compounds were determined by spectroscopic/spectrometric data interpretation using NMR and HRESIMS. The neuroprotective effect of the isolated compounds was evaluated by a cell viability assay on HT22 murine hippocampal neuronal cells. Among them, 23 compounds, including new substances 1 and 3, exhibited neuroprotective effects against glutamate-induced HT22 cell death. In particular, compounds 2, 16, 17, 20, 22, 28, 29, and 31 presented potent neuroprotective effects with EC50 values of 1.5-8.3 µM.


Assuntos
Ácido Glutâmico/toxicidade , Lamiaceae/química , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Componentes Aéreos da Planta/química , Extratos Vegetais/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Flavonas , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Camundongos , Estrutura Molecular
16.
Mar Drugs ; 18(7)2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32707633

RESUMO

In this study, we found that E. prolifera extract (EAEP) exhibits neuroprotective effects in oxidative stress-induced neuronal cells. EAEP improved cell viability as well as attenuated the formation of intracellular reactive oxygen species (ROS) and apoptotic bodies in glutamate-treated hippocampal neuronal cells (HT-22). Furthermore, EAEP improved the expression of brain-derived neurotrophic factor (BDNF) and antioxidant enzymes such as heme oxygenase-1 (HO-1), NAD(P)H quinine oxidoreductase-1 (NQO-1), and glutamate-cysteine ligase catalytic subunit (GCLC) via the tropomyosin-related kinase receptor B/ protein kinase B (TrkB/Akt) signaling pathway. In contrast, the pre-incubation of K252a, a TrkB inhibitor, or MK-2206, an Akt-selective inhibitor, ameliorated the neuroprotective effects of EAEP in oxidative stress-induced neuronal cells. These results suggest that EAEP protects neuronal cells against oxidative stress-induced apoptosis by upregulating the expression of BDNF and antioxidant enzymes via the activation of the TrkB/Akt pathway. In conclusion, such an effect of EAEP, which is rich in carotenoid-derived compounds, may justify its application as a food supplement in the prevention and treatment of neurodegenerative disorders.


Assuntos
Antioxidantes/farmacologia , Carotenoides/farmacologia , Hipocampo/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Alga Marinha/química , Animais , Antioxidantes/isolamento & purificação , Apoptose/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Carotenoides/isolamento & purificação , Linhagem Celular , Ácido Glutâmico/toxicidade , Hipocampo/enzimologia , Hipocampo/patologia , Camundongos , Neurônios/enzimologia , Neurônios/patologia , Fármacos Neuroprotetores/isolamento & purificação , Transdução de Sinais
17.
Neurotoxicology ; 80: 93-104, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32687843

RESUMO

Glutamate is a crucial neurotransmitter of the mammalian central nervous system, a molecular component of our diet, and a popular food-additive. However, for decades, concerns have been raised about the issue of glutamate's safety as a food additive; especially, with regards to its ability (or otherwise) to cross the blood-brain barrier, cause excitotoxicity, or lead to neuron death. Results of animal studies following glutamate administration via different routes suggest that an array of effects can be observed. While some of the changes appear deleterious, some are not fully-understood, and the impact of others might even be beneficial. These observations suggest that with regards to the mammalian brain, exogenous glutamate might exert a double-sided effect, and in essence be a two-faced molecule whose effects may be dependent on several factors. This review draws from the research experiences of the authors and other researchers regarding the effects of exogenous glutamate on the brain of rodents. We also highlight the possible implications of such effects on the brain, in health and disease. Finally, we deduce that beyond the culinary effects of exogenous glutamate, there is the possibility of a beneficial role in the understanding and management of brain disorders.


Assuntos
Encéfalo/efeitos dos fármacos , Suplementos Nutricionais , Ácido Glutâmico/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Suplementos Nutricionais/toxicidade , Ácido Glutâmico/metabolismo , Ácido Glutâmico/toxicidade , Humanos , Medição de Risco , Fatores de Risco , Glutamato de Sódio/farmacologia
18.
Food Chem ; 333: 127456, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32663750

RESUMO

Bioprospecting for seaweed-derived multimodal acting products have earned increasing attention in the fight against diseases of multifactorial origin, such as neurodegenerative conditions. This is a pioneer study on the in vitro screening of neuroactive properties of phlorotannin-targeted extracts from edible Fucus species. Phlorotannin extracts exhibited multifunctional antioxidant properties, which were suggested to be responsible for counteracting glutamate toxicity in neuronal human-derived SH-SY5Y cells. They also inhibited the activity of enzymes (cholinesterases, monoaminoxidases A and B, and tyrosinase) linked to a set of events that contribute to the onset/progression of neurodegeneration. In general, the bioactivities were correlated with the total phlorotannin content and phloroglucinol tetramers were suggested to be behind the observed effects. The capacity of the phlorotannin extracts to interact with multiple in vitro targets underpinning neurodegeneration points to the potential interest of the selected seaweed species for development of new added-value products and promising neuroactive agents.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Fucus/química , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Alimentos , Ácido Glutâmico/toxicidade , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Neurônios/efeitos dos fármacos , Floroglucinol/química , Floroglucinol/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Análise de Componente Principal , Alga Marinha/química
19.
Food Chem ; 329: 127168, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32512395

RESUMO

A polyphenols-rich extract was obtained from polyvinylpolypyrrolidone (PVPP) winery residue, and its neuroprotective effects and ability to modulate the kinetics of type 2 diabetes-relevant enzymes were characterized. The PVPP-white wine extract is a mixture of polyphenols (840.08 ± 161.25 µg/mg, dry weight) dominated by proanthocyanidins and hydroxycinnamic acids, affording strong antioxidant activity, as detected by the protection of membrane lipids against oxidation and superoxide radical anion scavenging activity. Regarding type 2 diabetes framework, the extract inhibits α-glucosidase (Ki = 166.9 µg/mL) and aldose reductase (Ki = 127.5 µg/mL) through non-competitive mechanisms. Despite the modest ability to inhibit rat brain acetylcholinesterase, it protects neuronal SH-SY5Y cells against oxidative damage promoted by glutamate, decreasing reactive oxygen species generation and preserving cell redox state. Thus, PVPP-white wine extract has potential to support the development of functional foods and/or nutraceuticals aiming neuroprotection and glucose homeostasis regulation, with high relevance in Alzheimers disease and type 2 diabetes interlink.


Assuntos
Diabetes Mellitus Tipo 2/enzimologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Povidona/análogos & derivados , Vinho , Acetilcolinesterase , Aldeído Redutase/metabolismo , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular , Proteínas Ligadas por GPI/antagonistas & inibidores , Ácido Glutâmico/toxicidade , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/prevenção & controle , Oxirredução , Extratos Vegetais/química , Polifenóis/análise , Polifenóis/farmacologia , Povidona/química , Proantocianidinas/química , Proantocianidinas/farmacologia , Ratos , Vinho/análise
20.
Neuromolecular Med ; 22(3): 411-419, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32385800

RESUMO

Reperfusion after cerebral ischemia causes additional ischemic injuries due to sudden recovery of blood supply. It usually produces excessive reactive species, mitochondrial dysfunction, oxidative stress, and cell apoptosis. Our study is designed to examine the role of miR-421 antagomir in cerebral ischemia/reperfusion injuries, as well as its underlying mechanisms. Middle cerebral artery occlusion (MCAO) model was performed with male Sprague Dawley (SD) rats for the initiation of cerebral ischemia/reperfusion injuries. Malondialdehyde (oxidative stress marker) and superoxide dismutase (antioxidant enzyme) were measured as indicators for oxidative stress. Flow cytometry was utilized to evaluate the cell apoptosis effects from miR-421. miR-421 antagomir significantly decreased neurological deficits and infarction volumes. It also downregulated malondialdehyde contents, upregulated superoxide dismutase activities, promoted the expressions of myeloid cells leukemia-1 and B cells lymphoma-2, and downregulated the expressions of Bax in the ischemic cortex. In addition, miR-421targeted MCL1 to exert its biological functions. Our study indicated the neuroprotection effects of miR-421 antagomir on cerebral I/R injuries, which involved the suppression of cell apoptosis and oxidative stress. MiR-421 might provide a new therapeutic direction for ischemia/reperfusion injuries.


Assuntos
Antagomirs/uso terapêutico , Antioxidantes/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Antagomirs/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/biossíntese , Proteínas Reguladoras de Apoptose/genética , Isquemia Encefálica/metabolismo , Infarto Cerebral/etiologia , Infarto Cerebral/patologia , Regulação para Baixo , Avaliação Pré-Clínica de Medicamentos , Ácido Glutâmico/toxicidade , Infarto da Artéria Cerebral Média/complicações , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/análise , Proteína de Sequência 1 de Leucemia de Células Mieloides/biossíntese , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA